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1. Introduction 

 

In modern designs of the most diverse type and purpose, 

multilayered composite cylindrical and conical shells are 

very widespread and therefore of interest. Detailed studies 

of the shells used in engineering lead to the conclusion that 

they are often anisotropic and in many cases are anisotropic 

and laminated. In the open literature there are fundamental 

studies devoted to the theory of anisotropic layered shells 

(Ambartsumian 1961, Hui 1985, Reddy 2004). These 

studies shed light on many fundamental problems of the 

theory of anisotropic layered shells. The great interest of 

researchers in improved theories of laminated shells is the 

fact that the classical shell theory (CST) is incomplete, and 

the results obtained in many cases are unacceptable for 

problems of moderately thick laminated anisotropic shells. 

In some applications of the multilayered composite 

shells, they can be subjected to the axial load periodically 

varying with the time. Therefore, the study of the dynamic 

response of layered shells under axial dynamic loading is 

very important for ensuring the safety and reliability of 

laminated shells. The parametric instability may occur when 

there is a correlation between the natural frequencies of the 

shell and the axial force frequency. The range of values of 

the parameters that cause unstable motion is called the 

parametric instability regions (PIRs). 
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The first attempts to solve the dynamic instability (DI) 

problem of laminated anisotropic shells have been started 

for half a century (Goroshko and Emel’yanenko 1975). 

Argento and Scott (1993) used perturbation technique 

together with Donnell shell theory to determine the DIRs of 

composite circular cylindrical shells. Liao and Cheng 

(1994) used a three-dimensional degenerate shell element 

model to study the DI under in-plane vibrational forces of 

stiffened laminated composite shells and employed the 

perturbation technique with multiscale method to determine 

DIRs. Ganapathi and Balamurugan (1998) used the finite 

element method to investigate the parametric resonance of 

laminated anisotropic composite shell structures subjected 

to periodic axial/radial loading. Ng and Lam (1999) 

conducted a comprehensive study of various aspects of the 

PI of multi-layered shells using different shell theories. Wu 

and Chiu (2002) investigated the DI of laminated composite 

conical shells subjected to static and periodic thermal loads, 

using the perturbation method, the differential quadrature 

method and the Bolotin method. Kumar et al. (2005) 

presented the PI characteristics of laminated composite 

double curved panels subjected to partially distributed 

follower edge loading. Pradyumna and Bandyopadhyay 

(2011) studied the DI behavior for two-layered composite 

shells using C0 finite elements and the higher order shear 

deformations theory. Fazilati and Ovesy (2010), (Ovesy and 

Fazilati 2014) developed a semi-analytical and also a 

Bézier-spline finite strip formulation based on classical 

plates and shells theories to calculate the PIRs of flat and 

curved composite structures under uniform and non-

uniform in-plane loads. Qinkai and Fulei (2013) studied PI 

of the rotating truncated conical shells under periodic axial 

loads. Dey and Ramachandra (2014) analyzed static and DI 

of composite cylindrical shell panels subjected to partial 

edge loading. Panda et al. (2015) devoted to the analysis of 
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the finite elements of the characteristics of the PI of layered 

bi-directional glass/epoxy composite panels subjected to a 

hygrothermal field with a harmonic planar load based on 

the first order shear deformation theory. Awrejcewicz et al. 

(2016) proposed a method for studying DI and nonlinear 

parametric vibrations of symmetrically laminated plates of 

complex shape and having different cutouts using the 

FOSDT and the classical plate theory (CPT). Darabi and 

Ganesan (2016, 2017) examined DI analysis of laminated 

cylindrical shells and internally-thickness-tapered laminated 

plates subjected to harmonic in-plane loading parametric 

excitations. Biswal et al. (2017) presented PI of woven fiber 

laminated glass/epoxy composite shallow shells in 

hygrothermal environment based on the FOSDT using the 

finite element method. Avramov et al. (2017) analyzed the 

DI of a shallow shell in a subsonic air flow using the finite 

degree of the dynamic freedom system. Pour et al. (2017) 

examined dynamic stability of embedded viscoelastic 

piezoelectric separators using different cylindrical shell 

theories. Sofiyev and Kuruoglu (2018) presented the 

determination of the excitation frequencies of laminated 

orthotropic non-homogeneous conical shells, based on the 

classical shell theory (CST). 

In recent years, several studies have been carried out 

using different shell theories concerning the buckling and 

vibration of multilayered shells (Alankaya and Oktem 2016, 

Ferreira et al. 2011, Shariyat 2011, Biswal et al. 2016, 

Ferreira et al. 2016, Khayat et al. 2016, Laoufi 2016, 

Tornabene et al. 2016, 2017, Brischetto et al. 2017, Caliri 

Jr. et al. 2017, Sofiyev et al. 2017, Sofiyev and Kuruoglu 

2018, Hu and Chen 2018, Ma et al. 2018). 

A review of the literature shows that a limited number of 

studies on the PI of the multilayered conical shells based on 

the shear deformation theories (SDTs) and insufficiently 

studied the topic under consideration. In this study, the 

authors partially fill this gap. 

 

 

2. Problem formulation 
 

The truncated conical shell under consideration (see 

Figs. 1(a) and (b)) is assumed to be laminated and 

composed of N layers of equal thickness and each layer is 

made of orthotropic materials. The truncated conical shell is 

of the length L, the semi-vertex angle α, the small and large 

radii R1 and R2, respectively and the total thickness h. We 

also assume that after deformation the layers remain elastic 

and do not slip during deformation. The radial, 

circumferential and meridional co-ordinates are denoted by, 

z, θ and r, and the corresponding displacements on the shell 

reference surface are in turn denoted by w, v and u as shown 

in Fig. 1. 

The elasticity moduli and density of orthotropic 

materials in the kth layer are 𝐸11
(𝑘)

, 𝐸22
(𝑘)

, 𝐺12
(𝑘)

, 𝐺13
(𝑘)

, 𝐺23
(𝑘)

 

and ρ(k), 𝑣12
(𝑘)

 and 𝑣21
(𝑘)

 are the Poisson's ratios in the kth 

layer and satisfied 
𝐸11

(𝑘)

𝐸22
(𝑘) =

𝑣12
(𝑘)

𝑣21
(𝑘). The principal directions of 

Young’s moduli coincide with the coordinate axes r and θ. 

Let the MLCCS be subjected to a periodic axial load as a 

function of time 

 

(a) 

 

 

(b) 

Fig. 1 (a) MLCCS subjected to a periodic axial load as 

a function of time; and (b) lay-up 
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where 𝑛11
0 , 𝑛22

0  and 𝑛12
0  are the membrane forces, Nαx 

and Nαxd are the static axial load and the amplitude of the 

time dependent periodic axial load, and ϖ denotes the 

excitation frequency of the axial load and τ is a time 

variable (Bolotin 1964, Sofiyev and Kuruoglu 2018). 
 

2.1 Basic equations 
 

In this study is used the FOSDT which was developed 

by Ambartsumian (1961). The advantages of this theory 

over the other FOSDT are that the number of independent 

unknowns is four and no shear correction factors are 

required. Let ψ be the stress function for the force resultants 

(n11, n22, n12) 
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The governing Donnell-type parametric instability and 

compatibility equations for the MLCCSs within the FOSDT 

can be expressed in terms of a stress function ψ, two 

rotations ϕ1 and ϕ2, and transverse displacement w (Sofiyev 

et al. 2017, Sofiyev and Kuruoglu 2018). They are 
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where, 𝜌1 = ℎ 
𝜌(𝑘)

𝑁

𝑁
𝑘=1 and ‒0.5h + (k ‒ 1)hN-1 ≤ z ≤ ‒0.5h 

+ khN-1 k = 1, 2,..., N, in which k is the number of layers, uij 

and vij (i = 1, 2, 3; j = 1, 2,..., 8), and ui (i = 3, 4) are given 

in Appendix A. In this study, shear correction factor is not 

used. The shear stress functions are included in the basic 

relations as a function of the thickness coordinate. This 

approach is more realistic, despite the mathematical 

difficulty in deriving the basic equations (see Appendix A). 

The system of Eqs. (3)-(6) can be applied for the PI of 

MLCCSs. 
 

 

3. Solution of basic equations 
 

In order to investigate the resonance phenomenon 

associated with fluctuations in the main form, only the first 

terms of the series for ψ, w, ϕ1, ϕ2 will be considered. For 

the MLCCS, which is subjected to freely-supported 

boundary conditions, the solution of differential equations is 

sought in the following form (Sofiyev et al. 2017, Sofiyev 

and Kuruoglu 2018) 
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In the above 𝜓(𝜏), 𝑤 (𝜏), 𝜙1
    (𝜏), 𝜙2

    (𝜏) are the time 

dependent variables, a is the unknown constant, 𝑟 =
𝑟

𝑟2
, 𝑟0 =

𝑟2

𝑟1
, 𝑚 =

𝑚𝜋

ln𝑟0
, 𝑛 =

𝑛

𝑠𝑖𝑛𝛼
, in which, m is the half wave 

number in axial direction and n is the circumferential wave 

number. 

Introducing Eq. (7) into the system of equations from 

Eq. (3) to Eq. (6) and applying the Galerkin method, we 

have 
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where ηij (i, j = 1, 2, 3, 4), λρ and λαx are given in Appendix 

B. 

Eliminating 𝜙0
    (𝜏) , 𝜙1

    (𝜏) , 𝜙2
    (𝜏)  from the Eq. (8), 

and after some transformation, we can obtain the following 

ordinary differential equation of the second order 
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in which 
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To determine the limits of PIRs, Eq. (9) is converted 

into the Mathieu-Hill type differential equation (Sofiyev et 

al. 2017) 
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where 𝑁 𝑠 = 𝑁𝛼𝑥 /𝑁𝛼𝑥𝑐𝑟𝑠𝑡
𝑆𝐷𝑇  and 𝑁 𝑑 = 𝑁𝛼𝑥𝑑 /𝑁𝛼𝑥𝑐𝑟𝑠𝑡

𝑆𝐷𝑇  denote 

the static and dynamic axial load factors, ω and 𝑁𝛼𝑥𝑐𝑟
𝑆𝐷𝑇  

denotes the dimensional frequency and dimensional critical 

static axial load for the MLCCSs within the FOSDT and are 

defined as 
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In a particular case, as the SDs are not taken into 

consideration, can be obtained the expressions for the ωCST 

and 𝑁𝛼𝑥𝑐𝑟𝑠𝑡
𝑆𝐷𝑇  of MLCCSs within the CST which were 

presented in the study (Sofiyev and Kuruoglu 2018). 

Minimizing Eqs. (13) and (14) with wave numbers (m, n,) 

and the parameter, b, we can obtain the minimum values of 

the critical parameters. The minimum value of the critical 

axial load for freely-supported LHTOCS within CST and 

FOSTD is obtained approximately at b = 2.1. 

The PIRs are formed by periodic solutions of the period 

T and 2T, where T = 2π / ϖ. The PIRs with a period of 2T 

are of practical importance, using the Bolotin’s method the 

solution is given in the form of trigonometric series as 

(Bolotin 1964) 
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where Cp and Dp are the arbitrary coefficients. If we 

investigate the vibration at the primary resonance, we may 

ignore the effects of higher harmonics in the expansion of 

the above equation and the condition p = 1 may be 

sufficient. After substituting Eq. (15) into Eq. (12) and 

considering only the first term of the series for the PIRs, 

and then equating coefficients sin(ϖτ / 2) and cos(ϖτ / 2) 

Eq. (12) reduce to 
 

   

   

2 2

1

2 2

1

4 1 / 2 cos / 2

4 1 / 2 sin / 2 0

s d

s d

N N C

N N D

  

  

    

        

(16) 

 

Table 1 Comparison of the magnitudes of origin of borders 

of LO cylinders with (90/0/90) lay-up versus L1/R 

 Ng and Lam (1999) Present study 

L1/R ϖ11 = ϖ12 ϖ11 = ϖ12 

2.0 93.582 93.512 

2.2 89.527 86.863 
 

 

 

When C1 ≠ 0 and D1 ≠ 0, from Eq. (16), we obtain the 

formula for left and right borders of PIRs for MLCCSs 

within the FOSDT 
 

)2,1(,5.0121  jNN dsj 
 

(17) 

 

where ϖ11 and ϖ12 are denote left and right borders of PIRs 

for MLCCSs based on the FOSDT for certain mode (m, n). 

The left and right limits of dimensionless PIRs for MLCCSs 

based on the FOSDT, i.e., 𝜛1𝑗
, are defined as 

 

 
2

( ) ( )

12

1 1 1 ( )

11

1
2 , ( 1,2)

k k

j j k
r j

E

 
  

 
  

 

 

(18) 

 

When 𝑁 𝑑 = 0, from the Eq. (18), the formula for the 

point of origin of left and right borders is found. 
 

 

4. Results and discussion 
 

4.1 Comparative examples 
 

Example 1: 
To confirm the present study, the values of the 

beginning of the main PIRs of the laminated orthotropic 

(LO) cylindrical shell with packing (90/0/90) are compared 

with the values obtained in Ng and Lam (1999), which is 

based on Donnell’s shell theories in the CST (see Table 1). 

As α → 0° is considered in the Eq. (18), the formula for 

MLCCS is converted to an expression for LO cylindrical 

shells. The parameters used in calculations are: h/r = 0.005, 

𝐸11
(𝑘)

/𝐸22
(𝑘)

= 40, 𝐺12
(𝑘)

/𝐸22
(𝑘)

=0.5, 𝑣12
(𝑘)

= 0.25 and ρ(k) = 1 

(Ng and Lam 1999), and k = 2, and 𝑁 𝑠 = 0.1. Here L1 and 

R are the length and radius of the cylindrical shell, 

respectively. Our study gives acceptable results in 

comparison with the result presented in Ng and Lam (1999). 
 

Example 2: 

The values of 𝜔1𝑆𝐷𝑇 = 𝜔𝑆𝐷𝑇(0.1𝐿2ℎ−1) 𝜌(𝑘)/𝐸22
(𝑘)

 (k 

= 3 and 4) for the LO cylindrical shells with (0/90/0) and 

(0/90/90/0) lay-up are compared with the results of Ferreira 

et al. (2011) who use a radial basis function, while Reddy 

and Liu (1985) use FOSDT and HOSDT (Table 2). In 

present study the shear stress shape functions are considered 

as 𝑓1
 𝑘  𝑧 = 𝑓2

 𝑘  𝑧 = ℎsinℎ 𝑧ℎ−1 − 𝑧cosℎ(2−1) .  The 

geometries of the LO cylindrical shell are, L1R
-1 = 0.2 and 

L1h
-1 = 10. Here α → 0° is taken into account in the Eq. 

(13).  The material constants are,  𝐸11
 𝑘 

/𝐸22
 𝑘 

= 25, 

280



 

On the parametric instability of multilayered conical shells using the FOSDT 

Table 2 Comparison of the ω1 for LO cylindrical shells with 

(0/90/0) and (0/90/90/0) lay-up 

Lay-up 
ω1SDT, (n) 

(0/90/0) (0/90/90/0) 

Reddy and Liu (1985) FOSDST 12.207 12.267 

Reddy and Liu (1985) HOSDST 11.85 11.830 

Ferreira et al. (2011) 11.923 11.901 

Present study 12.017(8) 11.760(8) 
 

 

 

 

𝐺23
 𝑘 

/𝐸22
 𝑘 

= 0.2,  𝐺12
 𝑘 

/𝐸22
 𝑘 

= 𝐺13
 𝑘 

/𝐸22
 𝑘 

= 0.5 , 𝑣12
(𝑘)

=

0.25, 𝑣21
(𝑘)

= 𝑣12
(𝑘)

𝐸22
 𝑘 

/𝐸11
 𝑘 

 and ρ(k) = 1 kg/m3, are given in 

the Reddy and Liu (1985), and Ferreira et al. (2011). Table 

2 shows a good agreement between the current results and 

the results of Reddy and Liu (1985), and Ferreira et al. 

(2011). 

 

 

 

4.2 Variation of the values of borders of PIRs for 
MLCCSs based on the FOSDT 

 

After proposing explicit analytical expressions for 

borders of PIRs of MLCCSs with several lamination 

schemes, the new results are presented in this section. For 

each case, four different lamination schemes are provided: 

(0/90/0), (90/0/90), (0/90/90/0) and (90/0/0/90). In each 

case, the total thickness of the MLCCS, h = 0.01 m. 

It is assumed that the material of the lamina is boron-

epoxy composites with the following orthotropic properties 

(Reddy 2004) 

 

𝐸11
 𝑘 

= 2.069 × 1011  Pa, 𝐸22
 𝑘 

= 𝐸11
 𝑘 

/10  Pa, 

𝐺23
 𝑘 

= 4.14 × 109 Pa, 𝐺12
 𝑘 

= 𝐺13
 𝑘 

= 6.9 × 109 Pa, 

𝑣21
(𝑘)

= 𝑣12
 𝑘 

𝐸22
 𝑘 

/𝐸11
 𝑘 

, 𝑣12
 𝑘 

= 0.3 

and 𝜌
(𝑘)

= 1950 kg/m3. 

 

 

 
 

 

Table 3 Variation of the values of left and right borders of PIRs 𝜛 1𝑗
 (𝑗 = 1, 2) for MLCCSs versus 

the 𝑁 𝑑  for different 𝑁 𝛼𝑥  

 
(0/90/0) (90/0/90) 

CST FOSDT CST FOSDT 

𝑁 𝑠 𝑁 𝑑  𝜛 11 𝜛 12 𝜛 11 𝜛 12 𝜛 11 𝜛 12 𝜛 11 𝜛 12 

0.1 

0 34.962 34.962 23.605 23.605 14.394 14.394 13.446 13.446 

0.2 34.873 35.050 23.473 23.736 14.324 14.464 13.371 13.521 

0.4 34.784 35.138 23.341 23.866 14.254 14.533 13.296 13.595 

0.6 34.695 35.226 23.208 23.995 14.184 14.602 13.220 13.669 

0.3 

0 33.144 33.144 20.818 20.818 12.924 12.924 11.859 11.859 

0.2 32.862 33.423 20.367 21.259 12.688 13.155 11.602 12.110 

0.4 32.579 33.699 19.905 21.691 12.449 13.382 11.339 12.356 

0.6 32.292 33.974 19.433 22.115 12.204 13.605 11.070 12.598 

0.5 

0 31.220 31.220 17.594 17.594 11.262 11.262 10.022 10.022 

0.2 30.720 31.712 16.691 18.453 10.807 11.700 9.508 10.511 

0.4 30.212 32.196 15.737 19.273 10.332 12.122 8.964 10.979 

0.6 29.696 32.673 14.720 20.060 9.834 12.529 8.385 11.427 

𝑁 𝑠 𝑁 𝑑  (0/90/90/0) (90/0/0/90) 

0.1 

0 33.604 33.604 23.395 23.395 17.224 17.224 15.338 15.338 

0.2 33.514 33.695 23.265 23.525 17.148 17.300 15.253 15.423 

0.4 33.423 33.785 23.134 23.654 17.072 17.375 15.167 15.508 

0.6 33.332 33.875 23.002 23.782 16.995 17.451 15.081 15.592 

0.3 

0 31.743 31.743 20.633 20.633 15.633 15.633 13.527 13.527 

0.2 31.454 32.029 20.186 21.070 15.380 15.882 13.234 13.814 

0.4 31.163 32.313 19.729 21.499 15.123 16.127 12.934 14.095 

0.6 30.869 32.594 19.261 21.919 14.862 16.368 12.628 14.370 

0.5 

0 29.765 29.765 17.438 17.438 13.861 13.861 11.433 11.433 

0.2 29.250 30.272 16.543 18.289 13.381 14.324 10.846 11.991 

0.4 28.726 30.770 15.597 19.102 12.883 14.774 10.226 12.524 

0.6 28.191 31.260 14.590 19.882 12.366 15.209 9.565 13.035 
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The variation of the values of left and right borders of 

PIRs (ϖ1j (j = 1, 2)) for MLCCSs with laminations (0/90/0), 

(90/0/90), (0/90/90/0) and (90/0/0/90) versus the 𝑁 𝑑  based 

on the CST and FOSDT for different 𝑁 𝑠 are reflected in 

Table 3. The following data are considered in the 

computations: h/R1 = 0.04, R1/L = 5, α = 30° and (m, n) = 

(1, 3). The borders of PIRs for MLCCSs based on the CST 

and FOSDT diminish, as 𝑁 𝑠 increment. The left borders 

values of PIRs (𝜛 11) for MLCCSs diminish, whereas, the 

right borders values of PIRs (𝜛 12) increment, when the 𝑁 𝑑  

increment from zero to 0.6. It should be noted that the area 

between the borders decreases, as the static axial load 

coefficient increment. When 𝑁 𝑑 = 0 and 𝑁 𝑠  increases 

from 0.1 to 0.5, the effects of shear deformations (SDs) on 

the 𝜛 11 increase from (-32.48%) to (-43.65%). When 𝑁 𝑠 

= 0.1 and 𝑁 𝑑  increases from 0 to 0.6, the effects of SDs on 

the left limits of PIRs increase slightly, whereas these 

effects on the 𝜛 11  are important and increase from 

(‒43.65%) to 50.43%, from (‒11.01%) to 14.73%, from 

(‒41.41%) to (‒48.25%) and from (‒17.52%) to (‒22.65%) 

 
 

with laminations (0/90/0), (90/0/90), (0/90/90/0) and 

(90/0/0/90) conical shells, respectively, when 𝑁 𝑠 = 0.5 and 

𝑁 𝑑  increases from 0 to 0.6. The effects of SDs on the right 

border of the PIRs are weakly reduced, when 𝑁 𝑠 = 0.1 and 

𝑁 𝑑  increases from 0 to 0.6, whereas these effects 

significantly reduced when 𝑁 𝑑  increases for large 𝑁 𝑠. For 

example, when 𝑁 𝑠 = 0.5 and 𝑁 𝑑  increases from 0 to 0.6, 

these effects reduced from (‒43.65%) to (-38.6%), from 

(‒11.01%) to (‒8.8%), from (‒41.41%) to (‒36.4%) and 

from (‒17.52%) to (‒14.29%) for laminations (0/90/0), 

(90/0/90), (0/90/90/0) and (90/0/0/90), respectively. 

The variations of left and right borders of PIRs 

(𝜛 1𝑗
 (𝑗 = 1, 2)) for MLCCSs with laminations (0/90/0), 

(90/0/90), (0/90/90/0) and (90/0/0/90) based on the CST 

and FOSDT, versus the 𝑁 𝑑  for different R1/h ratio, are 

reflected in Table 4, and Figs. 2 and 3. The MLCCS and 

load parameters are considered as L/R1 = 2, α = 30°, 𝑁 𝑠 = 

0.2 and (m, n) = (1, 4). Based on the CST and FOSDT, the 

values of 𝜛 1𝑗
 (𝑗 = 1, 2) for MLCCSs with (0/90/0) and 

(0/90/90/0) lay-up decrease (Fig. 2), while those for 

Table 4 Variation of the values of left and right borders of  PIRs 𝜛 1𝑗
 (𝑗 = 1, 2) for MLCCSs 

versus the 𝑁 𝑑  for different α 

 
(0/90/0) (90/0/90) 

CST FOSDT CST FOSDT 

α 𝑁 𝑑  𝜛 11 𝜛 12 𝜛 11 𝜛 12 𝜛 11 𝜛 12 𝜛 11 𝜛 12 

0 

0 35.215 35.215 23.867 23.867 14.971 14.971 14.043 14.043 

0.2 35.170 35.260 23.801 23.933 14.935 15.008 14.004 14.082 

0.4 35.080 35.349 23.668 24.065 14.861 15.081 13.926 14.160 

0.6 34.989 35.439 23.533 24.197 14.787 15.153 13.847 14.237 

30 

0 34.962 34.962 23.605 23.605 14.394 14.394 13.446 13.446 

0.2 34.917 35.006 23.539 23.670 14.359 14.429 13.409 13.484 

0.4 34.829 35.094 23.407 23.801 14.289 14.499 13.334 13.558 

0.6 34.740 35.182 23.275 23.930 14.219 14.568 13.258 13.632 

60 

0 34.527 34.527 23.231 23.231 13.398 13.398 12.429 12.429 

0.2 34.483 34.570 23.166 23.295 13.366 13.430 12.394 12.464 

0.4 34.396 34.657 23.036 23.423 13.301 13.493 12.325 12.532 

0.6 34.309 34.743 22.906 23.551 13.237 13.557 12.255 12.600 

α 𝑁 𝑑  (0/90/90/0) (90/0/0/90) 

0 

0 33.897 33.897 23.714 23.714 17.667 17.667 15.806 15.806 

0.2 33.851 33.943 23.648 23.779 17.627 17.706 15.762 15.850 

0.4 33.758 34.035 23.515 23.910 17.549 17.784 15.674 15.938 

0.6 33.666 34.127 23.382 24.041 17.469 17.862 15.585 16.024 

30 

0 33.604 33.604 23.395 23.395 17.224 17.224 15.338 15.338 

0.2 33.559 33.649 23.330 23.460 17.186 17.262 15.296 15.381 

0.4 33.468 33.740 23.200 23.590 17.110 17.338 15.210 15.466 

0.6 33.377 33.830 23.068 23.718 17.034 17.413 15.124 15.550 

60 

0 33.098 33.098 22.917 22.917 16.483 16.483 14.580 14.580 

0.2 33.054 33.142 22.853 22.980 16.447 16.519 14.540 14.621 

0.4 32.966 33.230 22.725 23.107 16.375 16.590 14.458 14.701 

0.6 32.877 33.318 22.596 23.233 16.303 16.661 14.376 14.781 
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Fig. 2 Distribution of the magnitudes of left and right 

borders of PIRs for MLCCSs with (0/90/0) and 

(0/90/90/0) lay-up versus the 𝑁 𝑑  for different R1/h 

 

 

 

 

Fig. 3 Distribution of the magnitudes of left and right 

borders of PIRs for MLCCSs with (90/0/90) and 

(90/0/0/90) lay-up versus the 𝑁 𝑑  for different R1/h 

 

 

 

Table 5 Variation of the values of left and right borders of PIRs for MLCCSs versus the 𝑁 𝑑  for 

different L/R1 

 
(0/90/0) (90/0/90) 

CST FOSDT CST FOSDT 

L/R1 𝑁 𝑑  𝜛 11 𝜛 12 𝜛 11 𝜛 12 𝜛 11 𝜛 12 𝜛 11 𝜛 12 

0.2 

0 34.259 34.259 22.505 22.505 14.359 14.359 13.444 13.444 

0.1 34.167 34.352 22.364 22.646 14.280 14.438 13.360 13.528 

0.3 33.981 34.535 22.079 22.923 14.121 14.593 13.189 13.694 

0.5 33.794 34.718 21.791 23.198 13.960 14.747 13.017 13.858 

0.3 

0 35.321 35.321 28.772 28.772 19.423 19.423 19.097 19.097 

0.1 35.174 35.467 28.591 28.951 19.305 19.540 18.977 19.216 

0.3 34.879 35.758 28.227 29.306 19.067 19.772 18.735 19.451 

0.5 34.581 36.046 27.858 29.657 18.827 20.001 18.490 19.684 

0.4 

0 38.321 38.321 34.568 34.568 26.377 26.377 26.237 26.237 

0.1 38.126 38.516 34.351 34.784 26.213 26.539 26.072 26.400 

0.3 37.732 38.902 33.914 35.210 25.883 26.862 25.740 26.724 

0.5 37.334 39.284 33.471 35.632 25.548 27.180 25.403 27.044 

L/R1 𝑁 𝑑  (0/90/90/0) (90/0/0/90) 

0.2 

0 32.964 32.964 22.428 22.428 16.876 16.876 14.974 14.974 

0.1 32.868 33.059 22.288 22.568 16.793 16.959 14.880 15.068 

0.3 32.676 33.249 22.004 22.845 16.625 17.123 14.691 15.252 

0.5 32.483 33.437 21.716 23.118 16.455 17.286 14.499 15.435 

0.3 

0 34.529 34.529 28.850 28.850 20.764 20.764 20.010 20.010 

0.1 34.378 34.679 28.669 29.030 20.643 20.884 19.884 20.134 

0.3 34.074 34.978 28.304 29.386 20.399 21.122 19.631 20.381 

0.5 33.767 35.274 27.934 29.738 20.152 21.358 19.374 20.625 

0.4 

0 38.152 38.152 34.984 34.984 26.850 26.850 26.513 26.513 

0.1 37.951 38.352 34.764 35.202 26.686 27.013 26.347 26.678 

0.3 37.546 38.749 34.321 35.634 26.354 27.336 26.011 27.006 

0.5 37.136 39.142 33.873 36.060 26.019 27.656 25.671 27.329 
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MLCCSs with (90/0/90) and (90/0/0/90) lay-up increase, as 

R1/h increment (see, Fig. 3). As the effects of lamination 

schemes (90/0/90), (0/90/90/0) and (90/0/0/90) on the 

values of borders of PIRs (𝜛 1𝑗
 (𝑗 = 1, 2)) for MLCCS 

based on FOSDT are compared to the (0/90/0) laminated 

shells, the greatest effect is observed in the conical shell 

with the lay-up (90/0/90), the smallest effect is observed in 

the shell with the lay-up (0/90/90/0), and this difference 

decreases due to the increase in the ratio R1/h. When 𝑁 𝑑  (= 

0.4) is kept constant, the effects of SDs on the 𝜛 1𝑗
 (𝑗 =

1, 2) are significant and decrease, when the ratio R1/h 

increases from 20 to 40. Moreover, these effects change in 

accordance with the number and sequence of layers. For 

example, the SDs effects on the 𝜛 11 reduce from about 

(‒44.66%) to (‒19.31%), from (‒13.16%) to (‒2.81%), 

from (‒42.56%) to (‒17.67%) and from (‒19.29%) to 

(‒4.98%) and SDs effects on the 𝜛 12 also reduce from 

(‒42.74%) to (‒17.94%), from (‒12.13%) to (‒2.55%), 

from (‒40.64%) to (‒16.38%) and from (‒17.92%) 

to(‒4.54%) for (0/90/0), (90/0/90), (0/90/90/0) and 

 

 

(90/0/0/90) lay-up, respectively, when the ratio R1/h 

increases from 20 to 40. 

Table 5 aims to analyze the effect of L/R1 on the values 

of boundaries of PIRs, 𝜛 1𝑗
 (𝑗 = 1, 2), for MLCCSs with 

(0/90/0), (90/0/90), (0/90/90/0) and (90/0/0/90) lay-up for 

𝑁 𝑑  = 0, 0.1, 0.3, 0.5, based on the CST and FOSDT. Here, 

the following data are considered: L/R1 = 0.2, 0.4, 0.6, h/R1 

= 0.04, α = π/12, Ns = 0.2 and (m, n) = (1, 2). It is worth 

nothing that values of 𝜛 1𝑗
 (𝑗 = 1, 2) for MLCCSs with all 

lay-up increase, as L/R1 increasing from 0.2 to 0.4. It can be 

seen that this increment is more evident in MLCCSs with 

the packing (90/0/90) or (90/0/0/90) than in casings with the 

(0/90/0) or (0/90/90/0) stowage. When 𝑁 𝑑  (= 0.5) is kept 

constant, the effects of SDs on the 𝜛 1𝑗
 (𝑗 = 1, 2) are 

significant and reduce, as the ratio L/R1 increases from 0.2 

to 0.4. In addition, these effects change in accordance with 

the number and sequence of layers. For example, effects of 

SDs on the 𝜛 11  reduce from (‒35.52%) to (‒10.35%), 

from (‒6.76%) to (‒0.57%), from (‒33.15%) to (‒8.79%) 

and from (‒11.89%) to (‒1.34%) and these influences on 

 
 

Table 6 Variation of the values of left and right borders of PIRs of MLCCSs versus the 𝑁 𝑑  for 

different α 

 
(0/90/0) (90/0/90) 

CST FOSDT CST FOSDT 

L/R1 𝑁 𝑑  𝜛 11 𝜛 12 𝜛 11 𝜛 12 𝜛 11 𝜛 12 𝜛 11 𝜛 12 

0.2 

0 34.259 34.259 22.505 22.505 14.359 14.359 13.444 13.444 

0.1 34.167 34.352 22.364 22.646 14.280 14.438 13.360 13.528 

0.3 33.981 34.535 22.079 22.923 14.121 14.593 13.189 13.694 

0.5 33.794 34.718 21.791 23.198 13.960 14.747 13.017 13.858 

0.3 

0 35.321 35.321 28.772 28.772 19.423 19.423 19.097 19.097 

0.1 35.174 35.467 28.591 28.951 19.305 19.540 18.977 19.216 

0.3 34.879 35.758 28.227 29.306 19.067 19.772 18.735 19.451 

0.5 34.581 36.046 27.858 29.657 18.827 20.001 18.490 19.684 

0.4 

0 38.321 38.321 34.568 34.568 26.377 26.377 26.237 26.237 

0.1 38.126 38.516 34.351 34.784 26.213 26.539 26.072 26.400 

0.3 37.732 38.902 33.914 35.210 25.883 26.862 25.740 26.724 

0.5 37.334 39.284 33.471 35.632 25.548 27.180 25.403 27.044 

L/R1 𝑁 𝑑  (0/90/90/0) (90/0/0/90) 

0.2 

0 32.964 32.964 22.428 22.428 16.876 16.876 14.974 14.974 

0.1 32.868 33.059 22.288 22.568 16.793 16.959 14.880 15.068 

0.3 32.676 33.249 22.004 22.845 16.625 17.123 14.691 15.252 

0.5 32.483 33.437 21.716 23.118 16.455 17.286 14.499 15.435 

0.3 

0 34.529 34.529 28.850 28.850 20.764 20.764 20.010 20.010 

0.1 34.378 34.679 28.669 29.030 20.643 20.884 19.884 20.134 

0.3 34.074 34.978 28.304 29.386 20.399 21.122 19.631 20.381 

0.5 33.767 35.274 27.934 29.738 20.152 21.358 19.374 20.625 

0.4 

0 38.152 38.152 34.984 34.984 26.850 26.850 26.513 26.513 

0.1 37.951 38.352 34.764 35.202 26.686 27.013 26.347 26.678 

0.3 37.546 38.749 34.321 35.634 26.354 27.336 26.011 27.006 

0.5 37.136 39.142 33.873 36.060 26.019 27.656 25.671 27.329 
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Fig. 4 Distribution of the magnitudes of left and right 

borders of PIRs for MLCCSs with (0/90/0) and 

(0/90/90/0) lay-up versus the 𝑁 𝑑  for different 

semi-vertex angle, α 

 

 

 

 

Fig. 5 Distribution of the magnitudes of left and right 

borders of PIRs for MLCCSs with (90/0/90) and 

(90/0/0/90) lay-up versus the 𝑁 𝑑  for different 

semi-vertex angle, α 

 

 

Table 7 Variation of the values of left and right limits of PIRs for MLCCSs versus the 𝑁 𝑑  for 

different (m, n) 

 
(0/90/0) (90/0/90) 

CST FOSDT CST FOSDT 

(m, n) 𝑁 𝑑  𝜛 11 𝜛 12 𝜛 11 𝜛 12 𝜛 11 𝜛 12 𝜛 11 𝜛 12 

(1,2) 

0 34.973 34.973 23.686 23.686 14.631 14.631 13.753 13.753 

0.1 34.928 35.018 23.620 23.752 14.595 14.667 13.715 13.791 

0.3 34.839 35.106 23.488 23.883 14.523 14.738 13.638 13.867 

0.5 34.750 35.195 23.355 24.013 14.450 14.809 13.561 13.943 

(2,2) 

0 139.681 139.681 57.039 57.039 51.484 51.484 39.345 39.345 

0.1 139.616 139.746 56.880 57.197 51.401 51.568 39.236 39.454 

0.3 139.487 139.875 56.562 57.512 51.233 51.734 39.016 39.672 

0.5 139.357 140.004 56.241 57.826 51.065 51.900 38.795 39.888 

(3,2) 

0 315.290 315.290 89.801 89.801 115.669 115.669 71.073 71.073 

0.1 315.219 315.361 89.551 90.050 115.547 115.790 70.876 71.271 

0.3 315.077 315.504 89.050 90.546 115.304 116.032 70.479 71.663 

0.5 314.935 315.645 88.545 91.040 115.060 116.274 70.079 72.054 

(m, n) 𝑁 𝑑  (0/90/90/0) (90/0/0/90) 

(1,2) 

0 33.897 33.897 23.714 23.714 17.667 17.667 15.806 15.806 

0.1 33.851 33.943 23.648 23.779 17.627 17.706 15.762 15.850 

0.3 33.758 34.035 23.515 23.910 17.549 17.784 15.674 15.938 

0.5 33.666 34.127 23.382 24.041 17.469 17.862 15.585 16.024 

(2,2) 

0 33.604 33.604 23.395 23.395 17.224 17.224 15.338 15.338 

0.1 33.559 33.649 23.330 23.460 17.186 17.262 15.296 15.381 

0.3 33.468 33.740 23.200 23.590 17.110 17.338 15.210 15.466 

0.5 33.377 33.830 23.068 23.718 17.034 17.413 15.124 15.550 

(3,2) 

0 33.098 33.098 22.917 22.917 16.483 16.483 14.580 14.580 

0.1 33.054 33.142 22.853 22.980 16.447 16.519 14.540 14.621 

0.3 32.966 33.230 22.725 23.107 16.375 16.590 14.458 14.701 

0.5 32.877 33.318 22.596 23.233 16.303 16.661 14.376 14.781 
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the 𝜛 12  also reduce from (‒33.18%) to (‒9.3%), from 

(‒6.03%) to (-0.5%), from (‒30.86%) to (‒7.87%) and from 

(‒10.71%) to (‒1.18%) for (0/90/0), (90/0/90), (0/90/90/0) 

and (90/0/0/90) lay-up, respectively, as the ratio, R1/h, 

increases from 20 to 40. 

Table 6 and Figs. 4 and 5, shows the influence of the 

semi-vertex angle, α, on the values of boundaries of PIRs of 

MLCCSs with (0/90/0), (90/0/90), (0/90/90/0) and 

(90/0/0/90) lay-up for fixed 𝑁 𝑑  = 0, 0.1, 0.3, 0.5, based on 

the CST and FOSDT. In this example, the following 

geometric and physical parameters are considered: α = 0°, 

30°, 60°, h/R1 = 0.04, L/R1 = 0.2, 𝑁 𝑠 = 0.1 and (m, n) = (1, 

3). It can be argued that with increasing the semi-vertex 

angle, α, from 0° to 60°, the values of boundaries of PIRs 

for MLCCSs with four lay-up, based on the CST and 

FOSDT reduce. The values for α = 0° belong to the 

cylinder. When 𝑁 𝑑  (= 0.3) is kept constant, the effects of 

SDs on the 𝜛 1𝑗
 (𝑗 = 1, 2)  are significant and increase, 

when the semi-vertex angle, α, increases from 0° to 60°. In 

addition, these effects change in accordance with the 

number and sequence of layers and the following 

percentages appear: the effects of SDs on the 𝜛 11 increase 

from (‒32.53%) to (‒33.03%), from (‒6.29%) to (‒7.34%), 

from (‒30.34%) to (‒31.07%) and from (‒11.89%) to 

(‒12.34%) and these effects on the 𝜛 12  also increment 

from (‒31.92%) to (‒32.41%), from (‒6.11%) to (‒7.12%), 

from (‒29.75%) to (‒30.46%) and from (‒10.38%) to 

(‒11.39%) for the lay-up (0/90/0), (90/0/90), (0/90/90/0) 

and (90/0/0/90), respectively, when the semi-vertex angle, 

α, increases from 0° to 60° (see, Figs. 4 and 5, also). 

The variation of the values of left and right borders of 

PIRs for MLCCSs versus the 𝑁 𝑑  for different meridional 

wave number, m, and for the (0/90/0), (90/0/90), 

(0/90/90/0) and (90/0/0/90) lay-up, are tabulated in Table 7. 

The calculations data are, 𝑁 𝑠 = 0.1, R1/h = 25, L/R1 = 0.2, 

α = 30°, n = 2. The magnitudes of left and right borders of 

PIRs for MLCCSs with the entire stacking are clearly 

increasing, with an increase of m from 1to 3 for the fixed n 

(n = 2). As 𝑁 𝑑  (= 0.5) is kept constant, the influences of 

SDs on the magnitudes of left and right limits of PIRs for 

MLCCSs obviously increase with the increasing of 

meridional wave number, m, from 1 to 3. For instance, the 

following percentages appear for SDs influences; the effects 

of SDs on the ϖ11 increase from (-34.77%) to (-73.19%), 

from (-6.6%) to (-40.51%), from (-32.65%) to (-71.98%) 

and from (-11.22%) to (-49.92%) and these effects on the 

ϖ12 also increment from (-33.73%) to (-72.49%), from (-

6.28%) to (-39.45%), from (-31.64%) to (-71.25%) and 

from (-10.7%) to (-48.87%) for lay-up (0/90/0), (90/0/90), 

(0/90/90/0) and (90/0/0/90), respectively, when the 

meridional wave number, m, increases from 1 to 3. As can 

be seen from these “percentages”, such effects vary 

depending on the number and order of layers. 

 

 

5. Conclusions 
 

The PI of MLCCSs subjected to axial load periodically 

varying the time, using FOSDT is studied. Based on the 

physical and mathematical reasoning, the basic equations 

for MLCCS are derived and then the Galerkin method is 

used to obtain the ordinary differential equation of the 

motion. The equation of motion converted to the Mathieu-

Hill type differential equation, in which the PI is examined 

employing the Bolotin’s method. In order to prove the 

validity of the formulas, present results are compared with 

the results of other studies in the literature. Finally, the 

influences of various parameters such as lay-up, SDs, aspect 

ratio, as well as loading factors on the limits of the PIRs of 

MLCCSs are examined. 
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Appendix A 
 

In Eqs. (2)-(5), uij and vij (i = 1, 2, 3; j = 1, 2,..., 8), and 

ui (i = 3, 4) are expressed as 
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Appendix B 
 

ηij (i, j = 1, 2, 3, 4), λρ and λαx are given as 
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