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1. Introduction 

 

The shear lag effect is a phenomenon related with 

accumulation of the shear deformation in the section of 

bending structural members while transferring the 

longitudinal stress. Contrary to the plane section assumption 

which is commonly adopted in analyzing bending structural 

members, longitudinal strain in flange of the non-

rectangular beam section can vary significantly due to this 

effect. The shear lag effect has received significant attention 

in recent research concerning steel-concrete composite 

beams. With a large, reinforced concrete slab connected 

with profile steel by shear connectors, this form of structure 

has good stiffness and moment capacity, and is often used 

as decks of bridges. Transverse dimension of the slab 

perpendicular to the profile steel beam can be quite large. 

When the flange of the composite beam is in tension or 

compression due to the bending moment, distribution of the 

longitudinal strain in the flange concrete is uneven, 

(Amadio et al. 2004, Henriques et al. 2015, Ding et al. 

2016, Yang et al. 2016, Lasheen et al. 2018) and the 

distribution is distinctly influenced by the shear lag effect. 

(Dezi et al. 2003, Amadio et al. 2004, Pecce et al. 2012, 

Lee and Chiew 2013, Zhong et al. 2017, Boules et al. 2018) 

Correspondingly, stiffness, moment capacity, natural 
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frequency and the distribution of bending moments in steel-

concrete composite beams can be strongly affected. 

(Siekierski 2015) 

For considering the effect in design, engineers generally 

use the concept of the effective width which assumes only a 

portion of the concrete flange is mobilized in resisting the 

sectional moment. In Eurocode 4 (ENV 1994-1-1 1994), the 

effective width of the slab is related to span of the beam 

between the points of zero bending moment, distance of the 

shear connector and the geometric flange width. The 

effective width at the end of the beam is also different from 

the other location. The existing method was often found to 

be quite conservative and over-simplified by researchers. 

(Amadio et al. 2004, Aref et al. 2007, Castro et al. 2007, 

Goncalves and Camotim 2010, El-Shihy et al. 2010, Lee 

and Chiew 2013, Gara et al. 2014, Xiang and He 2017, 

Lasheen et al. 2018) Also, researchers found that influences 

of the shear lag effect can be more complicated in 

continuous steel-concrete composite beams. (Amadio et al. 

2004, Sun et al. 2014) For these beams, hogging moments 

are expected around supports in the mid-span and 

significant cracks can exist in these areas. Aref et al. (2007) 

pointed out that the current practice of using similar 

definition of effective width for hogging and sagging 

moment zones is problematic and proposed different 

definitions of the effective flange width accordingly. 

Researchers also found that the shear lag effect is more 

severe in the cracked part of the composite beam while 

sustaining the hogging moment. (Chiewanichakorn et al. 

2004) Researchers observed that cracks distinctly reduce 

shear stiffness of the concrete panels. (Beyer et al. 2011, 

Kim and Mander 1999, 2007, Ju et al. 2013) As the shear 

 
 
 

Shear lag effect in steel-concrete composite beam in hogging moment 
 

Da Luo 1a, Zhongwen Zhang
2 and Bing Li 3b 

 
1
 College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, P.R. China 

2
 Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, 

School of Civil Engineering, Southeast University, Nanjing 210000, P.R. China 
3
 School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798 

 
 

(Received December 21, 2018, Revised March 9, 2019, Accepted March 17, 2019) 
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method was proposed specifically for predicting the effect in the cracked part of the steel-concrete composite beam. The method 
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with the proposed method. 
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lag effect is related with shear stiffness of the section 

(Kwan 1996, Gao et al. 2016), the more severe shear lag 

effect in the cracked part of the beam is expected. 

Shear stiffness of the cracked concrete panels can often 

be predicted by the truss analogy. The truss analogy has 

been proposed in 1902 and was continuously used and 

improved by researchers. (Kim and Mander 1999) 

Important recent developments of the truss analogy include 

the modified compression field theory proposed by Vecchio 

and Collins (1986) capable of considering strength and 

softening of the concrete in compression and tension and 

the strut-and-tie model used by MacGregor et al. (1997) for 

predicting shear strengths of the deep beams. Paulay (1971), 

Kim and Mander (1999), used the truss analogy to calculate 

the shear stiffness and deformation in cracked concrete 

members. The method has also been used to predict shear 

strength and stiffness of concrete members sustaining large 

inelastic deformation including the work done by Hines and 

Seible (2004), Beyer et al. (2011) and Moharrami et al. 

(2015). 

Using the truss analogy, this paper proposes a method 

for calculating the shear lag effect in sections of the steel-

concrete composite beams sustaining hogging moment. The 

proposed method was compared with experimental results. 

For further investigation of the shear lag effect in steel-

concrete composite beams and validation of the proposed 

method, finite element (FE) models were built for steel-

concrete beams with various parameters. The shear lag 

effect in multi-span continuous steel-concrete composite 

beams with different loading combinations was also 

investigated by the FE models comparing with proposed 

method. 
 

 

 

2. Proposed method 
 

2.1 Truss analogy for cracked concrete slab in 
steel-concrete composite beam 

 

Used properly, models based on truss analogy can 

estimate shear strength and stiffness of the cracked concrete 

panels effectively. The truss models have been under 

consistent development and researchers can use very 

different assumption in modelling the concrete members by 

the truss. (Kim and Mander 1999) However, the central idea 

of the analogy is rather straightforward which is to 

represent the concrete struts sustaining diagonal compre-

ssion stress field as the diagonal chord while the reinforcing 

bars in tension connecting the concrete struts are 

represented by the horizontal tension chords. These 

diagonal and horizontal chords are connected by vertical 

chords in tension or compression modelling the longitudinal 

reinforcing bars or the vertical compression stress flow in 

the concrete. Depending on state of the compression stress 

in the cracked member, the diagonal chords can be assumed 

to be parallel to each other with a constant angle with the 

horizontal chords. Otherwise, the angle between the 

horizontal and diagonal members can vary to model the 

stress state of the concrete member more realistically. 

(Hines and Seible 2004) The forces of the chords of the 

truss should be in equilibrium with each other and the 

external load sustained by the concrete member. The 

geometric compatibility between deformation of the chords 

sustaining load can be ignored or considered. The 

compatibility is often ignored in models calculating shear 

strengths of concrete members using the truss analogy such 

as the strut-and-tie models. In calculating shear stiffness of 

the cracked members, on the other hand, both the 

compatibility and the equilibrium should be considered. 

Using energy method to solve the compatibility and 

equilibrium equations, deformation of the truss system can 

be calculated which approaches deformation of the cracked 

concrete member it represents. Kim and Mander (1999) 

used different kinds of truss analogies for predicting shear 

stiffness of flexural concrete members. The accuracy was 

found to be satisfactory even when very simple kind of truss 

was used for the flexural concrete member. 

Similar truss analogy was used for calculating the shear 

stiffness and the shear lag effect in the cracked concrete 

slab in the steel-concrete composite beam in this paper. A 

relatively simple case was considered for deducing the 

equation in which the edge of the slab is connected with the 

profile steel while the longitudinal reinforcing bars are 

concentrated at the two ends of the slab as shown in Fig. 1. 

A truss analogy was used to calculate the cracked slab as 

shown in Fig. 2. The assumptions made in calculating the 

truss include ignoring tensile strengths of the concrete, a 

constant angle of  between the horizontal chords and the 

diagonal chords and a constant distance between the 

horizontal truss members similar with that of the shear 

connectors. Therefore, the longitudinal reinforcement, the 

transverse reinforcement and the diagonal concrete struts 

are represented by the vertical trusses, the horizontal trusses 

and the diagonal trusses, respectively as shown in Figs. 1-2. 

The assumptions made are similar to some other researchers 

in calculating shear stiffness of flexural concrete members. 

(Kim and Mander 1999, Pan and Li 2013, Pan et al. 2014) 

However, the load applied to the truss is different. For the 

concrete slab, the shear forces are transferred to truss joints 

though shear connectors. Validity of these assumptions and 

the truss analogy will be discussed afterward with 

comparisons with experimental results and the FE analyses. 

Considering a simplified case in which the truss is 

resisting an individual force of dF transferred from a shear 

connector shown in Fig. 2, only a part of the truss will be 

mobilized in resisting dF. The truss system can be simplified 

 

 

 

Fig. 1 Cracked concrete flange sustaining hogging moment 
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Fig. 3 Force equilibrium of the proposed truss 

 

 

 

to Fig. 3. (Kim and Mander 1999) Based on equilibrium of 

the forces, the internal forces in every truss member can be 

expressed in terms of dF and V1, the shear force in the 

horizontal members as shown in Fig. 3. The strain energy of 

the truss system can be expressed as 
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in which jd is the length of horizontal ties; Es is the Young’s 

modulus of the reinforcing bars; Ec is the modulus of the 

concrete; t is the thickness of the flange; s is the vertical 

distance of the truss assumed as the vertical distance of the 

horizontal reinforcing bars in the flange; As is the area of the 

horizontal reinforcing bars in the distance of the assumed 

horizontal truss; AL and AR are the areas of the concentrated 

reinforcing bars in the two ends of the flange, respectively; 

n1 is the node number where the dF is, which start at the 

top-left of the truss (n1 is 1 for the top-left node of the truss 

and is n for the bottom-left node of the truss.). Based on 

Castigliano’s second theorem, Eq. (2) can be deduced which 

relates the variation of the tension forces in the vertical 

members with the applied dF to the truss 
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Fig. 2 Proposed truss analogy for the cracked concrete and the mobilized force by an individual dF 
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For the dF considered, variation of the tension forces in 

the vertical trusses in the right is given in Fig. 4(a). With 

Eq. (2) these forces can be calculated. 
 

2.2 The shear lag effect in steel-concrete 
composite beam 

 

For a loaded beam shown in Fig. 1, diagonal cracks in 

the concrete flange exist in locations where the bending 

moment of the beam exceeds the cracking moment Mcr 

determined by tensile strength of the concrete and moment 

of inertia of the section. The longitudinal reinforcing bars 

are resisting some tension forces at cracking of the flange, 

and the proposed truss is resisting some vertical force at the 

top introduced by these tension forces. (FRcr shown in Fig. 

4) As the hogging moment increases along span of the 

beam, the section of concrete flange resists more and more 

tension forces which are transferred to the flange by the 

shear connectors. Increases of the tension forces in the 

vertical truss members, therefore, are determined by the 

forces of the connectors and stiffness of the truss as 

calculated by Eq. (2). Before significant yielding of the 

reinforcing steel and the cracked concrete, a linear 

superposition can be used. If distribution of the forces in the 

connectors is known, forces in the vertical trusses in the 

right can be calculated as shown in Fig. 4 with the 

increment of internal force of the right vertical truss 
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Multiple methods are available for calculating forces in 

the shear connectors for steel-concrete composite beams 

including the proposed method by Qi et al. (2017). 

Generally, these forces depend on stiffness of the shear 

connector and the slip between the concrete flange and 
 

 

the profile steel. (Chiorean and Buru 2017, Bezerra et al. 

2018) For continuous steel-concrete composite beams, the 

concrete flange can resist tension or compression forces 

depending on bending moment resisted by the beam (Fang 

et al. 2016). Forces in the shear connectors also change 

accordingly. For a simple beam, the shear force in the 

connectors on the symmetrical plane must be zero, and the 

shear forces of the other connectors gradually increase with 

slip between the concrete flange and the profile steel. 

Therefore, a simple linear distribution of dF is assumed for 

the truss with the force adjacent to the support being 

minimal (Fig. 4). Therefore, the proposed truss corresponds 

to the cracked concrete flange from the location of 

symmetrical plane to the starting of cracks in the concrete 

flange. An explicit expression can also be derived 
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Where Fm is the maximum shear force of all connectors. 

With ΔFR known, the tension force of the right vertical 

truss in any location of the cracked flange can be 

approximately calculated as (Fig. 4) 
 

 

 

Fig. 4 Tension force in the right trusses due to an individual and a linearly distributed series of dF along the shear connectors 
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FRcr, the tension force of the right vertical truss at 

cracking can be regarded as the right portion of shear force 

which are transmitted by the shear connectors in the non-

cracking area. 
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In the equation, H can be regarded as half of the span of 

the beam. So the forces of the left vertical truss at any 

location of the cracked flange is 
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Eq. (7) was proposed assuming the longitudinal 

reinforcing bars were represented by the two chains of 

vertical trusses shown in Fig. 2. As a matter of fact, the 

equation can be used assuming any combination of 

longitudinal reinforcing bars represented by the left vertical 

trusses or the right vertical trusses. Therefore, n-1 ratios can 

be derived for n vertical reinforcing bars (Fig. 5). Assuming 

the stress in the ith longitudinal reinforcing bars to be si and 

area of the ith reinforcing bar to be Ai, these equations can 

be written for 
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with  1,1  nk  

 

 

Solving the set of equations, stress in each of the 

reinforcing bars can be calculated and expressed in terms of 

s1, the stress in the reinforcing bar adjacent to the shear 

connectors. Therefore, the differences of the stresses in the 

longitudinal reinforcing bars caused by the shear lag effect 

can be calculated. The effective width can therefore be 

calculated from Eq. (6) based on the method proposed by 

Aref et al. (2007) or the method adopted by Amadio et al. 

(2004). For Beam 1 tested by Amadio et al. (2004), Eq. 6 

predicts the η ratio (η is calculated as the portion of the 

effective width compared with the geometric flange width 

as defined by Eq. (6) in Amadio et al. (2004).) to be 0.64 

compared with the experimental determined minimal value 

of 0.57. Alternatively, the Rsle ratio can be used to 

characterize the shear lag effect in the concrete flange as 
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with εi and Ai being the strain and area of the ith 

longitudinal reinforcing bars in the flange respectively and 

εw being the strain in the part of the flange adjacent to the 

shear connector. The Rsle ratio can be useful if elements 

adopting the plane section assumption is used for analysing 

the steel-concrete composite beams such as the fibre beam 

column element or the nonlinear beam column model. The 

ratio can be used to reduce the longitudinal strain calculated 

for the reinforcing bars in the flange based on the plane 

section assumption. 

 

2.3 Comparison of the proposed method with 
experimental results 

 

Using the proposed model, shear lag effect of some 

tested specimens was calculated and compared with the 

experimental results. Limited to the experimental data 

reported strains in the longitudinal reinforcing bars, five 

specimens were found from two different sources. They are 

the Specimen SB9, SB10 and SB11 reported in Nie et al. 

(2007) and 4GHFCOM and 4GHFCON reported by 

 

Fig. 5 Truss analogy corresponding to different assumption of distributed reinforcing bars 
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Table 1 Comparisons of the experimental and calculated Rsle 

ratio 

SB9 

Load level 0.5yield 0.75yield 1.0yield 

Calculated 0.97 0.93 0.88 

Experimental 0.99 0.92 0.85 

SB10 

Load level 0.5yield 0.75yield 1.0yield 

Calculated 0.94 0.88 0.82 

Experimental 0.93 0.89 0.76 

SB11 

Load level 0.5yield 0.75yield 1.0yield 

Calculated 0.91 0.85 0.78 

Experimental 0.95 0.94 0.82 

4GHFCOM 

Load level 0.5yield 0.95yield  

Calculated* 0.83/0.72 0.76/0.65  

Experimental* 0.90/0.63 0.77/0.46  

4GHFCON 

Load level 0.5yield 0.95yield  

Calculated* 0.83/0.72 0.76/0.65  

Experimental* 1.12/0.81 1.12/1.00  
 

 

 

Carpenter et al. (2005). Shear lag effect were calculated 

from strains in the longitudinal bars in these specimens at 

different load levels based on Eq. (9). Taking the Specimen 

SB10 as an example, H of the specimen is equal to 1.9 m 

for SW10. Hcr corresponds to the location where the tensile 

stress in the top surface of concrete flange reaches the 

cracking strength. For the specimen, only the thinner 

concrete height is considered in the calculation. The 

distance of SB10 from the neutral axis to the concrete 

surface is 90 mm. and the cracking moment is calculated as 

14.7 kNm. According to the moment distribution diagram, 

the crack height Hcr corresponding to different load levels 

can be determined for the specimen. The observed cracking 

angle in the test is between 15 and 45 degrees, so 30 degree 

of cracked angle is used. The number of reinforcing bars at 

one side of the slab is 4. Therefore, 3 combinations of 

reinforcing bars were considered in using Eq. (7) which 

gives 3 ratios as shown in Eq. (8). The portion of the strains 

in the reinforcing bars can therefore be calculated based on 

Eq. (9). Results of the comparison are shown in Table 1. As 

the table shows, the proposed method captures the shear lag 

effect in the Specimen SB9, SB10 and SB11 well. The 

maximum error was within 10% of the experimental results. 

The reducing tendency of the Rsle ratio with increase of the 

load was also predicted. Two pieces of profile steel are used 

for the Specimen 4GHFCOM and 4GHFCON. The shear 

lag effect is calculated for the overhanging part of the slab 

and the middle part of the slab independently. Moreover, 

strains were not reported for all longitudinal reinforcing 

bars in 4GHFCOM and 4GHFCON. The missing strains 

were assumed using a linear interpolation from the reported 

strains in the adjacent bars. This could be partially 

responsible for the differences between the calculated and 

experimental Rsle ratios for 4GHFCOM in Table 1. For 

4GHFCON, a larger error was found for the proposed 

equation. This is probably related with the distribution of 

shear connectors in 4GHFCON. For the specimen, the shear 

connectors only exist in a limited part of the span of the 

beam, which violates assumption of the distributed shear 

connectors in deducing the equation. The shear lag effect is 

therefore less severe than anticipated. 

 

 

3. Finite element model for shear lag effect in 
steel-concrete composite beams 
 

3.1 Verification of finite element method 
 

The experimental data available regarding shear lag 

effect in composite steel-concrete beams are rather limited 

compared with the various design parameters affecting the 

shear lag effect. For further investigations of the effect, FE 

analyses were performed with consideration of the material 

nonlinearity, cracking and slipping between the flange and 

the profile steel. The FE models were built in TNO Diana 

9.6. (TNO Diana 2014) The concrete flange was modelled 

by 8 nodes isoparametric brick elements (HX24L) with 

embedded reinforcing bars. The profile steel, with its 

equivalents thickness, was modelled by 4 nodes curved 

shell elements (Q20SH). Slip effect between the profile 

steel and the concrete flange was modelled by the interface 

elements (N6IF) at locations of the connectors. (Kulkarni 

and Li 2008) Detailed nonlinear shear force-slip 

relationship was adopted as the experimental reports for the 

modelled specimens (Amadio et al. 2004, Nie et al. 2008). 

Illustration of the meshing and reinforcing details of the FE 

models is given in Fig. 6. 

A smeared crack approach is adopted for modelling the 

concrete. A crack is assumed to be initiated once the 

principal tensile stress in the concrete exceeds tensile 

strength of the concrete. After a crack is initiated, the 

fracture criterion is applied to determine whether the crack 

will propagate which is based on facture energy. Based on 

the model proposed by Hordijk which was implemented in 

the TNO Diana software (TNO Diana 2014), the fracture 

energy, Gf, is related to the zero-strength strain by (Fig. 7) 

 

tc

fcr
ultnn

fh

G
136.5.   (10) 

 

in which hc is the bandwidth of the cracks calculated as the 

cube root of the volume of an element. 

After the crack opens, direction of the crack is assumed 

to be fixed and the constitutive relation of the cracked 

concrete is evaluated coaxial to direction of the crack. 

Concrete in compression was simulated with the parabolic 

compression model. (TNO Diana 2014) Diana software 

(TNO Diana 2014) considers effects of the lateral 

confinement or cracking by the model proposed by Vecchio 

(1983). The reinforcing steel and profile steel were modeled 

as idealized elastic until their characterized yield strain. 

After yield, behavior of the steel was modeled by their 

stress-strain curve reported. Amadio et al. (2004) and Nie et 

al. (2008) reported detailed shear force-slip relationship of 

the shear connectors in their specimens obtained from the 

pull-out test. These relationships were adopted for the 

interface elements for the corresponding models. Detailed 
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Fig. 7 Uniaxial stress-strain curve adopted for the concrete 
 

 

 

 

parameters adopted for the FE models are reported in Table 

2. 

Fig. 8 shows comparisons of the experimental results 

with the FE results. The load-displacement curves of Beam 

1 and Beam 2 tested by Amadio et al. (2004) are compared 

with the FE results in Figs. 8(a) and (b). The load-

displacement curve of the beam tested by Nie et al. (2008) 

is given in Fig. 8(c) together with comparisons of the FE 

results in Fig. 8(d). Also compared are the FE and test 

derived sectional strain. For these specimens, the FE models 

predict their load-displacement curves accurately. The 

sectional strains of the FE models also approximate the 

experimental results at different load levels. 

 

 

 

Fig. 6 Illustration of the meshing and reinforcing details of the FE models 

Table 2 Material parameters adopted for the FE models 

 Ec (GPa) fc (MPa) Gc (N/m) ft (MPa) Gf (N/m) fy (MPa) 

Beam 1 tested by 

Amadio et al. (2004) 
34.3 36.1 51000 2.92 70 

500 (Rebar) 

253 (Profile steel) 

Beam 2 tested by 

Amadio et al. (2004) 
34.3 36.1 51000 2.92 70 

500 (Rebar) 

253 (Profile steel) 

Beam tested by 

Nie et al. (2007) 
27.5 30.3 43000 2.52 58 

380 (Rebar) 

295 (Profile steel) 
 

*Note: Ec = Young’s modulus for concrete, fc = compressive strength for concrete, 

Gc = fracture energy for concrete, ft = tensile strength for concrete, 

Gf = tensile fracture energy for concrete, fy = yield strength for reinforcing and profile steel 
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3.2 Parametric study 
 

Adopting the FE models, parametric studies were 

conducted regarding the parameters possibly related to the 

shear lag effect in steel-concrete composite beams. These 

models were modified from the model prototype (Beam 1 

shown in Table 2 and Fig. 6) in different parameters. These 

parameters include the width of the flange, thickness of the 

flange, the transverse reinforcing ratio, the longitudinal 

reinforcing ratio and the grade of the concrete as 

summarized in Table 3. Specifically, the compressive 

strength, tensile strength and the Young’s modulus of the 

concrete are all related to grade of the concrete. These 

parameters are modified simultaneously as shown in Table 

3. Similar loading protocol was used for these models as the 

experimental test. 

In addition to the one-span models geometrically similar 

with Beam 1, FE models are built for continuous steel-

concrete composite beams with two spans as shown in Fig. 

6. These models were built for investigating the shear lag 

 

 

 

 

effect in continuous beams with different loading 

conditions. They have similar reinforcing and material 

details with Beam 1, but span of these models were two 

times of the original beam span. They are supported with 

three pin supports with similar distance as shown in Fig. 6. 

Different load combinations were imposed to these models 

as summarized in Table 4. 

 

 

4. Shear lag effect in steel-concrete composite 
beams with different configurations 
 
4.1 Influences of the investigated design 

parameters 
 

Results of the FE models are processed to calculate the 

Rsle ratio based on the longitudinal strains in the reinforcing 

bars from Eq. (9). The results of the FE models are given at 

different load levels corresponding to 60%, 80%, 100% and 

105% of Py, the minimal vertical force at yielding of the 

 

 

 

Fig. 8 Comparison of the predicted effective flange width with the reported width by Amadio et al. (2004) 

Table 3 Parameters investigated by the FE models 

Property name Property value 

Width of the flange, B (mm) 640 960 1280 1600 1920 2240 2560 2880 3200 

Longitudinal reinforcing ratio, ρl (%) 0.41 0.67 1 1.39 1.85 2.37 

Transverse reinforcing ratio, ρv (%) 0.236 0.652 1.31 2.62 

Thickness of the flange, t (mm) 80 100 120 160 

Grade of the concrete, fc’(MPa)/ft(MPa)/Ec(GPa) 20/2.2/27.1 30/2.9/30.6 40/3.5/33.3 50/4.1/35.6 
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longitudinal reinforcing bars. Py was calculated based on 

the calculated strains in the reinforcing bars by the FE 

models. Compared with the FE model derived Rsle ratios 

and the calculated ratios by the proposed method based on 

the truss model (TM) in Figs. 9-13. In particular, Hcr, 

cracked span of the flange is related to vertical force applied 

to the beam. Therefore, the Rsle ratio calculated by TM is 

also related with the load level. 

Expectedly, the width of the flange is found to be the 

most influential parameter to the shear lag effect. The Rsle 

ratio reduces with the increase of the width of the beam. 

When the width is 640 mm, the Rsle ratio is around 0.9. This 

is slightly less than the expected value based on the 

effective width specified by Eurocode 4 (ENV 1994-1-1 

1994). Based on the design code, this flange width should 

be fully effective when span of the beam is 3800 mm. (ENV 

1994-1-1 1994) When width of the flange is 3200 mm 

which approaches span of the beam, the Rsle ratio ranges 

from 0.4 to 0.7 depending on the load level. At yielding of 

the beam, the Rsle ratio is around 0.6 comparing with an 

effective width of 950 mm based on Eurocode 4. (ENV 

 

 

 

 

1994-1-1 1994) It is clear that the current design code is 

quite conservative in considering the effect at yield load 

level. 

The ratio of the longitudinal reinforcing bars, the ratio 

of horizontal reinforcing bars, thickness of the flange, and 

the grade of the concrete were also found to affect the shear 

lag effect. Among these ratios, increasing the longitudinal 

reinforcing ratio was found to increase the influences of the 

shear lag effect and reduce the Rsle ratio while increasing the 

horizontal reinforcing ratio, thickness of the flange and 

grade of the concrete were found to increase the Rsle ratio 

and reduce influences of the shear lag effect. those results 

are proved that the shear lag effect depends on the 

longitudinal and shear stiffness of the flange. Increasing the 

longitudinal reinforcing bars, decreasing the horizontal 

reinforcing bars and decreasing the grade of the concrete 

will lead to larger shear strains in the flange and 

correspondingly lower Rsle ratios. Apart from thickness of 

the flange, these ratios were not considered in the effective 

width definition of the current design codes. (ENV 1994-1-

1 1994) However, they can be still influential. Increasing 

Table 4 Load combinations for the 2-span continuous beams 

Model number Description of the model Illustration 

B-2span-P1 
Similar concentrated load P 

at x =-L/4 and x = L/2 
 

B-2span-P2 
Concentrated load P 

at x = -L/2 and 2P at x = L/2 
 

B-2span-P3 Evenly distributed load 
 

 

 

Fig. 9 Influences of the width of the concrete flange 

3L/4 L/4 L/2 L/2
P P

L/2 L/2 L/2 L/2
P 2P
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the longitudinal reinforcing ratio from 0.3% to 2.3% 

reduces the Rsle ratio at 1.05Py from 0.83 to 0.71 while 

increasing thickness of the slab from 80 mm to 160 mm 

increases the Rsle ratio from 0.61 to 0.75. 

In addition to the investigated design parameters, the 

load level of the beam affects the shear lag effect. As the 

vertical force increases from 0.6Py to 1.05Py, the Rsle ratio 

generally reduces. This is in consisting with the experi- 

 

 

 

 

mental observations made by Amadio et al. (2004). As the 

width and scope of the cracks increases in the flange, shear 

stiffness of the flange decreases, and the shear lag effect 

becomes more distinct. In particular, the Rsle ratio was 

calculated based on strains of the longitudinal reinforcing 

bars instead of stress as shown in Eq. (9). After yielding of 

the reinforcing bars, it is expected that the tension force in 

the flange will be less sensitive to the strains and the flange 

 

Fig. 10 Influences of the longitudinal reinforcing ratio 

 

Fig. 11 Influences of the transverse reinforcing ratio 
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will become more effective. (Zhang and Li 2017, 2018) 

Comparing the FE results with the ratios calculated by 

the proposed method, it can be seen that tendency of the Rsle 

affected by the investigated parameters can be predicted by 

the proposed method. Accuracy of the method depends on 

the load level. The proposed method was found to be most 

accurate corresponding to the load level of 1.05Py. This is 

probably related with the omission of the tension strengths 

of the concrete in deducing the method. This assumption is 

only true with well-developed cracks. At this load level, the 

 

 

 

 

maximum differences between the predicted and FE derived 

Rsle were within 30% of the FE calculated ratio. Relatively 

large error was found for the proposed method for models 

with width of the flange larger than 2500 mm. This is 

probably related to cracks in the flange. The FE and 

experimental results indicate that the flange may not be 

thoroughly cracked at first yield vertical force when the 

beam has a large flange width. 

 

 

 

Fig. 12 Influences of the thickness of the flange 

 

Fig. 13 Influences of the strength of the concrete 
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4.2 Shear lag effect in continuous beams 
 

Hogging moments are mainly expected in continuous 

steel-concrete composite beams. In these beams, only the 

regions near the mid-span support are sustaining significant 

hogging moment while the other parts of the beam resist 

mainly sagging moment or very little hogging moment. 

Also, gravity load in different spans of the continuous beam 

may vary. Previous research investigations indicate that the 

shear lag effect may be very different along the span of the 

beam. (Chen et al. 2007) Additionally, the loading condition 

could influence the shear lag effect of the beam. (Zhang and 

Li 2018) Using the FE models, the shear lag effect in steel-

concrete continuous beams with different loading 

conditions is investigated. 

Fig. 14 summarizes the FE results of the longitudinal 

strain of the loaded 2-span model with evenly distributed 

 

 

load (B-2span-P3 shown in Table 4). Fig. 14(a) shows 

variation of the longitudinal strain along span of the beam. 

Due to symmetricity, results are given for only half of the 

beam span. Expectedly, large tension strains are observed at 

the middle support of the continuous beam. The 

longitudinal strain significantly reduces at locations away 

from the mid-section and compression strains are observed 

in most of the other parts of the beam. Figs. 14(b) to 14(e) 

shows variation of the longitudinal strain along width of the 

flange at different locations of the continuous beam. 

Comparing Figs. 14(b) and (c), it is clear that the shear lag 

effect in the hogging moment zone can be quite different. 

The mid-section is significantly affected by the shear lag 

effect, the longitudinal strain in the rebar furthest from the 

shear connector is 57% of that adjacent to the shear 

connector. For Section B with a 350 mm distance with the 

mid-section, on the other hand, the longitudinal strain in the 

 

Fig. 14 Variation of the longitudinal strain along span of the beam and width of the flange 
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rebars away from the shear connector is slightly larger than 

that adjacent to the connector which is similar with the 

negative shear lag effect observed in other concrete 

members. (Singh and Nagpal 1994, Zhang and Li 2018) 

Significant shear lag effect is also observed in the section 

sustaining sagging moment as shown in Figs. 14(d) and (e). 

Fig. 15 compares the Rsle ratio predicted by the truss 

model with the FE results at different section, load levels 

and loading distributions. The proposed method was also 

used to calculate the Rsle ratio for these sections. 

Specifically, distribution of the shear force in the connectors 

is not symmetric around the midspan for the model B-

2span-P2 which have unsymmetrical load. For this model, 

the shear force in the connector is approximately 0 at the 

section 370 mm left of the midspan based on the FE 

analysis. The proposed method was used and compared 

with the FE results at that section and the mid-span section 

respectively. The FE predicted Rsle ratios varies significantly 

at different sections and load levels. Generally, the FE 

predicted Rsle ratio reduces with increase of the load level. 

For different sections of the beam, variations of the Rsle 

ratio are very different for B-2Span-P3 with distributed 

loads compared with the two models with concentrated 

loads. For B-2Span-P1 and B-2Span-P2 with concentrated 

 

 

loads, variation of the Rsle ratio with span of the beam seems 

to be rather small. For B-2Span-P1, the Rsle ratio was 

around 0.8 for different sections. For B-2Span-P2, the Rsle 

ratio ranges from 0.9 to approximately 0.8 for the 

investigated sections. For the model with distributed load, 

on the other hand, the Rsle ratio increases significantly with 

span of the beam. At section with x = 550 mm, Rsle ratio 

larger than 1 was observed compared to the Rsle ratio of 0.75 

to 0.8 at section with x = 0 mm. This tendency was 

predicted by the proposed method. Comparing the FE 

predicted ratio with the ratio predicted by the proposed truss 

model, slightly larger error can be found for the sections 

with a distance from the assumed bottom section. In these 

sections, the FE predicted Rsle ratio was underestimated. For 

the section with x = 550 mm for Model B-2span-P3, the 

proposed method predicts the Rsle ratio to range from 1.05 

to 0.87 compared to the FE predicted ratio from 1.2 to 1.05. 

This is also probably related to the assumption of ignoring 

the tensile strength of the concrete in deducing the proposed 

method. For sections with a distance with the assumed 

bottom section, the cracks are not well developed and 

ignoring the tensile strength may underestimate shear 

stiffness of the concrete flange. 

 

 

Fig. 15 Comparisons between the FE predicted and calculated Rsle ratio for continuous beams 
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5. Conclusions 
 

The shear lag effect in concrete flange of the steel-

concrete composite beams sustaining hogging moment is 

investigated in this paper. A method for calculating the 

shear lag effect is proposed based on truss analogy. Results 

of the proposed method are compared with the experimental 

results and the FE results. Influences of the shear lag effect 

for steel-concrete composite beams are investigated with 

different design parameters, loading combinations and 

boundary conditions. Conclusions of the paper are 

summarized as following: 
 

 The shear lag effect in steel-concrete composite 

beams sustaining hogging moment becomes severer 

with increase of the width of the flange, the 

longitudinal reinforcing ratio and become less 

significant with increase of the thickness of the 

flange, transverse reinforcing ratio and strength of 

the concrete. Additionally, the shear lag effect was 

found to be more severe with increase of the load 

until yielding of the beam. 

 Based on the available experimental and FE results, 

the proposed method was found to predict the shear 

lag effect of composite beams affected by various 

parameters. The current data is limited to the 

composite beam slabs with common design 

configurations and a cubic concrete flange. Accuracy 

of the proposed method depends on load level of the 

beam and distribution of the shear connectors. The 

method was found to be most accurate around 

yielding of the beam. 

 For continuous steel-concrete composite beams, 

influences of the shear lag effect significantly vary at 

different sections of the beam and negative shear lag 

effect can be observed. The tendencies of these 

variation were captured by the proposed method.  
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