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1. Introduction 

 

The analysis of shell structures is of considerable 

interest in various areas of structural mechanics. In fact, 

shells are widely used in various mechanical structures, 

civil engineering, aerospace and naval. Two different types 

of shells can be distinguished by the ratio of the thickness: 

thin shells when the ratio is considered to be thin as 1/20 

and thick shells when the ratio is considered to be upper 

than 1/20. The thin shell structures are based on the 

Kirchhoff-Love theory (Krysl and Belytschko 1996, Uysal 

2016, Atri and Shojaee 2018, Jrad et al. 2018a, Mallek et al. 

2019a) and the thick shell structures (Zhu et al. 2014, 

Zhang et al. 2015a, b, c) are based on the Mindlin-Reissner 

theory (Zhang and Liew 2016a) that requires the transverse 

shear strains which are related to the rotational degrees of 

freedom. The introduction of shear correction factors to the 

Reissner-Mindlin theory is considered due to the non-

satisfaction of zero shear stress on top and bottom surfaces 

of the shell or plate. Many researchers are focused on this 

theory in order to highlight the effect of the shear correction 

factors addition. To avoid the use of shear correction factors 

and acquiring a parabolic distribution of the transverse 

shear stress, the double directors shell model DDSM is 

proposed by Wali et al. 2014, Zghal et al. 2017, Mallek et 

al. 2019c). 

Recently, meshfree methods have been the object of 

attention and extensively applied to problems in plate and 
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shell structures, and other structural engineering problems. 

These methods provide an alternative to the FEMs. Unlike 

the last one, which rely on elements, the meshfree methods 

depend on points that are distributed on the problem domain 

and no element or other inter-relationship is required. 

Without elements, the meshfree methods are more 

applicable than the FEMs and able to overcome the 

difficulties that FEM encountered with the mesh such as 

mesh distortion in large deformation and intensive 

remeshing requirements especially when dealing with 

structures that have complex geometries and discontinuities 

(Liew et al. 2011), “Furthermore, a wide range of 

applications has been undertaken when the shells have been 

the object of several meshfree researches with linear theory 

(Noguchi et al. 2000, Sladek et al. 2007, Ivannikov et al. 

2014, Wu and Liu 2016, Lei and Zhang 2018), Further, the 

high order shear deformation theory for linear meshfree 

analysis is investigated by Ferreira et al. (2006) and carried 

out later using the DDSM and the radial point interpolation 

method by Mellouli et al. (2019a), “In the same context, the 

modified first order shear deformation theory with linear 

meshfree method applied on 3D shell structures is 

considered by Mellouli et al. (2019b). 

Commonly, the linear shell theories are carried out for 

shells undertaking small displacements under different 

types of loads. Nonlinear analysis of shells, however, 

should be investigated in the case when shell structures 

experience large deformations. Finite element analyzes of 

nonlinear shell structures have been undertaken by several 

researchers (Ray and Batra 2008, Kim et al. 2008, Li et al. 

2010, Rama 2017, Frikha and Dammak 2017, Marinković 

and Rama 2017, Rezaiee et al. 2018, Jrad et al. 2018a, b, 
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Rama et al. 2018). With the meshfree method, Liew et al. 

(2004), proposed the nonlinear analysis of plates with the 

mesh-free kp-Ritz method based on the first order shear 

deformation theory (FSDT), “Later, the element free 

Galerkin method is used for the nonlinear analysis of plates 

as presented by Qian et al. (2003, 2004), Belinha and Dinis 

(2007), Liew et al. (2007) and Tiago and Pimenta (2008). 

Zhao et al. (2008), carried out a geometric nonlinear 

analysis of plates and cylindrical shells using the FSDT. 

Moreover, an isogeometric-meshfree coupling approach for 

the nonlinear analysis of thin-shell structures is provided in 

Li et al. (2018). The high order shear deformation theory 

with the nonlinear analysis of plates is considered by Vu et 

al. (2018) and Nguyen et al. (2018), using an improved 

moving Kriging meshfree method. The radial point 

interpolation method as a meshfree method used for the 

analysis of 3D shell structures with the consideration of the 

double directos shell theory does not exist in the literature. 

On the other hand, the radial point interpolation method 

(RPIM) is a meshfree method that combines both 

polynomial and radial basis functions (RBFs) (Wang and 

Liu 2002, Ferreira et al. 2005, Dinis et al. 2008, Kazemi et 

al. 2017) to construct the shape functions that possess the 

Kronecker delta property. 

In this paper, we aim to extend the application of the 

present meshfree method to study the geometric nonlinear 

behavior of 3D shells with finite rotations based on the 

double directors theory characterized by the quadratic 

distribution of the shear stress. The developed meshfree 

model considers the radial point interpolation method for 

the construction of the shape functions. The zero transverse 

shear stress condition on top and bottom surfaces of the 

shell is released in this model in order to remove the C1 

continuity. Numerical examples are presented in order to 

demonstrate the accuracy of the proposed model and to 

verify its validation with results reported in the literature. 
 

 

2. Geometrically nonlinear meshfree formulation 
with the double directors shell theory (DDST) 
 

In this section, the nonlinear formulation of the DDSM 

is presented. The initial and the deformed configurations of 

the shells are symbolized by C0 and Ct, respectively. Capital 

letters (respectively lowercase letters) are referred to 

quantities of configuration C0 (respectively Ct), “Vectors 

and tensors will be denoted by bold letters. 
 

2.1 Initial and deformed configurations of the 
displacement field 

 

To describe the 3D shell geometry, the Cartesian 

coordinate system (Ei), i = 1, 2, 3, is adopted. All material 

points of the shell are defined using the curvilinear 

coordinates ξ = (ξ1, ξ2, ξ3 = z). The position vectors of any 

material point (l), whose normal projection on mid-surface 

is the material point (j), in the initial state C0, are expressed 

using the director unit vector D and the thickness of the 

structure h, as 
 

     1 2 1 2 1 2, , , , , ,
2 2

l j

h h
z z z     

 
    

 
X X D

 
(1) 

The base vectors, in the initial state C0 are defined as 

 

, 3, , 1,2z      G A D G D
 (2) 

 

In the deformed configuration, the position vector of the 

point q is expressed, considering the hypothesis of the 

DDSM, Wali et al. (2014), as 

 

           1 2 1 2 1 2 1 2

1 1 2 2, , , , ,q pz f z f z         x x d d
 
(3) 

 

In order to satisfy the quadratic distribution of the shear 

stress, the expressions of f1(z) and f2(z) are defined, using 

the DDSM, as 
 

     
3

1 2 2 2

4
,

3

z
f z z f z f z

h
  

 
(4) 

 

In the deformed state Ct, the base vectors are defined as 

follows 
 

   

   

1 1, 2 2,

' '

3 1 1 2 2

;f z f z

f z f z

     

 

g a d d

g d d
 

(5) 

 

With some approximations, the metric tensor can be 

written as 
 

   

   

ij i j

1 2 2

1 2

' 1 ' 2

1 2

g . , , 1,2

g a b b ( )

g + ( )

αβ αβ

α3

f z f z o z

f z c f z c o z

 

 

  

    


 

g g

 

(6) 

 

in which aαβ represent the covariant metric surface, 𝑏𝛼𝛽
𝑘  (k 

= 1, 2) denote the curvature tensors and 𝑐𝛼
𝑘  (k = 1, 2) 

symbolize the shear tensor. Assuming d1.d1 ≈ d2.d2 ≈ d1.d2, 

the following components can be written as 

 

, ,

a .

b . .

.

αβ α β

k

α k β β k α

k

α kc








 




a a

a d a d

a d

,     k = 1, 2 (7) 

 

2.2 The strain field 
 

To describe the 3D shell geometry, the Cartesian 

coordinate system (Ei), i = 1, 2, 3. 

The Lagrangian strain E is expressed, using the 

kinematic assumption Eq. (6), as 

 

 

 
   

   

1 2

1 2

ij ij ij ' 1 ' 2

3 1 2

1
,

2

E e z z1
E g G ,

2 2 E +

αβ αβ

α

f χ f χ

f z f z

 

  

 

   
  



E g G

 

(8) 

 

where eαβ, 𝜒𝛼𝛽
𝑘  and 𝛾𝛼

𝑘  denote respectively the membrane, 

the bending and the shear strains. 

The membrane strains eαβ, the bending strains 𝜒𝛼𝛽
𝑘  and 

the shear strains 𝛾𝛼
𝑘  can be computed as 
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 

 젨젨

1

2

1

2
젨

αβ αβ αβ

k

αβ αβ

k

α α

e a A

χ b B

γ c C






 




 

  



,     k = 1, 2 (9) 

 

The membrane, bending and shear strains can be 

expressed, in matrix notation, as 
 

11 11

1

22 22

2

12 12

e

e ,  ,  

2e 2

k

k

k k k

k

k

χ

χ

χ





  
   

      
      

e   ,     k = 1, 2 (10) 

 

The virtual strains are formulated using Eq. (10) as 
 

 

 

, ,

k, k, , k, , k,

,

1
.   .

2

1
.   . .   .

2

.   .

αβ α β β α

k

α β β α α β β α

k

α k α k

δe δ δ

δχ δ δ δ δ

δγ δ δ






 




   

  



x x

d d x d x d

d x d

a a

a a

a

, 

k = 1, 2 

(11) 

 

These particles are rewritten in matrix form as 
 

k
m km kb k

k
ksm ksb k

. , ,       

    

e B x B x B d

B x B d




,    k = 1, 2 (12) 

 

where matrix differential operators, relative to the deformed 

state Ct, are given in Box 1. 

Box 1: Matrix differential operators 
 

1 1

2 2

2 1 2 1

1

2

1 1

2 2

1 2 1 2

1

2

1 2

T

T

T T

T

T

T
k ,

T
m km k , kb m

T T
k , k ,

k T

ksm ksb T

k

  

, ,

, , k ,

 

 

 

 

   
 

   









   
   
   
   

     
   
   
   
   

 
   
    
    
 
 

a d

B a B d B B

a a d d

d
a

B B
ad

 

(12) 

 

2.3 The weak form 
 

The weak form of equilibrium equations, used for the 

numerical solutions with the meshfree method, is given, 

using the contravariant components of the second Piola-

Kirchhoff stress tensor Sij, the covariant components of the 

virtual Green-Lagrange strain tensor δEij, the shell volume 

structure in the initial configuration dV and the external 

virtual work Gext, as 
 

ij
ij ext

V
S E  dV  0  G G

 
(13) 

The membrane N, bending M
k and shear T

k stress 

resultants, can be written, respectively, in matrix form, as 

 
11 11

1
22 22

2
12 12

1 2

k

k
k k k

k
k

N M
T

N , M , , k ,
T

N M

   
     

        
      
      

N M T

 

(14) 

 

Where components are defined as follows, α, β = 1, 2 

and k = 1, 2 
 

 

 

h /2 h /2
αβ αβ

kk
-h /2 -h /2

h /2
' α3

k k
-h /2

G G
N S dz, M f z S dz,

A A

G
T f z S  dz

A

 



 



 


 

(15) 

 

The weak form can be rewritten, using the components 

of the stress resultants defined in Eq. (14) and the shell 

strains δe, δχk and δγ
k represented in Eq. (12), as 

 

 
2

1

0
 

k k
k k ext

A
k

. . . dA



 
        

 
 

 N e M T G G

 

(16) 

 

It should be noted that the condition of zero shear stress 

on top and bottom surfaces of the shell structure is released 

in the present formulation in order to get rid of the 

difficulties caused by the satisfaction of the C1 continuity. 

The weak form of the equilibrium equation can be 

rewritten as 
 

    0T
  ext

A
, δ  δ . dA   , δ  Φ Φ Σ R Φ ΦG G

 
(17) 

 

Where the generalized resultants of stress R and strain Σ 

are defined as 
 

1

1

2
2

1
1

22 13 1
13 1

,




  
  
  
   
  
  
      

eN

χM

MR Σ χ

T γ

T γ
 

(18) 

 

2.4 Meshfree approximation of high order 
deformation shell structures 

 

Since there is no mesh of elements in the meshfree 

method, the shape functions are constructed using only 

nodes within overlapping domains named as support 

domains. A support domain of a point X determines the 

number of nodes to be used to support or approximate the 

function value at X, allowing a richer approximation and 

avoiding any artificial discontinuity in the field. The 

meshfree method concepts are described in this section. 

 

2.4.1 The radial point interpolation method (RPIM) 
The RPIM which represents an interpolator meshfree 

method that combines a radial basis function RI(X) with a 
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polynomial basis function PJ(X), is described in this section. 

For a point of interest X = (x, y) presented in a support 

domain, the approximation of the displacement vector is 

expressed, using aI and bJ the non-constants coefficients of 

RI(X) and PJ(X), as 
 

N M

I J
I J

I=1 J=1

T T
( X ) R ( X )a P ( X )b ( X ) ( X )    U R a P b

 

(19) 

 

N denotes the number of nodes presented in a support 

domain and M is the number of monomial terms with the 

condition of M < N. For example in this study, a quadratic 

basis requires M = 6 as presented in Eq. (20). 
 

2 21T ( X ) ,x, y,x ,xy, y 
 

P
 

(20) 

 

The displacement vector can be rewritten, in matrix 

notation using the radial moment matrix R, the polynomial 

moment matrix P, the vector of coefficients for RBFs a and  

the vector of coefficients for polynomial matrix b, as 
 

U = Ra + Pb 

1 1 2 1 N 1

1 2 2 2 N 2

1 N 2 N N N N N

1 2 N

1 2 NT

1 2 N M N

(X ) (X ) (X )

(X ) (X ) (X )

(X ) (X ) (X )

1 1 1

( )

( )

R R ... R

R R ... R
=

... ... ... ...

R R ... R

...

x x ... x

y y ... y
=

. . ... .

. . ... .

P( X ) P( X ) ... P( X )





 
 
 
 
 
 

 
 
 
 
 
 
 
 
  

R

P

 
a

T = [a1  a2 … aN] ,    b
T = [b1  b2 … bM] 

(21) 

 

The frequently used types of radial basis functions 

RBFs, Liu and Gu (2005), are presented in Table 1. 

c and q represent the two shape parameters charac-

terizing the RBFs and ||XJ ‒ X|| is the Euclidean norm 

specifying the distance between a defining-point XJ 

(? ,. )J ..., N  and a point of interest X. The advantage of an 

RBFs is that it requires only the distance between 2 nodes 

contrarily to the finite element method. The shape 

parameter c specifies the average nodal spacing for the total 

nodes locating in the local support domain and in order to 

reach the accurate results, the optimal shape parameter q is 

equal to q = 1.03. Eq. (19) presents total N+M variables. 

So, in order to obtain square matrix and guarantee unique 

approximation, Liu and Gu (2005), an M polynomial 

equations can be added verifying the relation presented at 

 

 

Table 1 Frequently used types of RBFs 

Multiquadrics RJ (X) = ( 𝑋𝐽 − 𝑋 
2

+ 𝑐2)𝑞  

Gaussians RJ (X) = exp (−𝑐2 𝑋𝐽 − 𝑋 
2

) 
 

Eq. (22). 

 
N

J I I

I=1

0P ( X )a 
 

(22) 

 

The combination of Eqs. (19) and (22) leads to the 

following set of matrix form equations using the complete 

moment matrix G 

 

         
           

         0 00
T

R P a U a U
G

b bP
 (23) 

 

It will be guaranteed the symmetry of the matrix G from 

the symmetry of the matrix R and a unique solution is 

reached if the inverse of the matrix R exists. 

Using the moment matrix G and the RPIM shape 

function defined in Eq. (25), the displacement vector is 

given as 
 

)(XU  1T T T( ) ( )X ? X XX ( )    
      

   


U U

0
R

0
U GP   (24) 

 

φ
T(X) = [ RT(X)  P

T(X) ]G-1 

          = [φ1(X)  φ2(X) ….  φN(X)] 
(25) 

 

Using the RPIM, the displacement vector U, defined as 

U = xp ‒ Xp, its incremental variation ΔU and the first and 

second director vectors d1 and d2 are approximated by 

 
N N N

I I I
I I 1 1I

I=1 I=1 I=1

N N N
I I I

1 1I 2 2I 2 2I

I=1 I=1 I=1

= , = , = ,

= , = , =

 

 

  

  

 

   

  

  

U u U u d d

d d d d d d

 

(26) 

 

where N represents the nodes number. 

 

2.4.2 Local Cartesian system 

Considering 𝒏0 =
𝑨1∧𝑨2

 𝑨1∧𝑨2 
 the normal field to the mid-

surface in the initial state C0, as illustrated in Fig. 1. A local 

Cartesian system with the base vectors {𝒏1
0, 𝒏2

0, 𝒏0 }, can be 

defined using the orthogonal transformation. Therefore, the 

Jacobian transformation J from the basis {𝒏1
0, 𝒏2

0} to {A1, 

A2} can be expressed as 
 

0 0
1 1 2 1

0 0
1 2 2 2

. .

. .

 
  
  

n A n A
J

n A n A
 

(27) 

 

The derivatives of the shape functions need to be 

reconstructed, since the formulation is developed in local 

Cartesian coordinates, as mentioned in Eq. (28). 
 

 
,1 1 ,1

,2
,2

I
I

II

 







   
   
    

J

 

(28) 
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Fig. 1 The system coordinates of the shell structure 
 

 

To model any arbitrary geometry shape (cylindrical, 

spherical… structures), a transformation from local 

Cartesian space, related to arbitrary complex surface, to a 

parametric space is required. 

The local Cartesian basis of the deformed configuration 

is given by 
 

I I

,1 ,21 I 2 I

I 1 I 1

( ) , ( )
N N

 
 
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(29) 

 

In what follows, membrane strain field e, first and 

second bending strain field χ
1 and χ

2, first and second 

transverse shear strain field γ1 and γ2 are derived by means 

of the RPIM. 
 

2.4.3 Membrane strain field 
The strain-displacement relation for the shell membrane 

is expressed as 

.m e B Φ
 (30) 

 

For all nodes N locating in the support domain, Φ 

presents the discrete displacement approximation and Bm is 

the membrane strain-displacement operator expressed as 
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(31) 

 

2.4.4 First and second bending strain field 
For the first and second bending part, the strain-

displacement relations are given by 
 

1
1.  χ B Φ

 
(32) 

 
2

2. χ B Φ
 (33) 

 

where B1 and B2 define respectively the discrete first and 

second bending strain-displacement operator. 
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where , ,1, 1 2, 2

1 1

, , 1,2
N N

I I

k kk I k I

I I

k 
 

   d d d d  and N: 

the nodes‟ number existing in the support domain. 

 

2.4.5 First and second shear strain field 
For the first and second transverse shear part, the strain-

displacement relations are expressed as 
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(37) 

 

where 𝑩𝑠1  and 𝑩𝑠2  represent respectively the discrete first 

and second transverse shear strain-displacement operator 
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(39) 

 

2.5 Linearization of the weak form 
 

The expressions of the virtual and incremental 

generalized strains are presented as follows 

 

. , .    B Φ B Φ   (40) 

 

where B is given as 
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(41) 

 

The internal virtual work, using Eq. (17), becomes 
 

 
A

. dAT T

int  G Φ B R
 

(42) 

 

The nonlinear shell problem, solved by the Newton 

iterative procedure, is defined using Eq. (17). For the 

Newton solution procedure, the consistent tangent operator 

can be established using the weak form directional 

derivatives in the direction of the increment ΔΦ = (ΔU, Δd1, 

Δd2). It is practical to split the tangent operator into 

geometric and material parts, denoted by DGG.ΔΦ and 

DMG.ΔΦ, respectively 
 

D𝐺. ∆𝚽 = DG𝐺. ∆𝚽 + DM𝐺. ∆𝚽 (43) 

 

2.5.1 Material part 
The material part of the tangent operator, resulting from 

the variation in the stresses resultant, takes the following 

form 
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M T
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The material tangent modulus is given as 
 

T  R H Σ
 (45) 

 

where the material tangent modulus is defined as 
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where H and Hτ are respectively the in plane and out-of-

plane linear elastic sub-matrices, given by 
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(50) 

Using Eqs. (44) and (45), the material tangent operator 

is expressed as 
 

 
A

. . dAT

m T K B H B
 

(51) 

 

2.5.2 Geometrical part 
The geometric part is developed, from the variation of 

the virtual strains using the stresses resultant constant, as 
 

DG𝐺. ∆𝚽  G
A

D . . dAT Φ ΔδΣ RG   (52) 

 

Eq. (52) can be decomposed in membrane (DGGm), 

bending (𝐷𝐺𝐺𝑏1
, 𝐷𝐺𝐺𝑏2

) and shear (𝐷𝐺𝐺𝑠1
, 𝐷𝐺𝐺𝑠2

) terms 

as follows 
 

DG 𝐺.ΔΦ = DG𝐺𝑚 .ΔΦ + DG𝐺𝑏1
.ΔΦ + DG𝐺𝑏2

.ΔΦ 

+ DG𝐺𝑠1
.ΔΦ + DG𝐺𝑠2

.ΔΦ 

(53) 

 

The geometric tangent operator, based on Eq. (53), 

becomes in matrix form as 
 

DG𝐺. ∆𝚽 
1 21 2

GD . ( + )
m b b

T

G G G Gs Gs    Φ Φ K K K K K ΦG   (54) 

 

Membrane, bending and shear terms can be added to the 

geometric tangent operator KG as 
 

DG𝐺. ∆𝚽 
GD . T

G Φ Φ K ΦG   (55) 

 

where KG is symmetric. 

The global geometric tangent operator is detailed in 

Appendix A. 
 

2.6 Nodal transformation 
 

The expressions of the virtual and incremental 

generalized strains are presented as follows: 

The variation of the directors δdkI, k = 1, 2 and their 

derivatives δdkI,α, k = 1, 2 is expressed, for a node “I” 

presented in the support domain with a spatial description, 

as 
 

kI kI kI kI kI ,    d d Λ  kI kI Λ d ,    k = 1, 2 
(56) 

 

where 𝒅 kI  is the skew-symmetric tensor such that 

𝒅 kI𝒅kI = 0, or in material description 
 

 

Table 2 The nodal updates 

The updating 

displacement 

vector 
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𝛿𝒅kI = 𝑸kI𝛿𝚯 kI  𝑬3 = 𝚲 kI  𝛿𝚯 kI , 
𝚲 kI = 𝑸kI  𝑬 3,                   𝑘 = 1,2 

(57) 

 

where 𝒅kI = 𝑸kI𝑬3, E3 = [0  0  1]t and QkI = [t1kI t2kI t3kI] 

in which [t1kI t2kI t3kI] are the orthogonal base of the matrix 

QkI (Mallek et al. 2019b), “A spatial description defines the 

shell problem with 9 DOF/node while the material 

description needs 7 DOF/node. 

For a node “I” locating in the support domain, the 

generalized displacement vector ΦI = (UI, d1I, d2I) is related 

to the nodal variables vector ΓI = (UI, Θ1I, Θ2I) as follows 
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2.7 Nodal updates 
 

Considering large deformations of the shell structures, 

the generalized displacement vector at node „I‟ is updated as 

seen in Table 2. 

After the nodal transformation, the nodal updates and 

using Eqs. (17), (40) and (45), the internal virtual work 

becomes 
 

𝐺𝑖𝑛𝑡 =  𝛿𝚺𝑇 . 𝑹dA = 𝛿Γ𝑇𝑲𝚪
A

, 

𝐾IJ =  𝚷I
𝑇𝑩I

𝑇𝑯𝑇𝑩𝐽𝚷𝐽dA
A

 

(59) 

 

where K is the global stiffness matrix expressed as 
 

m G K K K
 (60) 

 

Hence, to predict the geometrically nonlinear problem, 

the equilibrium equation can be written as 
 

  K F  (61) 
 

where F combines either the internal and external work. 
 

 

3. Numerical examples 
 

In FEM, the integration mesh is coincident with the 

element mesh whereas in meshfree method, the structure is 

divided in regular grids forming quadrilateral integration 

cells known as the background cells. Numerical integration 

with 3×3 Gaussian quadrature on the background cells is 

considered for all the numerical examples with the present 

meshfree model. Using the RPIM approximation approach, 

the shape parameters c of the radial basis function is chosen 

optimally for each test whereas q is equal to 1.03 for all 

studied examples. 

 

3.1 Cantilever plate 
 

This test represents a cantilever plate subjected to an 

out-of-plane bending force P = 10N applied in 10 load 

steps, as shown in Fig. 2. The material properties of the 

cantilever plate are: The Young‟s modulus E = 1.2×106 

N/mm2 and the Poisson‟s ratio v = 0.3. The geometry 

parameters are given as: length L = 10 mm, width b = 1 mm 

and thickness h = 0.1 mm. The deformed configuration of 

the cantilever plate is shown in Fig. 3. 

For the meshfree method, the multiquadratic radial basis 

function approximation is chosen with a shape parameter c 

equal to 12 and a nodal distribution of 2×11 is adopted. Fig. 

4 shows the load deflection of the cantilever plate. The 

present results are compared with those obtained by Li et al. 

(2018), using an isogeometric-meshfree coupling approach 

based on Kirchhoff-Love thin shell theory and the analytic 

solutions obtained by Timoshenko and Gere (1972). As seen 

in Fig. 4, the present results fairly agree with the analytical 

solutions and are good compared to the solutions of Li et al. 

(2018), since the load is limited in his work at P = 4N. 
 

3.2 Clamped plate 
 

This test represents a laminated composite square plate 

subjected to a uniform transverse load q0 as shown in Fig. 5. 

The cross-ply laminates are considered [0°/90°/90°/0°] and 

the material properties of each layer are the following 
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The geometrical properties are given as: length a = 12in, 

total thickness h = 0.96in (4 layers), “The total number of 

nodes used in this test is 15×15 and the multiquadratic 

 

 

 

Fig. 2 The geometry of the cantilever plate 
 

 

 

Fig. 3 Deformed configuration of the cantilever plate 
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Fig. 5 The geometry of the clamped plate 

 

 

 

Fig. 6 Deformed configuration of the clamped plate 
 

 

 

 

radial basis function is chosen with a shape parameter c 

equal to 1. The deformed configuration of the clamped plate 

is represented in Fig. 6. 

The present results are compared with those obtained by 

Zhao et al. (2008). Fig. 7 shows centroidal deflection of the 

square plate under uniform load with the variation of the 

load. As seen in this figure, the present model gives good 

results compared to the reference results. 
 

3.3 Pinched hemispherical shell with 18° hole 
 

A hemispherical shell pierced with an 18° hole on the 

top and loaded by four concentrated radial forces (two 

inward and two outward) is presented in this section. 

The analysis of the structure is reduced to a quadrant of 

the shell, since the symmetry of the problem, as shown in 

Fig. 8. Material and geometrical properties are given as: 

elastic modulus E = 6.825×107 Pa, Poisson‟s ratio v = 0.3 , 

thickness h = 0.04 mm, radius R = 10 mm and radial loadF 

= 400N. The radial basis function approximation used for 

this test is the Multiquadratic, where the shape parameter c 

is equal to 0.6 and a regular grid nodes 13×13 is performed. 

The undeformed and deformed configurations of the 

pinched hemispherical shell with 18° hole are shown in Fig. 

9. 

The performance of the present model is compared with 

the nonlinear DDSM of Frikha and Dammak (2017) and the 

 
 

 

Fig. 4 The load deflection of the cantilever plate 

 

Fig. 7 Results of the clamped plate 
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Fig. 8 Geometry of the pinched hemispherical shell 

with 18° hole 
 

 

 

model of Li et al. (2018), using an isogeometric-meshfree 

coupling approach based on Kirchhoff-Love theory. 

The results obtained by the present meshfree method 

(Fig. 10) fairly agree with the results of Frikha and 

Dammak (2017) and are good compared to the solutions of 

Li et al. (2018), demonstrating the accuracy of the DDSM 

applied with the present geometrically nonlinear meshfree 

approach. 
 

3.4 Clamped cylindrical panel under concentrate 
transverse load 

 

A clamped cylindrical shell panel under a concentrated 

transverse load P = 7 at the center point of the structure, as 

shown in Fig. 11, is examined in this part. The material and 

geometrical parameters of the cylindrical panel are given as: 

E = 107, v = 0.3, L = 6, R = 2.5, h = 0.01 and θ = 45°. 
 

 

 

 

A quarter of the structure is presented owing to the 

symmetry of the model. For the radial point interpolation 

method, the Gaussian radial basis function is chosen where 

the shape parameter c is equal to 5.1 with total nodes 

11×13. The deformed configuration of the clamped 

cylindrical panel is shown in Fig. 12. 

The center point load-deflection is shown in Fig. 13 

with comparison to the solutions of Frikha and Dammak 

(2017), using the nonlinear DDST and the results of 

Brendel and Ramm (1980), using an isoparametric large 

displacement shell model. The results obtained using the 

present model (Fig. 13) is consistent with the reference 

solutions. 

It can be concluded from the results of Frikha and 

Dammak (2017), using the nonlinear DDST that the present 

meshfree method is accurate as the finite element one. 

 

 

4. Conclusions 
 

In this paper, a meshfree method is developed for the 

geometrically nonlinear analysis of 3D shell structures 

using the DDST. The RPIM is adopted to approximate the 

meshfree shape functions. The high accuracy and 

robustness of the developed model are evaluated through 

solutions of several non-trivial benchmark problems 

illustrated in the literature. Numerical examples have 

demonstrated that the present model provides accurate 

results for plates and shell structures since the meshfree 

methods depend only on distributed nodes in the problem 

domain. The proposed approach can be performed in 

 

 

 
 

(a) (b) 

Fig. 9 The pinched hemispherical shell: (a) Undeformed configuration; (b) deformed configuration 

 

Fig. 10 The load-deflection curves at the points A and B of the hemispherical shell 

405



 

Hana Mellouli, Hanen Jrad, Mondher Wali and Fakhreddine Dammak 

 

Fig. 11 Geometry of the clamped cylindrical panel 
 

 

 

 

Fig. 12 The deformed configuration of the cylindrical panel 
 

 

 

various mechanical behavior analysis such as the vibration 

and free vibration (Lei et al. 2015, Zhang et al. 2016b), the 

dynamic response (Lei et al. 2014, Zhang and Xiao 2017), 

and to study buckling and post-buckling effect (Zhang and 

Liew 2016, Zhang et al. 2016a, Zhang 2017, Trabelsi et al. 

2019). 
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Appendix A: Geometrical tangent matrix 
 

For a couple of nodes (i, j), the matrix KG is expressed 

as 
 

i j

ij 1ij 1ij 2ij 2ij

1ij 1ij 1ij 1ij

2ij 2ij 2ij 2ij

( ) ( )

( ) ( )

( ) ( )

G

UUM UBF UBC UBF UBC

BUF BUC BBF BBC

BUF BUC BBF + BBC

  
 

   
  

I I I

K I I 0

I 0 I
 

(A1) 

 

Where UUM, (UBF1, BBF1, UBF2, BBF2) and (UBC1, 

BBC1, UBC2, BBC2) corresponding to membrane, bending 

and shear components respectively. The expression of 

membrane term is written as 
 

i 11 j 12 j i 12 j 22 j
ij 1 21 2 1 2( ) + ( )), ,, , , ,UUM N N N N dA         

(A2) 

 

The bending terms of the first director vector d1 are 

given by 
 

i 11 j 12 j i 12 j 22 j
1ij 1 1 1 2 1 11 2 1 2( ) + ( )), ,, , , ,UBF M M M M dA         

(A3) 

 

i 11 12 i 12 22
1ii 1 1 1i 1 2 1i 1 2 1 1i 1 2 1i 1(( ) ( ) ) + (( ) ( ) )), ,BBF M M M M dA         a d a d a d a d

 

       

i 11 12 i 12 22
1ii 1 1 1i 1 2 1i 1 2 1 1i 1 2 1i 1(( ) ( ) ) + (( ) ( ) )), ,BBF M M M M dA         a d a d a d a d

 

(A4) 

 

1ij 1ij 1ij0 i j젨젨 ?BBF , ;  BU젨 F UBF     ijij UBFBUFji 11     ;   (A5) 

 

The bending terms of the second director vector d2 are 

expressed as 
 

i 11 j 12 j i 12 j 22 j
2ij 1 2 2 2 2 21 2 1 2( ) + ( )), ,, , , ,UBF M M M M dA         

(A6) 

 

i 11 12 i 12 22
2ii 1 1 2i 2 2 2i 2 2 1 2i 2 2 2i 2(( ) ( ) ) + (( ) ( ) )), ,BBF M M M M dA         a d a d a d a d

 

       

i 11 12 i 12 22
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(A7) 

 

2ij 2ij 2ij0 i j젨젨 ?BBF , ;  BU젨 F UBF     ijij UBFBUFji 22     ;   (A8) 

 

The transverse shear terms of the first director vector d1 

are given by 
 

i 1 j i 1 j
1ij 1 1 2 2+ ), ,UBC T T dA      

(A9) 

 
i 1 i 1

1ii 1 1i 1 2 1i 2( ) ( ) )BBC T T dA      a d a d
 

(A10) 

 

1ij 1ij 1ij0 i j젨젨 ?BBC , ;  BU젨 C UBC    ijij UBCBUCji 11     ;   (A11) 

 

The transverse shear terms of the second director vector 

d2 are expressed as 
 

i 2 j i 2 j
2ij 1 1 2 2+ ), ,UBC T T dA      

(A12) 

 
i 2 i 2
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(A13) 
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