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An extension of a high order approach for free vibration analysis of
the nano-scale sandwich beam with steel skins
for two types of soft and stiff cores
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Abstract. The study investigates the free vibration of a nano-scale sandwich beam by an extended high order approach, which
has not been reported in the existing literature. First-order shear deformation theory for steel skins and so-called high-order
sandwich panel theory for the core are applied. Next, the modified couple stress theory is used for both skins and cores. The
Hamilton principle is utilized for deriving equations and corresponding boundary conditions. First, in the study the three-mode
shapes natural frequencies for various material parameters are investigated. Also, obtained results are evaluated for two types of
stiff and soft cores and isotropic, homogenous steel skins. In the research since the governing equations and also the boundary
conditions are nonhomogeneous, therefore some closed-form solutions are not applicable. So, to obtain natural frequencies, the
boundary conditions are converted to initial conditions called the shooting method as the numerical one. This method is one of
the most robust approaches to solve complex equations and boundary conditions. Moreover, three types of simply supported on
both sides of the beam (S-S), simply on one side and clamp supported on the other one (S-C) and clamped supported on both
sides (C-C) are scrutinized. The parametric study is followed to evaluate the effect of nano-size scale, geometrical configurations
for skins, core and material property change for cores as well. Results show that natural frequencies increase by an increase in
skins thickness and core Young modulus and a decrease in beam length, core thickness as well. Furthermore, differences
between obtained frequencies for soft and stiff cores increase in higher mode shapes; while, the more differences are evaluated
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for the stiff one.
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1. Introduction

Sandwich structures can be classed as composite
materials in that they consist of two or more individual
components of differing properties, which, when combined,
result in a high-performance material. Amongst all possible
design concepts in composite structures, the idea of
sandwich construction has become increasingly popular
because of the development of human-made cellular
materials that are used as core materials.

The separation of the skins by the core increases the
moment of inertia of the beam with little increase in weight,
which produce an efficient structure for resisting bending
and buckling loads. Sandwich beams are popular in high
performance applications where weight must be kept to a
minimum; for example, they are popular in aeronautical
structures, high-speed marine craft and racing cars.

In the most weight-critical applications, composite
materials are used for the skins; cheaper alternatives such as
aluminum alloy, steel or plywood are also commonly used.
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Materials used for cores include polymers, aluminum, wood
and composites. To minimize weight, these composite
materials are used in the form of foams, honeycombs or
with a corrugated construction.

Usually a sandwich structure consists of two relatively
thin, stiff and strong faces separated by a relatively thick
lightweight core, such as, honeycomb, balsa or foam cores.
The purpose of a sandwich structure is to achieve a stiff and
simultaneously light component.

Sandwich theory describes the behavior of a beam, plate
or shell that consists of three layers -two face sheets and
one core. The most commonly used sandwich theory is
classical, in which the core is vertically incompressible. In
other words, longitudinal stress through the core is
neglected (Vinson 1999). The free vibration examination of
the FG' sandwich beam by the mesh-free method is
reported by Yang et al. (2014). The high-order sandwich
panel theory in which compatibility conditions between two
face sheets and the core are used is introduced as the so-
called Model 11 (Frostig et al. 1992).

The free vibration and nonlinear thermal response of
the sandwich beam with a soft core are examined in works
by Frostig and Thomsen (2009). The effects of CNT?
length and CNT-matrix interphase in carbon nanotube
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reinforced composites is assessed by (Wan et al. 2005).
Non-linear dynamic response of a single wall carbon
nanotube subjected to radial impulse is explored by Dai and
Wang (2006). The dynamic stiffness method is used to
scrutinize the free vibration of the sandwich beam with a
soft core by Damanpack and Khalili (2012). Efficiency of
reinforcement in composite structures is determined by
Loos and Manas-Zloczower (2012). Numerical analysis on
nonlinear free vibration of carbon nanotube reinforced
composite beams is studied by Lin and Xiang (2014).
Nonlinear dynamics of the piezoelectric nanocomposite
under parametric resonance is scrutinized by He et al.
(2015).

New high-order theory for obtaining the free vibration
and buckling of the sandwich beam is performed by
Nguyen et al. (2015). Free vibration of the sandwich beam
with functionally graded syntactic soft core is studied by
Rahmani et al. (2009). Panel flutter characteristics of
sandwich plates with CNT reinforced face sheets using an
accurate higher-order theory is performed by Sankar et al.
(2014). Effect of agglomeration on the natural frequencies
of functionally graded carbon nanotube-reinforced
laminated composite doubly-curved shells is determined by
Tornabene et al. (2016). Application of Reddy’s third-order
theory to delaminated orthotropic composite plates is
applied by Szekrényes (2014).

Nonlinear vibration analysis of composite laminated and
sandwich plates with random material properties is done by
Chandrashekhar and Ganguli (2010). Free vibration of
functionally graded sandwich plates using four-variable
refined plate theory is surveyed by Hadji et al. (2011).
Static behavior of viscoelastic sandwich plate with
nanocomposite facings under mechanical load is fulfilled by
Kavalur et al. (2014). Large deformation bending analysis
of functionally graded spherical shell using FEM?® is
assessed by Kar and Panda (2015). Experimental snap-
buckling behavior of thin GRP* curved panel under lateral
loading is accomplished by Marshall et al. (1977). Free
vibration analysis of functionally graded conical shells and
annular plates using the Haar wavelet method is examined
by Xie et al. 2014).

3-D free vibration analysis of FG-multiwalled CNT
curved sandwich panel with power law distribution of
carbon nanotubes is fulfilled by Tahouneh (2017). In the
study, mode shapes of FG-MWCNT® sandwich panel are
obtained as well. Free vibration of magneto-thermo-
mechanical viscoelastic curved microbeam reinforced by
functionally graded carbon nanotubes is performed by
Allahkarami et al. (2017). A microbeam resting on a
viscoelastic medium and equations and boundary conditions
obtained by using strain gradient and Timoshenko beam
theories are all studied in the evaluation.

Tagrara et al. (2015) performed bending, buckling and
free vibration of FG-CNT beam resting on an elastic
foundation by using a trigonometric refined theory that
deals with three unknowns. Bending response of the
functionally graded carbon nanotube plate is implemented

® Finite element method
4 Glass-reinforced plastic
® Multiwalled CNT

by Chavan and Lal (2017). In the work, high-order shear
deformation and finite element methods are used for
obtaining equations and boundary conditions and solving
them, respectively. A new hyperbolic beam theory is applied
in order to obtain free vibration and buckling of the FG-
CNT sandwich beam by Bennai et al. (2015). In the study,
the core layer is considered to be a homogenous and
isotropic material. An analytical method is used in the study
for considering a simply supported boundary condition to
obtain buckling and free vibration.

The benchmark solution for free vibration of
functionally graded moderately thick annular sector plates
is investigated by Saidi et al. (2011). Free vibration of polar
orthotropic laminated circular and annular plates is obtained
by Lin and Tseng (1998). Asymmetric free vibrations of
laminated annular cross-ply circular plates including the
effects of shear deformation and rotary inertia is studied by
Viswanathan et al. (2009). An improved Fourier series
solution for the dynamic analysis of laminated composite
annular, circular, and sector plate with general boundary
conditions is surveyed by Wang et al. (2016). A novel
nonlocal gradient formulation is utilized for the functionally
graded Timoshenko nanobeams by Barretta et al. (2016).
Free vibration of Ilaminated conical shells including
transverse shear deformation is scrutinized by Tong (1994).

Dynamic properties of the sandwich beam with
reinforced various layers of carbon epoxy polymer
composites used for face sheets and lightweight concrete for
core layer is implemented by Naghipour and Mehrzadi
(2007). Free vibration analysis of circular thin plates with
stepped thickness by the DSC® element method is
accomplished by Duan et al. (2014). Forced vibration
analysis of FG-CNT sandwich plate is examined by Ansari
et al. (2014) who concluded that bending stiffness and
natural frequency increase by growth in volume fraction of
CNT face sheets. Large deflection analysis of laminated
composite plates resting on nonlinear elastic foundations by
the method of discrete singular convolution is examined in
work of Baltacioglu et al. (2011).

Free vibration of thick FG-CNT plate resting on the
elastic foundation is evaluated by Zhang et al. (2015). The
free vibration and buckling of sandwich beam with FG-
CNT face sheets and Ti-6Al-4V stiff core are examined by
Wau et al. (2015). The effect of elevated temperature on free
vibration of FG-CNT plate is investigated by Mehar et al.
(2016). Nonlinear free vibration and nonlinear bending of
sandwich plates with CNT face sheets resting on Pasternak
foundation is found in work of Wang and Shen (2012).

Post-buckling behavior of the sandwich plate with CNT
face sheets resting on Pasternak foundation is studied by
Shen and Zhu (2012) who concluded that post-buckling
behavior of the sandwich plate is affected by temperature
change, volume fraction of face sheets, and core to face
sheet thickness ratio. An effect of carbon nanotubes
existence on the vibration of CNT reinforced beam is
fulfilled by Heshmati et al. (2015). In the work, effect of
factors such as length, agglomeration, waviness and
distribution of carbon nanotubes on the vibration of FG-
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CNT beams are scrutinized. The discrete singular
convolution technique is used to obtain the free vibration of
symmetric laminated skew plates by the first-order shear
deformation theory is studied in work of Girses et al.
(Giirses et al. 2009). The free vibration of curved nano-
scale beam by nonlocal theory is evaluated by Ganapathi et
al. (2018). In the work, the finite element method is used
for obtaining natural frequencies. Moreover, the effect of
beam length, beam curvature, beam thickness and material
parameters on frequency values is investigated.

In this paper, the free vibration analysis of the nano-
scale sandwich beam by an extended high order approach
including two types of soft and stiff cores is evaluated. In
our study, the first-order shear deformation displacement
fields are used for isotropic, homogenous, and steel face
sheets and displacement fields of cores is derived by
HSAPT’. MCST® is then applied for both skins and the
core. The Hamilton principle is utilized for deriving
equations and corresponding boundary conditions. Then,
the shooting method, as a numerical method, is used to
obtain natural frequency by considering three types of S-S,
S-C and C-C boundary conditions. Our paper novelty is that
both theories, HSAPT and MCST, are applied for the core,
which has not been reported in the literature thus far.

2. Mathematical approach

The modified couple stress theory is used for obtaining
equations and corresponding boundary conditions. The
theory consists of classical term and the nonclassical terms,
which allude to micro/nano-scale mechanical elements
whose size is in order of micron or nano such as micro/nano
sandwich beams as discussed in the paper. It is proven that
the deformation of such systems is size dependent, which is
why material length scale parameters in the modified couple
stress theory applies (McFarland and Colton 2005). The
theory is expressed as (Eg. (1)) (Asghari et al. 2010,
Kahrobaiyan et al. 2011)

oU = J.(O_ijé‘gij +mij5;(ij )dV :é'Us +5UC = .[(O_ijé‘gij +mij5;;ij )th +
\ Vi

J.(O'ij‘sgij +mij§}(ij )V + J(Gijggij +mijb‘;(ij )dVe

Vb Ve

1)

In the above equation, oUs, U, Ui, wi, &, ojj and xjj
denote skins and core strain energy variations, the
displacement vector, rotation vector, strain and stress tensor,
and symmetric part of rotation gradient tensor components,
respectively and is written as
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Fig. 1 A schematic view of deformed sandwich beam:
(a) Deformations; (b) Sandwich beam
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So-called high-order stress in Eq. (1) is expressed as
912,
mij = 2417 % (6)

A, o and | are the Lame constants and material length
scale parameter, respectively. Equations and boundary
conditions are derived by using the variational calculus
concept or Hamilton’s principle (Eg. (7)). Displacement
fields for face sheets are considered as Timoshenko beam
theory which has the following form (Eg. (8)). Also, Eg.
(13) represents longitudinal and transverse deformations of
the core and are expressed in the form of HSAPT or Model
Il of FROSTIG (Frostig et al. 1992). A schematic of a
deformed sandwich beam is depicted in Fig. 1.

t
SI(T—U )dt =0 0
i}

ui(x,z,t) =ugi(x,t)+zj4(x,t)
vi(y,z,t)=0 8)
wi(x,z,t) =wi(xt)

Uc(X,z,t)=

ug(x,t)+up(x,t)ze +u2(x,t)z§ +U3(x,t)z§
we(X,z,t)=

)

wo (X, t)+w(x,t)ze +W2(x,t)zc2

First, for keeping continuity between the core and two
layers, compatibility conditions written in Eqg. (10) are
exerted.
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wc(x,—%,t):wt(x,z,t)
d
U (=2 1) = (X.) + 3R (x1)
(10)
Wc(x,%,t)zwb(x,z,t)

(X% 1) =Uon(xt) ~ L (x)

Next, longitudinal and transverse deformations of the
core by incorporating Eq. (10) into Eq. (9) are rewritten as

uc(x,z,t) =
uo(x,t)+u1(x.t)zc+C%[um(x,t)+u0b(x,t)—2uo(x,t)
+d§¢x(x,t)—d7"¢o(x,t)]z§+C%[—u0t(x,t)—d§¢t(x,t)
- % gy ()12 (11)
we(x,2.0) =
Wo(Xit)+ [ (xt) - (X )2

2
il t
+ 7 Dw(x)

—wy(x,t) - 2wp(x,t)]22

3. Governing equations and boundary conditions

In this section, equations and corresponding boundary
conditions of the nano-scale sandwich beam are obtained by
using MCST. The strain of the top and bottom skins is
gained from the displacement fields, Eq. (8), as following

(Eq. (12)).

aUOi(X’t)+zi ogi(x,t)

(X 2)= X OX

. _ i=th  (12)
y)'(z(x,z,t)=¢‘(x,t)+%

Skins (top and bottom layers) strain energy is therefore
written in the form of Eq. (13).
oUg =
t oot toot to ot ot ot
j (oxx0exx +KsTxz O xz + My50x1 5 +My1 5751 YAV
Vi (13)
+ I (GQX&‘EX + kST)t(JZ 5}/)th + mfzé';(fz +ml2)l5;(l231 )dVy
Vb
In Eq. (13), the shear correction factor, ks, is considered

2
as ’11—2 (Ansari et al. 2014). Moreover, symmetric part of

rotation gradient tensor components and high-order stress
for skins are

i i Lod(xt) dPwi(xt)

112=121=2 o ox? : i=tb (14)
) ) 50 (Xt) 62W(Xt) |
L

Also the variation of skins kinetic energy turns into Eq.
(15).

t d? - . N
= [ om0, + 0o S + Wi 5W)
02 0 (15)
-m, (S—; 6 5, + Uy, Uy, + W, S, Jdx}dt

In the above equation, [0 is second derivation with
respect to time.

In this step, strain and kinetic variations of the core are
derived.

Strains of the core regarding displacement fields, Eq.
(11), are given in Eq. (16) as well.
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Strain energy variation of the core becomes

C o C c ¢ C C ¢ C c ¢ C C o C (]
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In Eqg. (17), symmetric part of rotation gradient tensor
components and high-order stress of the core are

¢ 7(62uc(x,z,t)762WC(x,z,t)
27 ox2

):Zgl

2 2
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2
, , (18)
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23 oz OX0z 32

2 2
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Also Eq. (19) represents the kinetic energy variation of
the core.

_ 1 2 a2
ﬂc—ﬁ{jgpc(uc Hig )dVe } (19)
VC
In Eq. (19), (1 is first derivation with respect to time.

By substituting u, and w, from Eq. (11) into Eq. (19) and
after some cumbersome algebraic manipulation, variation of
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kinetic energy of the core is obtained.

By incorporating Egs. (13) and (15) for face sheets and
Egs. (17) and (19) for the core into Eq. (7), followed by
cumbersome and time-consuming manipulation and using
integration by parts, the equations and corresponding
boundary conditions are extracted.

Equations of motion of nano-scale sandwich beam are
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4. Numerical result and discussion
4.1 Solution method

Because these analytical methods are unable to solve
these equations and boundary conditions, a shooting method
(launching method) is applied as the numerical method in
the study. The method used is for solving boundary value
differential equations that convert boundary value problems
into the initial value to solve the differential equation. Using
repetitive methods and adjusting the final values with
predicted values in the problem improves the response
(Wang et al. 2013, Xie and Pang 2016).

The multiple launch method is an improved method to
achieve better, more accurate, and faster results. In this
method, the domain of the problem (for example, the length
of the beam) is divided into smaller elements. As the results
show, this process does not require a large number of
elements (Aziz 1975, Bock and Plitt 1984). Using the
differential equations in each element and solving these
equations at the desired part, the numerical values of each
component are obtained (such as displacements, forces,
slopes, etc.). Because corresponding equations are studied
in each element, and the vector of initial guess improves in
each repetition, this method does not show sensitivity to the
initial estimate, and the divergence problems of the
solutions in the conventional launch method have



An extension of a high order approach for free vibration analysis of the nano-scale sandwich beam...

significantly improved (Li and Zhou 2001).

The approximated length in the section of the beam is
divided into n sections (not necessarily equal), and we apply
Q differential equations to each of them. So, for solving NQ
differential equations, NQ initial conditions in each part are
necessary. The NQ initial conditions are defined as the
vector ¢k as follows (Bock 1983, Deuflhard and Bader
1983)

T
Sk :|:‘§]1_:k vé‘:—zr,k ----- QZL vk] (41)

By solving the equations in the elements, the result
obtained at the end of each component must be compatible
with the initial condition of the next component. In the
shooting method, differential equations with the
corresponding boundary conditions on the left end are
solved to obtain the boundaries on the other side. So, the
differences between the obtained and prescribed boundaries
are called right error bound (Marzulli and Gheri 1989). In
the other words, the results are obtained based on the error
bound, error tolerance of the problem, as the input value.
Regarding the error, iterative scheme must be incorporated
in the method.

4.2 Comparison study

The comparison study is performed in two steps. In the
first step, classical equations with corresponding boundary
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conditions, | = 0, are considered. In the second step, the
nano-scale sandwich panel is turned out into a simple one-
layer beam and is compared to the nano-scale Timoshenko
beam.

4.2.1 Classical approach

As mentioned before, the classical high order
Timoshenko sandwich beam is compared to Euler-Bernoulli
frameworks done by finite difference, finite element and
experimental methods written in literature. For this work,
geometrical configuration is regarded as L =30 cm, ¢ =3
c¢cm, b =5 cm, and ds = d; = d, = 0.2 cm. Material properties
for the core are E, = 56 Mpa, G, = 22 Mpa, p. = 60 kg/m®
and for skins E; = 210 Gpa, vs = 0.3, ps = 7900 kg/m°.
Results are represented in Table. 1 with error bound of 10°
and one order of magnitude for the number of iterations.

4.2.2 Nonclassical approach

In light of the fact that stresses in the longitudinal
direction of the core are given in this study, not only soft
cores but also stiff cores can be regarded. For this reason,
material properties of the core are evaluated as the same for
skins and therefore a nano-scale sandwich beam is turned
into a nano-scale simple one-layer Timoshenko beam. In
this step, material properties of the core and skins are E =
1.44 Gpa, p = 1220 kg/m® v = 0.38, and | = 17.6x10°® and
for various values of h, L and b. Comparison results are
given in Table 2 with error bound of 10 and two orders of

Table 1 A comparison on fundamental natural frequency of FSDT® sandwich beam (present) with

EBT™ ones
Experiment ~ FDM _FEM Present
(Jensen and Irgens 1999)  (Sokolinsky et al. 2002)  (Khalili et al. 2013)
1 263 245 251 257.83
2 ---- 521 537 544.27
3 889 856 874 882.08
4 1289 1266 1282 1291.02
5 1774 1762 1771 1779.61
6 2352 2360.56
7 3039 3027.71
8 3806 3826 3793.54
9 4621 4716 4651.56

Table 2 A comparison on fundamental natural frequency of modified FSDT sandwich beam with FSDT

single layer beam

_Akg('jz and Present _Akgb'z and Present _Akgdz and Present
Civalek (2013) Civalek (2013) Civalek (2013)
h/l L=10h L=30h L =100 h
1 23.7053 23.7055 24.5061 24.5566 24.6045 24.6112
5 13.7192 13.6715 14.0707 14.0697 14.1128 14.1128
10 13.2748 13.2742 13.6149 13.6179 13.6555 13.7116

°First shear deformation theory
©eyler-Bernoulli theory
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Table 3 Three mode shapes natural frequencies for soft and stiff cores under S-S and various material parameters

Core type Soft Stiff Soft Stiff Soft Stiff
Material parameter to skin thickness I/d=25 I/d=3 I/d=35
1% mode natural frequency 0.17365 0.29178 0.12603 0.21177 0.08682 0.14588
2" mode natural frequency 0.24847 0.74405 0.18033 0.54002 0.12423 0.37200
3" mode natural frequency 0.28987 1.20605 0.21038 0.87533 0.14493 0.60298

Table 4 Three mode shapes natural frequencies for soft and stiff cores under S-C and various material parameters

Core type Soft Stiff Soft Stiff Soft Stiff
Material parameter to skin thickness I/d=25 I/d=3 I/d=35
1% mode natural frequency 0.20838 0.46683 0.15124 0.33883 0.10418 0.23341
2" mode natural frequency 0.34092 1.13671 0.24743 0.82504 0.17044 0.56835
3" mode natural frequency 0.39929 1.83440 0.28980 1.33143 0.19963 0.91718

Table 5 Three mode shapes natural frequencies for soft and stiff cores under C-C and various material parameters

Core type Soft Stiff Soft Stiff Soft Stiff
Material parameter to skin thickness I/d=25 /d=3 I/d=3.5
1% mode natural frequency 0.26047 0.77961 0.18905 0.56585 0.13023 0.38979
2" mode natural frequency 0.43434 1.84894 0.31524 1.34198 0.21716 0.92444
3 mode natural frequency 0.53259 \2.96585 0.38656 2.15265 0.26629 1.48287
. . . :S d : = =SS (softcore]
magnitude for the number of iterations. weht = It
A —ns3 gt v
< 4:' \ :-z-(é((sd'f‘f‘rure)) B
: f \ <C (stiff core
5. Parametric study s =
§ 1( \\ B RS
In the study, the fundamental natural frequency of a § st \ "
nano-scale sandwich beam is scrutinized through the A B "W TR —————
approach of MCST with two types of cores: soft and stiff. { N “ Opzzzzcizizzzzzzzzo-zii
Skins are considered steel with material properties Es = 210 E - i ol
Gpa, Vs = 0.3, p, = 7900 kg/m® (Khalili et al. 2013). The Sl -0 T . i »\‘
material properties for the honeycomb soft core are given as o S {;: i o R i " T .
E. = 56 Mpa, G, = 22 Mpa, p. = 60 kg/m? (Frostig and of Dl it ok o, T

Baruch 1994) and E, = 113.8 Gpa, v, = 0.342, p, = 4430
kg/m? for Ti-6Al-4V stiff core (Wu et al. 2015). Upper and
bottom face sheets have the same geometrical
configurations as used in practical applications.

Numerical results are obtained by using the shooting
method under three various boundary conditions: simply
supported on both sides, simply supported on one side and
clamped on the other, and clamped on both sides. In this
way, the second statement of Egs. (33), (35), and (37),
namely éw; = 0, owy = 0, ow, = 0, and the first statement of
the other boundary conditions are exploited for simply
supported. In addition, the second statement of Egs. (33),
(35), and (37) and the second statement of all boundary
conditions are utilized for clamped supported. All results
are obtained with error bound of 10° and three orders of
magnitude for the number of iterations.

In the paper, obtained frequencies « are evaluated

by(wL?\/ps/Es)/ds as dimensionless natural frequencies
(frequency parameter). In the work, the first, second and

1 115 2 25 3 35 4
Material parameter to skin thickness ratio, 1/ d

Fig. 2 Frequency parameters in terms of various material

parameters for soft and stiff cores and different

boundary conditions

third mode shape natural frequencies for three different
material parameters and under S-S, S-C, and C-C are
represented in Tables 3, 4, and 5, respectively. The first
mode natural frequencies for soft and stiff cores under
various boundary conditions are drawn in terms of various
material size effect parameters in Fig. 2.

Tables 3, 4, and 5 and Fig. 2 are represented by
geometrical configurations L = 200x10™ m (200 nano
meter), L/C = 2, C/ds = 5, b/ds = 1.5 and for given different
values of I. It is observed that frequency parameters are
decreased by increasing the material parameter. In other
words, material stiffness of the sandwich beam is decreased
by material parameter increase.
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Table 6 Three mode shapes natural frequencies for soft and stiff cores under S-S and different skin thicknesses

Core type Soft Stiff Soft Stiff Soft Stiff
Core to skin thickness ratio Clds=5.71 Clds=5.41 Clds=5.13
1% mode natural frequency 1.0739 1.8460 1.0203 1.8388 0.9667 1.8312
2" mode natural frequency 1.5744 4.7210 15731 47191 15715 47172
3" mode natural frequency 1.8373 7.6635 1.8369 7.6560 1.8366 7.6484

Table 7 Three mode shapes natural frequencies for soft and stiff cores under S-C and different skin thicknesses

Core type Soft Stiff Soft Stiff Soft Stiff
Core to skin thickness ratio Cldy=5.71 Cldy=5.41 Cldy=5.13
1% mode natural frequency 1.2930 2.9582 1.2287 2.9562 1.1641 2.9540
2" mode natural frequency 2.1593 7.2118 2.1580 7.2092 2.1564 7.2065
3" mode natural frequency 2.5307 11.6538 2.5304 11.6436 2.5300 11.6331

Table 8 Three mode shapes natural frequencies for soft and stiff cores under C-C and different skin thicknesses

Core type Soft Stiff Soft Stiff Soft Stiff
Core to skin thickness ratio Clds=5.71 Clds=5.41 Clds=5.13
1% mode natural frequency 1.6129 4.9402 1.5366 4.9370 1.4604 4.9337
2" mode natural frequency 2.7562 11.7295 2.7522 11.7257 2.7509 11.7219
3 mode natural frequency 3.3757 18.8372 3.3754 18.8225 3.3750 18.8073
| TR, T D e R iy R B T of 94% in the first frequency parameter for this case of
s parametric study.
. — =S.C (soft cor) In the study, the first, second and third mode shape
C-C (soft core) - . - .
1 2 S5t core natural frequencies for three different skin thicknesses, and
s C-C (stiff core) under S-S, S-C, and C-C are given in Tables 6, 7, and 8,

Dimensionless natural frequency, [

core to skin thickness ratio, C/d

Fig. 3 Dimensionless natural frequencies in terms of
various skins thickness for soft and stiff cores and
different boundary conditions

This reduction percent for all boundary conditions is the
same, no matter what the type of cores. It is seen that by an
increase of 400% in material parameters, there is a decrease

respectively. Whereas, first mode natural frequencies for
soft and stiff cores under various boundary conditions are
illustrated in terms of various skin thickness in Fig. 3. All
data are obtained with | =20 nm, L/l =10, C/l =5, b/l = 1.5
and for given different values of ds.

It is observed that natural frequencies increased when
skin thickness increased and vice versa, while, other
parameters remained constant, no matter what type of cores.
However, increase percent of first natural frequencies is not
the same for two types of cores. By increase of 60% in the
skin thickness, 12% in the total thickness of beam, there are
increments of 57%, 55% and 52% in natural frequencies for
soft core, and under S-S, S-C and C-C, respectively. For
stiff one, these increments are 3.6%, 0.7% and 0.5% under
the same aforementioned boundary conditions, respectively.

Also, the first three modes shape natural frequencies for
three different core thicknesses, and under S-S, S-C, and

Table 9 Three mode shapes natural frequencies for soft and stiff cores under S-S and different core thicknesses

Core type Soft Stiff Soft Stiff Soft Stiff
Core thickness to beam length ratio C/L=0.55 C/lL=0.6 C/L=0.65
1** mode natural frequency 1.0998 1.9005 1.0987 1.9464 1.0977 1.9878
2" mode natural frequency 1.4736 4.8261 1.3917 4.9194 1.3247 4.9992
3" mode natural frequency 1.7519 7.7576 1.6846 7.8522 1.6306 7.9325
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Table 10 Three mode shapes natural frequencies for soft and stiff cores under S-C and different core thicknesses

Core type Soft Stiff Soft Stiff Soft Stiff
Core thickness to beam length ratio C/L=0.55 C/lL=0.6 C/L=0.65
1% mode natural frequency 1.3164 3.0058 1.3113 3.0469 1.3043 3.0831
2" mode natural frequency 2.0560 7.3575 1.9706 7.4860 1.9003 7.5964
3" mode natural frequency 2.4423 11.7837 2.3720 11.9144 2.3168 12.0253

Table 11 Three mode shapes natural frequencies for soft and stiff cores under C-C and different core thicknesses

Core type Soft Stiff Soft Stiff Soft Stiff
Core thickness to beam length ratio C/L=0.55 C/IL=0.6 C/L =0.65
1% mode natural frequency 1.6355 5.0007 1.6133 5.0525 1.5908 5.0986
2" mode natural frequency 2.6556 11.939 2.5704 12.1239 2.5029 12.2826
3" mode natural frequency 3.2908 19.0240 3.2233 19.2121 3.1704 19.3716

C-C are represented in Tables 9, 10, and 11, respectively.
Nevertheless, the first mode natural frequencies for soft and
stiff cores under various boundary conditions are illustrated
in terms of various core thicknesses in Fig. 4. All data are

t — =SS (soft core)
45f = =S-C (soft core)
[ C-C (soft core)

E e S-S (stiff core)

4 e S-C (stiff core)

f C-C (stiff core)

Dimensionless natural frequency, f

Core thickness to beam length ratio, C/ L

Fig. 4 Dimensionless natural frequencies in terms of
various cores thickness for soft and stiff cores and
various boundary conditions

obtained with | =20 nm, L/l =10, dJ/l = 1, b/l = 1.5 and for
given different values of C.

It is concluded that natural frequencies increase for the
stiff core and decrease for the soft core when core thickness
increases and vice versa. With an increase of 60% in cores
thickness, and 42% in the total thickness of beam, there are
decreases of 0.5%, 4.8%, and 5.7% in the first natural
frequencies for soft core, and under S-S, S-C and C-C,
respectively. For stiff one, these increments are 13%, 7%,
and 5% with the same aforementioned boundary conditions,
respectively.

Moreover, the first three modes shape natural
frequencies for three different sandwich beam lengths, and
under S-S, S-C, and C-C are represented in Tables 12, 13,
and 14, respectively. The first mode natural frequencies for
soft and stiff cores under various boundary conditions are
drawn in terms of various beam length in Fig. 5. All data are
provided with C = 100 nm, C/l =5, h/l =7, b/l = 1.5 and for
given different values of L.

It is mentioned that h is the total beam thickness. One
can deduce that natural frequencies decrease for stiff and
soft cores when beam length increases and vice versa. With
an increase of 40% in beam length, there are reduction

Table 12 Three mode shapes natural frequencies for soft and stiff cores under S-S and different sandwich beam length

Core type Soft Soft Stiff Soft Stiff
Beam length to total beam thickness L/h=1.72 L/h=1.86 L/h=2
1* mode natural frequency 0.7692 1.4317 0.6575 1.2736 0.5687 1.1400
2" mode natural frequency 1.1667 3.7944 1.0608 3.4325 0.9800 3.1198
3" mode natural frequency 1.3753 6.2740 1.2765 5.7287 1.2019 5.2533

Table 13 Three mode shapes natural frequencies for soft and stiff cores under S-C and different sandwich beam length

Core type Soft Soft Stiff Soft Stiff
Beam length to total beam thickness L/h =172 L/h =1.86 L/h=2
1* mode natural frequency 0.9243 2.3749 0.8798 2.1494 0.7026 1.9558
2" mode natural frequency 1.6052 5.9105 1.4525 5.3894 1.3696 4.9336
3" mode natural frequency 1.8956 9.6969 1.7413 8.9082 1.6648 8.2114
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Table 14 Three mode shapes natural frequencies for soft and stiff cores under C-C and different sandwich beam length

Core type Soft Stiff Soft Stiff Soft Stiff
Beam length to total beam thickness L/h=1.72 L/h=1.86 L/h=2
1* mode natural frequency 1.1789 4.0194 1.0090 3.6627 0.8928 3.3559
2" mode natural frequency 2.0579 9.6580 1.8372 8.8300 1.6941 8.1060
3" mode natural frequency 2.5440 15.6972 2.2981 14.4325 2.1417 13.3160

amounts of 93%, 87%, and 84% in natural frequencies for
soft core and S-S, S-C, and C-C, respectively and these

values for the stiff core are 62%, 51%, and 47%,
respectively.
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Fig. 5 Dimensionless natural frequencies in terms of
deferent beam length for soft and stiff cores and
various boundary conditions
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Fig. 6 Dimensionless natural frequencies in terms of
deferent soft cores Young modulus and various
boundary conditions

The effect of the soft-core Young modulus on the
fundamental natural frequency is presented in Fig. 6.
Moreover, the first three modes shape natural frequencies
are given in Table 15. These results for the soft core are
gained by L = 200 nm, L/l = 10, C/l =5, C/ds = 6.35, b/l =
1.4, m/my = 0.0487, E, = 2.545G, and for given different
values of E.. The change range of the elasticity modulus of
soft cores such as honeycomb is given up to E/Es = 0.007
(Lubin 2013). It is observed that natural frequencies
increase when the soft-core Young modulus increases and
vice versa. With an increase of almost 2000% in the
elasticity modulus of the soft core, there are increments of
57% in the first natural frequencies regardless of type of
boundary conditions. Moreover, natural frequencies
increase by growth in the stiff core Young modulus and this
increment is about 57% for 227% rise in the core elasticity
modulus such that E/Es becomes 0.5 for all three types of
boundary conditions. First frequency parameters for the
change in the stiff core Young modulus are illustrated in
Fig. 7 and results for higher mode shapes are given in Table
16 as well. Results for the stiff core are obtained by L = 200
nm, L/I = 10, C/l = 5, C/ds = 8.33, b/l = 1.5, m/myy =
0.7003, E. = 2.684G, and for given different values of E.

= =SS (stiff core) |
== =S.C (stiff core) |
C-C (stiff core) |
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natural frequency, f
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Core to skin Young modulus ratio, (Ec/Es)

Fig. 7 Dimensionless natural frequencies in terms of
deferent stiff cores Young modulus and various
boundary conditions

Table 15 Three mode shapes natural frequencies for soft cores under various B.C.’s and soft core Young modulus

Core to skin Young modulus E./E; =0.00013

E./Es = 0.00022 E./Es = 0.00036

B.C.S’s type S-S S-C C-C S-S S-C C-C S-S S-C C-C
1* mode natural frequency 0.7772 0.9093 1.1093 0.84589  0.9897 1.2074 0.9369 1.0961 1.3373
2" mode natural frequency 0.9773 1.3668 1.7405 1.1650 1.5760 1.9733 1.3473 1.7870 2.2219
3" mode natural frequency 1.1247 1.5862 2.1325 1.3506 1.8374 2.4150 1.5916 2.1128 2.7379
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Table 16 Three mode shapes natural frequencies for stiff cores under various B.C.’s and stiff core Young modulus

Core to skin Young modulus E/Es=0.24 EJ/Es=0.33 EJ/Es=0.43
B.C.S’s type S-S S-C C-C S-S S-C c-C S-S S-C c-C
1% mode natural frequency 1.3661 1.9809 3.0109 1.5276 2.2151 3.3669 1.6564 2.4017 3.6506
2" mode natural frequency 3.3494 45957 6.8071 3.8277 5.2664 7.7907  4.2094  5.8070 8.5877
3 mode natural frequency 5.3671 7.3298 10.7898  6.1793  8.4600 124341  6.8270 9.3715  13.7688

One can conclude that, in all cases, changes in skin and
core thickness, beam length and material parameter result in
increased frequencies for higher mode shapes regardless of
cores and boundary conditions types. However, differences
between results under C-C and S-C increase more than the
ones under S-C and S-S boundary conditions for the stiff
rather than those for flexible core.

6. Conclusions

Free vibration analysis of a nano-scale sandwich beam
with two types of soft and stiff cores and isotropic,
homogenous and steel skins is investigated in this paper by
an extended high order theory, which has not been reported
in the literature thus far. In the study, stresses in the
longitudinal direction of the core, gy, is considered, which
is why stiff cores can be evaluated as well as soft cores. In
our study, both HSAPT and MCST theories are examined
for the core. Results reveal that obtained frequency
parameters for the stiff core are more than those for the soft
core. Frequency parameters for C-C are more than those for
S-C, while for S-C, they are more than those for S-S
boundary conditions, no matter what type of the core;
however, differences between these values for the stiff core
are much more than those for the soft core. Moreover, it is
seen that for higher mode shapes, differences between
results under C-C and S-C increase more than the ones
under S-C and S-S, no matter what type of the core;
however, much more differences are observed for the stiff
core.

It is concluded that dimensionless natural frequencies
increase by the rise in skin thickness regardless of the type
of cores and boundary conditions. At the same time, the
increase rate for the soft core is more than that for the stiff
core. By increasing the core thickness, frequency
parameters for the stiff and soft cores are increased and
decreased, respectively because of material stiffness
increase and decrease of the sandwich beam. This reduction
for the soft core is gradual.

By an increase in beam length, fundamental natural
frequencies decrease regardless of the core type and
boundary conditions. However, this reduction rate is more
than for the soft core. The increase effect of the core
elasticity in modulus on natural frequencies growth for the
stiff core is much more than that for the soft core.
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