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1. Introduction 

 

The demand for new generation of advanced materials 

in modern industrial applications has led to the development 

of the smart materials. The idea of smart materials 

originated in the mid-1980s (Tzou et al. 2004). Their 

characteristics are an ability to be clever, active, and 

sophisticated. Examples of smart materials include a 

piezoelectric material, an electrostrictive material, a 

magnetostrictive material, shape memory alloys, and optical 

fibers. Active vibration damping, energy harvesting, and 

structural health monitoring are some of the applications of 

piezoelectric materials. In piezoelectric materials, 

mechanical energy can be converted to electrical energy and 

vice versa at frequency ranges which are required for 

technical applications such as vibration damping. 

Light weight structures require integration of active 

means of control to tackle the problems of low inherent 

damping and large vibrations. Suitable use of piezoelectric 

fiber reinforced composites (PFRCs) has been done for such 

applications (Xiong and Tian 2017). PFRCs can be utilized 

as distributed sensors and actuators to monitor the health of 

the structure. Functionally graded materials consist of two 

or more material components whose relative volume 

fractions and microstructures are engineered to have 

gradually varying properties. Abrupt change in material 

properties can result in delamination due to large inter- 
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aminar stresses, and the initiation followed by propagation 

of cracks due to large plastic deformation at the interfaces. 

The viscoelastic layer is considered passive due to its 

inability to respond to the system. It is subjected to both 

direct and shear strain caused by its damping layer, 

resulting in energy dissipation. (Kumar and Ray 2012) 

examined that vertical orientation of fibers can be utilized 

for tuning of thickness mode of vibrations. This kind of 

arrangement of fibers in composites can be used as 

transducers. (Polit et al. 2016) developed eight nodded 

finite elements using C0 approximations. The interpolation 

function used for transverse displacement was quadratic. 

For the piezoelectric approximation, a layer-wise 

description is used with a cubic variation in the thickness of 

each layer while the potential is assumed to be constant on 

each elementary domain for the in-plane variation. They 

developed the finite element for both thick and thin plates 

without any shear or thickness locking problem. 

Bekuit et al. (2009) developed quasi-2D finite element 

formulation for active-constrained layer beams. Passive 

damping in the system was provided by a viscoelastic layer, 

and a piezoelectric actuation layer was used to achieve 

active damping. (Galucio et al. 2004) investigated finite 

element formulation of viscoelastic sandwich beams using 

fractional derivative operators. (Ray and Mallik 2004) 

investigated the bending mode of actuation where 

piezoelectric fibers were oriented longitudinally. The 

performance of laminated composite beams having active 

constrained layer damping treatment was investigated in 

which constraining layer was made of piezoelectric fiber 

reinforced composite. (Yuvaraja and Senthilkumar 2013) 
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investigated for smart beam system using time and frequency response plots. Symmetric and anti-symmetric ply laminates 

significantly reduce the amplitude of the vibration over the longitudinal orientation of fibers of PFRC laminate. The analysis 

reveals that the PFRC laminate can be used effectively for developing very light weight smart structures. 
 

Keywords:  finite element model; control gain; ACLD; PCLD; functionally graded beam; PFRC 

 

387



 

Ravindra Singh Chahar and Ravi Kumar B. 

presented a comparative study on vibration characteristics 

of a flexible GFRP composite beam using SMA and PZT 

actuators. In the former case, GFRP beam modeled in 

cantilevered configuration with externally attached SMAs. 

In the later case, GFRP beam with surface bonded PZT 

patches is analyzed for its vibration characteristics. They 

carried out experimental work for both cases in order to 

evaluate the vibration control of flexible beam for the first 

mode, also to find the effectiveness of the proposed 

actuators and verified numerically. As a result, the vibration 

characteristic of GFRP beam was more effective when SMA 

is used as an actuator. 

Mohammadimehr et al. (2018) carried out bending, 

buckling and free vibration of CNT reinforced composites 

and presented a detailed method to analyze such a structure. 

(Ebrahimi and Barati 2016) carried out buckling analysis of 

embedded piezo-electro-magnetically actuated nanoscale 

beams and presented an exact mathematical solution to the 

governing differential equations. (Ebrahimi and Barati 

2018) in another study analyzed Stability of functionally 

graded heterogeneous piezoelectric nanobeams based on 

nonlocal elasticity theory and presented a detailed method 

to analyze such a system. (Akbaş 2018) carried out forced 

vibration analysis of cracked functionally graded 

microbeams. (Aydogdu 2014) presented a study on the 

vibration of aligned carbon nanotube reinforced composite 

beams and showed the effect of nanotubes alignments on 

the mechanical properties of composite beams. (Panda et al. 

2016) carried out a study on active vibration control of 

smart functionally graded beams. This work was devoted to 

examine the performance of the constraining layer of the 

active constrained layer damping (ACLD) treatment made 

of the active fiber composites (AFC) materials for vibration 

control of functionally graded (FG) beams. Finite Element 

(FE) model was developed to describe the open loop and 

closed loop dynamics of the FG beams integrated with the 

patches of the ACLD treatment. The closed loop frequency 

response functions computed by the FE models revealed 

that the ACLD treatment with its constraining layer 

composed of AFC material significantly enhances the 

damping characteristics of the FG beams. (Kumar and Ray 

2012) presented a detailed study on active constrained layer 

damping of smart laminated composite sandwich plates 

using 1–3 piezoelectric composites. 

Kanasogi and Ray (2013) carried out a study on active 

constrained layer damping of smart skew laminated 

composite plates using 1–3 piezoelectric composites. A 

finite element model was developed for accomplishing the 

task of the active constrained layer damping of skew 

laminated symmetric and anti-symmetric cross-ply and anti-

symmetric angle-ply composite plates integrated with the 

patches of such ACLD treatment. Both in-plane and out-of-

plane actuation by the constraining layer of the ACLD 

treatment were utilized for deriving the finite element 

model. The analysis revealed that the vertical actuation 

dominates over the in-plane actuation. Recently, (Panda and 

Kumar 2018) presented a detailed study on the design of 

active constrained layer damping treatment for vibration 

control of circular cylindrical shell structure. 

A new 1-3 viscoelastic composite material (VECM) 

layer was designed for impoved active constrained layer 

damping (ACLD) treatment of vibration of a functionally 

graded (FG) circular cylindrical shell. Besides this 

improved active damping treatment, another objective of 

this study was to control all the modes of vibration of the 

shell effectively using the treatment (active constrained 

layer damping) in layer-form throughout the outer shell- 
surface. (Datta and Ray 2018) reported a study on smart 

damping of geometrically nonlinear vibrations of composite 

shells using fractional order derivative viscoelastic 

constitutive relations and presented a detailed method of 

analyzing such structures. (Nguyen-Quang et al. 2018) 

reported a study on an iso-geometric approach for the 

dynamic response of laminated FG-CNT reinforced 

composite plates integrated with piezoelectric layers. This 

study proposed an extension of the iso-geometric approach 

for the dynamic response of laminated carbon nanotube 

reinforced composite (CNTRC) plates integrated with 

piezoelectric layers. The mechanical displacement field is 

approximated according to the higher-order shear 

deformation theory (HSDT) using the formulation based on 

non-uniform rational B-spline (NURBS) basis functions. 

(Sheng and Wang 2009) presented a study on active control 

of functionally graded laminated cylindrical shells and 

proposed an analytical method on active vibration control of 

smart FG laminated cylindrical shells with thin 

piezoelectric layers based on Hamilton’s principle. The thin 

piezoelectric layers embedded on inner and outer surfaces 

of the smart FG laminated cylindrical shell act as 

distributed sensor and actuator, which are used to control 

vibration of the smart FG laminated cylindrical shell under 

thermal and mechanical loads. 

Various studies on active constrained layer damping and 

its analysis methods are reported in the literature 

(Ghashochi-Bargh and Sadr 2014, Li et al. 2016, Bendine et 

al. 2016, Cortés and Sarría 2015, Khalfi and Ross 2013, 

Edery-Azulay and Abramovich 2006, Sheng and Wang 

2009, Kumar 2018, Su et al. 2016, Benbakhti et al. 2016, 

Zemirline et al. 2015, Kumar and Deol 2017). 

The objective of the present work deals with the effect 

of ply orientation and control gain on tip transverse 

displacement of functionally graded beam layer for both 

active constrained layer damping (ACLD) and passive 

constrained layer damping (PCLD) system. The 

functionally graded beam is considered as host beam with 
 

 

 

 

Fig. 1 Schematic diagram of a PFRC lamina 
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Fig 2 Schematic diagram of a composite beam integrated 

with ACLD treatment 

 

 

a bonded viscoelastic layer in ACLD beam system. 

Piezoelectric fiber reinforced composite (PFRC) laminate is 

a constraining layer which acts as actuator through the 

velocity feedback control system. A finite element model 

has been developed to study the actuation of the smart beam 

system. Fig. 1 shows the piezoelectric fiber reinforced 

composite. 

It has been examined that the control gain increases, the 

amplitude of the vibration reduce significantly. In this 

paper, a three-layered composite beam as shown in Fig. 2 is 

analyzed. The host beam is a functionally graded material 

(FGM) with through the thickness varying material 

properties (Young’s modulus, Poisson’s ratio, and density). 

The FGM is bonded to a viscoelastic material which on the 

other side is bonded to the PFRC laminate layer. Fig. 2 is a 

schematic of the ACLD beam system where a sensor 

measures the tip velocity, which is then fed through the 

controller to obtain a voltage that is applied to the PFRC 

laminate. The bottom layer is denoted by b, the viscoelastic 

layer is denoted by c and PFRC laminate is denoted by t. 

The PFRC laminate acts as an actuator and the applied 

voltage is the output of a constant gain velocity feedback 

control. 

 

 

2. Mathematical modelling 
 

2.1 Kinematic and constitutive relation 
 

Timoshenko beam theory is used for approximation of 

displacement field for bottom FGM layer. The FGM beam 

has an axial displacement that is linearly interpolated across 

the beam thickness and a through-the-thickness independent 

transverse displacement represented by {𝑢 𝑏}  and {𝑤 𝑏} , 

respectively. The displacement vector of the FGM beam 

{𝑑 
𝑏} is written as 
 

( , , ) ( , ) ( , )
{ }

( , , ) ( , )

b b b b b

b

b b b

u x z t u x t z x t
d

w x z t w x t
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(1) 

 

Defining a new vector  𝜐𝑏
𝑇 = {𝑢  𝑤  𝜙}{𝑢𝑏   𝑤𝑏   𝜙𝑏} 

gives the following expression for {𝑑 
𝑏} 
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The strain-displacement relations are given as 
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(3) 

 

Where the derivative operator matrix [Db] is given as 
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(4) 

 

The 2-dimensional stress-strain constitutive relations for 

orthotropic FGM where the principal material properties 

coincide with both x and z-axes are given as 
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Where σx and σz are the normal stresses in the x and z 

directions, respectively, γxz is the shear stress in the xz plane 

and cij are the elastic constants of the material. With the 

assumption that stress in the z direction is zero (i.e., σz = 0), 

then 𝜖𝑧 = −
𝑐11

𝑐33
𝜖𝑥  and introducing 𝑐 11 =  𝑐11 −

𝑐13
2

𝑐33
 , the 

reduced constitutive relation is written as 
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For viscoelastic layer, axial and transverse displace-

ments are interpolated through the thickness by cubic and 

quadratic polynomial functions, respectively. The displace-

ment vector {𝑑 
𝑐} is characterized as 
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(7) 

 

Where 𝑢𝑐2 = 𝑢 𝑐  𝑥, 𝑧𝑐 = −
ℎ𝑐

3
, 𝑡 , 𝑢𝑐3 =  𝑢 𝑐  𝑥, 𝑧𝑐 =

−ℎ𝑐3, 𝑡. 

C1, C2, C3, C4, E1, E2 and E3 are functions of hc and zc. 
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The relation is further expanded with a new vector 
 𝜐𝑐

𝑇 = {𝑢𝑏   𝑤𝑏   𝜙𝑏   𝑢𝑐2  𝑢𝑐3  𝑤𝑐   𝑢𝑡   𝑤𝑡   𝜙𝑡} as 
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(8) 

 

The strain-displacement relations for the viscoelastic 

layer are given as 
 

𝜖 𝑐 =  

𝜖𝑥

𝜖𝑧

𝛾𝑧𝑥

 

 

 

c

x

c
c z

c

zx c
c c

c

u

x

w

z

u w

z x










 

 

 
 
  
  

    
   
   

 
 

ò

窒  (9) 

 

The strain vector takes the following compact matrix 

form 
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Where  𝑍 𝑐  matrix is given by  𝑍 𝑐 =   𝑍 𝑐1   [𝑍 𝑐2] . 

and [Dc] is 18×9 a matrix. 
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The constitutive relation can be mathematically written 

as (Galucio et al. 2004) 
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Where [ξc] is a matrix given by the following relation: 

The two-dimensional stress-strain constitutive relation is 

{𝜎}𝑐 ≡ [𝑄𝑐]O  𝑐 , where [Qc] is elasticity matrix. Under plain 

strain condition, the elasticity matrix is given as follows 
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E0, E∞ are relaxed and non-relaxed elastic moduli, τ is the 

relaxation time, and α is the fractional derivative order (0 < 

α < 1). 

The fractional operator 
𝑑𝛼

𝑑𝑡 𝛼  is approximated by the 

Grünwald definition by finite difference as 
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 is the time step increment, Nt is the total 

number of terms where Nt < N, and Aj+1 are the Grünwald 

coefficients given by the recurrence formula 
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Defining a new vector  𝜐𝑐
𝑇 =  𝑁𝑡 𝑞𝑒 ,  𝜐𝑡

𝑇 ={ut wt 

ϕt} gives the following expression for  𝑑 𝑡  
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The strain-displacement relations for the top layer are 

given as 
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The strain vector O   can be written in the following 

form as 
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Hence 
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Where the derivative operator matrices [𝐷𝑡
0] and [𝐷𝑡

1] 
are given as 

 𝐷𝑡
0 =  

𝜕

𝜕𝑥
0 0

0 0
𝜕

𝜕𝑥

 ,      𝐷𝑡
1 =  0

𝜕

𝜕𝑥
1

0 0 0

  

 

The electric potential Ψt is assumed to vary linearly 

through the thickness of the piezoelectric layer and is 

expressed as 
 

0
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t t t
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x z t
x z t x t z
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Where Ψ0 and 
𝜕Ψ𝑡

𝜕𝑧𝑡
 are the electric potential and its 

gradient at the mid-plane of the PFRC laminate, 

respectively? If the axial component of the electric field is 

neglected (i.e., Ex = 0) The electric potential can be 

differentiated with respect to the transverse coordinate to 

obtain the transverse electrical equation, which can be 

written as 

t
z

t t

V
E

z h






    (14) 

 

Where V is the applied voltage and ht is the PFRC 

laminate thickness. 

Assuming that σy = τyz = τxy = 0 albeit O 𝑦 ≠ 𝛾𝑦𝑧 ≠

𝛾𝑥𝑦 ≠ 0, Ex = Ey = 0 and noting that Ex = Ey = 0 because the 

piezoelectric fibers are polarized only through the thickness, 

the constitutive equation is given by the following equation 
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(15) 

 

Where 𝑄 𝑖𝑗 ′𝑠 and 𝑒 31 are coefficients of elasticity and 

reduced piezoelectric constant as given in (Bekuit et al. 

2009). 
 

2.2 Variation of material properties across FGM 
 

Depending on the application, the FGM beam may have 

its Young modulus, Poisson’s ratio, and/or density varying 

continuously in the thickness direction, along with the z-

axis (i.e., E = E(z), v = v(z), ρ = ρ(z)). The formulation for 

two types of volumes fraction methods: (1) power-law 

FGM (P-FGM); and (2) exponential FGM (E-FGM) may be 

written as: 
 

(1) In P-FGM the volume fraction is assumed to obey 

the power-law function 

( )
2

p
z h

f z
h

 
  
   

Where P is the material parameter and 2h is the 

thickness of the layer. The rule of the mixture is 

applied with the volume fraction f(z) to determine 

the effective material property. 
 

 0 1( ) ( ) 1 ( )b bG z f z G f z G  
 

 

(2) In E-FGM the volume fraction obeys the 

exponential function 
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Where G(z) represents any varying property (i.e., G(z) = 

E = E(z), G(z) = v = v(z), or G(z) = ρ = ρ(z) 

𝐺𝑏
0  and 𝐺𝑏

1
 represent the corresponding material 

properties at the bottom and the top surfaces of the FGM 

beam, respectively, and λ is a parameter that describes the 

inhomogeneity of the FGM beam throughout the thickness. 
 

2.3 Finite element modeling 
 

There are five locations which have been selected to 

define the variations of displacements through the thickness 

of the system: one location is for the bottom FGM beam, 

three locations for the viscoelastic core, and one location for 

the top PFRC layer. The field variables for each layer are 

captured using these five locations. The quadratic 

interpolation of the transverse displacement field variables 

has been allowed using three nodes along the span of the 

beam as per Timoshenko’s beam theory. Nodes 1 and 3 

have the five locations for through the thickness 

displacements, while node 2 has the transverse displace-

ment of each layer. The global displacement vector of an 

element can be written as 
 

 2 3        T

e b b b c c c t t tu u w u u w u w 
 

(16) 

 

Where ui and wi are the axial and transverse 

displacement magnitudes, respectively, evaluated at i = b, c 

and t for the bottom, core and top layers, respectively. Also 

uc2 and uc2 are the two intermediate nodes in the core 

thickness. 

First and third node each contains 9 degrees of freedom, 

and the middle node has 3 DOF, resulting in a total 

elemental DOF of 21. The element displacement vector qe 

can be expressed as 
 

1 1 1 2,1 3,1 1 1 1 1

2 2 2

3 3 3 2,3 3,3 3 3 3 3

{          ...

             ...    ...

             ...         }

T

e b b b c c c t t t

b c t

b b b c c c t t t

q u w u u w u w

w w w

u w u u w u w

 

 



 

(17) 

 

Where the subscripts bj, cj, and tj represents the bottom, 

core, and top layer, respectively with j = 1…3 signifying the 

node numbers. A schematic diagram of a finite element of 

the system is given in Fig. 3. The axial displacement u and 

slope ϕ field variables are interpolated along the span of the 

structure by a linear function, and transverse displacement 

field variable w by a quadratic function. These are: 
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Linear Shape Functions: 
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Quadratic Shape Functions: 
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The equation of motion is derived by utilizing the 

extended Hamilton’s principle 
 

  0
t

T U W dt      
(18) 

 

Where δT and δU are the variations of the kinetic energy 

and strain energy, respectively. δW is the virtual work done 

by external forces on the system. The displacement vector 

can be expressed as 

{υ} = [N]qe where, [N] is [Nb], [Nc] and [Nt] in case of 

the bottom layer, core viscous layer and top layer. 
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The first variation of kinetic energy for the bottom layer 

is given as 
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is the mass matrix of the FGM 

beam. 

Variation in strain energy of the bottom layer is given as 
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Where the stiffness matrix of the beam layer is: 
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The matrix [Db] is given by Eq. (4). 

The anelastic displacement vector 𝜐 𝑐(𝑡)  can be 

expressed as 

 c c eN q   and ( )eq t
 

is given as: 
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t



 
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 is a dimensionless constant. 

 

Variation of strain energy of the core layer is given as 
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Where the elastic portion of the viscoelastic core’s 

stiffness matrix is 
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Where     c c cB D N  

The variation of anelastic strain energy is given as 

 

 

Fig. 3 Schematic of a finite element 
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Where the anelastic portion of the viscoelastic core’s 

stiffness matrix is: 

And an-elastic stiffness is a factor of the elastic stiffness, 
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Variation of work 𝛿𝑊 𝑐  is given as 
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(23) 

 

Where the exciting force in the viscoelastic layer is: 
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The PFRC laminate displacement vector is  𝜐𝑡
𝑇 =

{𝑢𝑡   𝑤𝑡   𝜙𝑡} can be further expanded to: 

 𝜐𝑡
𝑇 = [𝑁𝑡]𝑞𝑒  and variation of the kinetic energy of the 

PFRC beam is written as 
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 The variational strain energy 𝛿𝑈𝑡  and virtual work in 

PFRC laminate 𝛿𝑊 𝑡  are given by 
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𝛿𝑊 𝑡 = −𝑏  𝛿𝑞𝑒[𝐵𝑡]𝑇  
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Where the stiffness matrix is 
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, and the exciting force in the PFRC 

laminate is 

 
1

1

 0
ˆ ( )

 0

t

x
T

e T

t e t t

x

N

F b q B J d
M

   


 
 
  
 
 
  


 

(27) 

 

The ACLD beam, not only experiences work done from 

the viscoelastic core and PFRC laminate but also encounters 

work done by an external force Fe, which is applied at a 

given position ζf in a certain element, formulated as 
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 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 , M is a 

Boolean mapping vector that shows the vertical 

displacement for wt in the last node. 

The extended Hamilton’s principle from Eq. (18) is 

utilized to form the element governing equation of motion 

at a given time t as 
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(28) 

 

The global system governing equations of motion are 

obtained by employing standard finite element method 

assembling techniques (Logan 2012). The global system 

governing equations of motion can be simplified as 
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 (29) 

 

Where [M], [𝐾 + 𝐾 ] , F, 𝐹 , and 𝐹  symbolize the 

global mass matrix, stiffness, external force vector, 

viscoelastic force, and electrical force vector, respectively. 
 

 

3. Results and discussion 
 

Geometric characteristics of the composite beam are 

considered as L = 250 mm (length of the beam), b = 15 mm 

(width of the beam), thickness of host layer (FGM) = 3 mm, 

thickness of PFRC layer = 0.75 mm (0.1875 mm ply × 4 

plies), thickness of viscoelastic core = 0.25 mm. 

Mechanical properties and piezoelectric characteristics of 

the cantilever beam are given in Tables 1, 2, 3. 

To demonstrate the performance of the PFRC laminate 

as an actuator, numerical results are computed using the 

finite element model derived in section 2. The simulation 

results presented are obtained using MATLAB computer 

program. The frequency response and time response 

functions are plotted when the beam is subjected to a 

triangular impulse load. 

Fig. 4 shows the frequency response (frequency on x-

axis) for both uncontrolled (Kv = 0) and controlled (Kv = 

200) response of the beam. The figure displays both 

uncontrolled (gain = 0) and controlled response at [0/0/0/0] 

degree stacking sequence at the free end of the beam. The 

maximum amplitude of vibration is observed at a frequency 

of about 35 Hz then it dampens out subsequently. 
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Table 2 Viscoelastic Core (ISD112) properties 

E0 (MPa) E∞ (MPa) ʋ ρ (Kg/m3) 

1.5 69.9495 0.5 1600 
 

 

 

Table 3 FGM Host Beam (p = 0.66 for power law) 

properties 

Materials E (GPa) ʋ ρ (Kg/m3) 

Aluminum 100 0.3 2700 

Zirconia 352 0.3 5700 
 

 

 

 

Fig. 4 Frequency response of active and passive damping 

(ACLD (Kv = 200)) at [0/0/0/0] degree ply stacking 

sequence 

 

 

Result clearly reveals that the PFRC laminate significantly 

reduces the amplitude of vibrations, enhancing the damping 

characteristics of the system over the passive damping. 

From Fig. 5(a), we observe that [45/-45/-45/45] degreely 

stacking sequence gives better damping results than the 

longitudinal orientation of fibers of PFRC laminate given in 

Fig. 4 for both controlled and uncontrolled cases. Also, the 

maximum amplitude at Kv = 200 is limited below 0.04 mm. 

Fig. 5(b) shows the frequency response of active and 

passive damping (Kv = 200) vs PCLD (Kv = 0)) for anti-

symmetric ply laminate at [45/-45/45/-45] degree ply 

stacking sequence. 

It can be seen that the anti-symmetric ply laminate gives 

better damping characteristics than symmetric ply laminate 

and significantly reduces the amplitude of the vibration of 

the beam system. 

Time response (on x-axis) plot shown in Fig. 6 shows 

the vibration damping for various ply stacking sequences. It 

can be seen that the symmetric ply laminate at [45/-45/45/-

45] degree ply stacking sequence significantly reduces the 

amplitude of the vibration. Ply laminate at [0/60/60/0] even 

though in symmetrical arrangement shows worst vibration 

 

 

 

(a) Symmetric ply at [45/-45/-45/45] stacking sequence 
 

 

(b) Anti-symmetric ply laminate at [45/-45/45/-45] stacking 

sequence 

Fig. 5 Frequency response of active and passive damping 

(ACLD (Kv = 200) vs PCLD (Kv = 0)) ply laminate 

 

 

 

Fig. 6 Effect of stacking sequence on tip transverse 

displacement for controlled active damping (Kv = 

350V/(m/s)) for a fully clamped cantilever beam 
 

Table 1 Constraining layer (PZT5H/EPOXY) properties 

C11 

(GPa) 

C12 

(GPa) 

C22 

(GPa) 

C44 

(GPa) 

C55 

(GPa) 

e31 

(C/m2) 

d33 

(F/m) 

ρ 

(Kg/m3) 

32.6 4.3 7.2 1.05 1.29 6.76 10.64*10−9 3640 
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Fig. 7 Control voltage required for ACLD treatment for 

different ply stacking sequences (Kv = 350 V/m/s) 

 

 

 

damping characteristics. Ply laminate at [0/0/0/0] sequence 

shows an intermediate response to the vibration damping. 

It can be seen in Fig. 7 that the control voltage required 

is maximum if fibers are oriented longitudinally for 

symmetric ply laminates and required voltage is minimum 

if fibers are oriented at [45/-45/45/-45] degree ply stacking 

sequence. The gain that is chosen to best represent the 

effects of the beam vibration is Kv = 350 V/(m/s) for 

PFRCs. This gain is suitable since the resulting actuation 

voltage is not in the breakdown voltage range. Symmetric 

and anti-symmetric ply laminates significantly reduce the 

amplitude of the vibration over the longitudinal orientation 

of fibers of PFRC laminate. 

 

 

4. Conclusions 
 

A finite element model has been developed to 

investigate the actuation of PFRC laminate of the cantilever 

beam coupled with ACLD treatment. The PFRC laminate 

acts as the actuator of the system through a velocity 

feedback control system. Fractional order derivative 

constitutive model is used for the viscoelastic constitutive 

equation. Time response and frequency response of the 

beam shows that PFRC laminate acting as actuator 

significantly enhances the damping characteristics of the 

beam system. Time and frequency response plots show that 

antisymmetric ply laminate gives better damping 

characteristics than symmetric ply laminate for beam 

system. The variation of control gain significantly affects 

the amplitude of the vibration. The gain that is chosen to 

best represent the effects of the beam vibration is Kv = 350 

V/(m/s) for PFRCs. This gain is suitable since the resulting 

actuation voltage is not in the breakdown voltage range, 

typically about 200 volts for most piezoelectric ceramics. 

Active constrained layer damping treatment shows better 

damping characteristics than passive controlled layer 

damping treatment. PFRC laminate can be used effectively 

for developing very lightweight smart structures possible 

applications in Aircraft and Automobile Industries. 
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