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1. Introduction 

 

Normally turbine blades are working under high 

temperature and high stress levels due to combustion and 

high rotational speed. Creep is the most damaging 

mechanism exhausting the life of these components. Creep 

can cause gradual longitudinal deformation and elongation 

of the blade which must definitely be considered in the 

design of these elements. Although three dimensional creep 

deformations occur for the blade, but longitudinal 

displacement due to creep is much more important than the 

lateral deformations. Analytical creep solution cannot be 

obtained due to complex geometry of the blades and time-

dependency of the problem. A simple cantilever rotating 

beam with trapezoidal longitudinal cross section and 

rectangular lateral cross section is considered in this paper 

to get an idea of general trend of longitudinal creep 

deformation under high temperature and centrifugal body 

force. A comprehensive literature survey on the time-

dependent creep analysis is presented to justify necessity 

and novelties of the present work. The literature survey is 

also including application of various shear deformation 

theories to various structures. 

Loghman and Wahab (1996) investigated creep stresses, 
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strains and damages of thick-walled tubes subjected to an 

internal pressure and a thermal gradient by using the ɵ 

projection concept. They described a numerical model 

developed for the computation of creep damages in a thick-

walled tube. Creep stress redistribution analysis of a thick-

walled FGM cylinder subjected to uniform magnetic and 

temperature fields and under an internal pressure was 

investigated by Loghman et al. (2010). They found from 

history of stresses that radial stress redistributions are not 

considerable for different material properties, but 

significant changes occur for circumferential and effective 

stresses. History of strains, stresses, deformations and 

electric potentials of hollow cylinders made from PZT_5 

have been investigated using Mendelson’s method of 

successive elastic solution by Ghorbanpour Arani et al. 

(2011). Based on research of Loghman and Wahab (1996) 

and results of (Kordkheili and Naghdabadi 2007), Loghman 

et al. investigated time-dependent creep stress redistribution 

analysis of rotating disk, spheres and cylinder made of 

functionally graded composite (Loghman et al. 2011, 

2017). Time-dependent electro magneto thermoelastic creep 

response of rotating disk made of functionally graded 

piezoelectric materials (FGPM) is studied by Loghman et 
al. (2013). It has been found that tensile radial stress 

distribution decreases during the life of the FGPM rotating 

disk which is associated with major electric potential 

redistributions which can be used as a sensor for condition 

monitoring of the FGPM rotating disk. Golmakaniyoon and 

Akhlaghi studied time-dependent thermoelastic creep 

behavior of functionally graded beams made of Al-SiC 

under in-plane thermal loading (Golmakaniyoon and 

Akhlaghi 2016). Steady state heat conduction from bottom 
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to top surface was included in the problem. 

Kapania and Raciti presented review about static, 

vibration and buckling analysis of beams and plates based 

on various shear deformation theories (Kapania and Raciti 

1989). They also presented another work about 

delamination buckling in beams and plates. Shi et al. 

employed higher order shear deformation theory for finite 

element analysis of composite beams and plates (Shi et al. 

1998). They found that the present composite beam element 

is more accurate than the higher-order beam elements. 

Kadoli et al. investigated static behavior of FG beams using 

higher order shear deformation theory (Kadoli et al. 2008). 

They showed distribution of transverse shear stress profile 

depends on the metal–ceramic combination. Nguyen et al. 

developed static and free vibration of axially loaded FG 

beams based on the first order shear deformation theory 

(Nguyen et al. 2013). They found that their model is 

efficient in analyzing static and free vibration problem of 

FG beams. Arefi et al. presented two-dimensional 

thermoelastic analysis of a functionally graded cylindrical 

pressure vessel subjected to axially variable thermal and 

mechanical loads using the first-order shear deformation 
theory (Arefi et al. 2016). The obtained results indicated 

that the boundary conditions of the cylinder have significant 

effect on thermoelastic response of the vessel. Arefi and 

Zenkour presented the governing equations of motion for a 

sandwich curved beam including an elastic core and two 

piezo-magnetic face-sheets using the first-order shear 

deformation theory (Arefi and Zenkour 2017a). They 

studied the influence of important parameters of the 

presented model on the electro-mechanical responses of the 

problem. In another article they derived the governing 

equations of bending analysis of a sandwich microbeam 

using higher-order sinusoidal shear deformation beam 
theory (Arefi and Zenkour 2017b). They showed that 

various types of parameters such as foundation, material 

and loads parameters have significant effect on the bending 

results. 

Rao and Vyas studied the influence of nonlinear 

damping and transient conditions on the stress distribution 

of blades under constant speed (Rao and Vyas 1996). The 

beam model was used for analysis of the problem. Sankar 

obtained an elasticity solution for a functionally graded 

beam subjected to transverse loads (Sankar 2001). The 

gradation of material properties was accounted for Young’s 

modulus along the thickness direction of beam. Base on this 

paper, Sankar and Tzeng investigated thermal stresses in FG 
beams (Sankar and Tzeng 2002). Chakrabortya et al. 

developed a new beam element for investigating the 

thermoelastic behavior of functionally graded beam 

structures (Chakraborty et al. 2003) based on first-order 

shear deformation theory. Li presented a new unified 

approach for analyzing the static and dynamic behaviors of 

functionally graded beams with the body force and shear 
deformation (Li 2008). A static result presented for a 

cantilever functionally graded beams and two wave speeds 

are obtained when using the Timoshenko beam theory. Arefi 

and Rahimi (2012) presented three-dimensional multi-field 

equations of a FGP thick shell with variable thickness, 

curvature and arbitrary nonhomogeneity based on 

curvilinear coordinate system. 

Kiani and Eslami studied buckling analysis of beams 

made of functionally graded material under various types of 

thermal and boundary conditions (Kiani and Eslami 2010). 

Niknam et al. studied non-linear bending analysis of tapered 

functionally graded (FG) beam subjected to thermal and 

mechanical loads with general boundary condition (Niknam 

et al. 2014). In this article, in the case of no axial force 

along the beam a close form solution was presented but for 

the general case with axial force, the Galerkin technique 

was employed. Oh and Yoo presented a new method for 

vibration analysis of rotating pre-twisted tapered blades 

made of functionally graded materials (Oh and Yoo 2016). 

They investigated effects of the volume fraction index, 

Young’s modulus ratio, hub radius ratio, pre-twist angle, 

taper ratios, width-to-thickness ratio and angular speed 

upon the dimensionless natural frequencies of the FG blade. 

Sahan (2015) presented an alternative analytical method for 

transient vibration analysis of doubly-curved laminated 

shells subjected to dynamic loads. Brnić et al. (2016) 

studied some mechanical, creep and fatigue properties of 

low alloy 42CrMo4 steel at different temperatures. Two 

dimensional time-dependent creep analysis of a thick-

walled FG cylinder based on first order shear deformation 

theory was studied by Loghman et al. (2018). 

The literature review on the creep analysis of various 

structures, functionally graded materials and various shear 

deformation theories was presented in Introduction section. 

One can conclude that although some important works 

about functionally graded materials were published, 

however no gradation of material properties along the 

longitudinal direction was mentioned. Due to this 

incompleteness and based on best author’s knowledge, the 

creep analysis of trapezoidal beam made of functionally 

graded materials based on first order shear deformation 

theory can be observed in detail. In this paper, it is assumed 

that all material properties except Poisson ratio are graded 

along the longitudinal direction. After calculation of 

stresses, strains and displacements of blade due to thermal 

and mechanical loads, the history of them are evaluated 

based on creep analysis. 

 

 

2. Creep behavior and material properties 
distribution 
 

In this section the geometry and material properties of 

used model is presented. In addition, before presentation of 

full governing equations of the problem, the constitutive 

relations for creep behavior are introduced. 

A variable thickness beam with a root thickness tr and 

tip thickness tt is considered. Variable mechanical and 

thermal loads are applied on the beam. Boundary condition 

at the root of beam is assumed fixed and tip of beam is 

assumed free. The beam is rotating with a constant angular 

velocity 𝜔 = 7800 𝑟𝑝𝑚. The longitudinal variable pressure 

is assumed linear as: 𝑃 𝑥 = −10−2 2 + 3 𝑥
𝐿   𝑀𝑃𝑎 due 

to aerodynamic forces act on the top surface of the beam. 

567-The other parameters of the problem are assumed as: 

𝑇𝑟 = 500o𝐾, 𝑇𝑡 = 600o𝐾. 𝑟0 = 300 𝑚𝑚. 
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Fig. 1 Geometry and loading conditions for the rotating 

FGM beam 

 

 

The geometry and loading conditions are shown in Fig. 

1. 

The distribution of reinforcement particles is assumed to 

be linear from root to tip of the beam as follows 

 

𝑉𝐹 𝑥 = 𝑉𝐹𝑟𝑜𝑜𝑡 +
𝑥

𝐿
× (𝑉𝐹𝑡𝑖𝑝 − 𝑉𝐹𝑟𝑜𝑜𝑡 ) (1) 

 

where VFroot and VFtip are volume fractions of 

reinforcement at root and tip of the beam, respectively. In 

this article, all mechanical and thermal properties except 

Poisson’s ratio are supposed to be longitudinal variable 

based on volume percent of reinforcement content by 
 

𝑃𝑅 𝑥 = 𝑃𝑅𝑚𝑎𝑡𝑟𝑖𝑥 +  𝑃𝑅𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 − 𝑃𝑅𝑚𝑎𝑡𝑟𝑖𝑥   

×
𝑉𝐹(𝑥)

100
 

(2) 

 

where PR(x) is an arbitrary longitudinally variable material 

property. PRmatrix is matrix property, PRreinforcement is pure 

reinforcement property, and VF(x) is volume fraction of 

reinforcement at x. 

According to Eq. (2), longitudinal-dependent properties 

such as elasticity modulus, shear modulus, density and 

coefficients of heat expansion are written as follows 
 

𝐸 𝑥 = 𝐸𝑚𝑎𝑡𝑟𝑖𝑥 + (𝐸𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 − 𝐸𝑚𝑎𝑡𝑟𝑖𝑥 ) ×
𝑉𝐹(𝑥)

100
 

𝐺 𝑥 = 𝐺𝑚𝑎𝑡𝑟𝑖𝑥 + (𝐺𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 − 𝐺𝑚𝑎𝑡𝑟𝑖𝑥 ) ×
𝑉𝐹(𝑥)

100
 

𝛼 𝑥 = 𝛼𝑚𝑎𝑡𝑟𝑖𝑥 + (𝛼𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 − 𝛼𝑚𝑎𝑡𝑟𝑖𝑥 ) ×
𝑉𝐹(𝑥)

100
 

𝜌 𝑥 = 𝜌𝑚𝑎𝑡𝑟𝑖𝑥 + (𝜌𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 − 𝜌𝑚𝑎𝑡𝑟𝑖𝑥 ) ×
𝑉𝐹(𝑥)

100
 

(3) 

 

The following data for matrix and reinforcement 

properties are used in this investigation (Gupta et al. 2004) 

 

𝐸𝐴𝑙 = 70𝐺𝑝𝑎                         𝐸𝑠𝑖𝑐 = 410𝐺𝑝𝑎 

𝐺𝐴𝑙 = 27𝐺𝑝𝑎                        𝐺𝑠𝑖𝑐 = 41.5𝐺𝑝𝑎 

𝛼𝐴𝑙 = 23.1 × 10−6𝐾−1       𝛼𝑠𝑖𝑐 = 4 × 10−6𝐾−1  

𝜌𝐴𝑙 = 2700𝑘𝑔𝑚−3              𝜌𝑠𝑖𝑐 = 3200𝑘𝑔𝑚−3 

(4) 

 

Fig. 2 shows three longitudinal distributions of 

reinforcement that are used in this study. These are (a) pure 

matrix; (b) matrix with 30% reinforcement at root of beam 

 

Fig. 2 Longitudinal cross section of beam different 

composition cases of a, b and c 
 

 

and pure matrix at tip of beam; (c) pure matrix at the root of 

beam and 30% reinforcement at the tip of beam. 

After completion of geometrical explanations of the 

problem and distribution of reinforcement along the 

longitudinal direction, it is necessary to describe the 

constitutive relations for creep behavior of materials. To 

model the creep behavior of reinforced polymer composite, 

Sherby’s constitutive model is used as follows 
 

휀𝑐 = [𝑀(𝜎𝑒 − 𝜎0)]𝑛  (5) 
 

where 휀𝑐  is effective creep strain rate and 𝜎𝑒 is the 

effective stress. The value of n is taken to be 8 and the creep 

parameters M and 𝜎0 are taken from (Gupta et al. 2004). 
 

ln M = 0.2077 ln D x − 35.38 

−0.622 ln V𝐹(x) + 4.98 ln T x  

𝜎0 = 0.01057 𝑇 𝑥 + −0.03507D x  

−2.11916 + 1.00536 𝑉𝐹 𝑥  

(6) 

 

In this article, particle size is assumed constant (D(x) = 

1.7 μm). D(x) is the particle size in μm, T(x) is the 

temperature distribution and VF(x) is volume fraction of 

SiC particle at point of x. 
 

 

3. Time dependent creep formulation 
 

3.1 Thermo-elastic analysis based on FSDT 
 

In this section, FSDT is implemented to describe the 

displacement field of the beam in terms of deformation of 

mid-surface and rotation about outward axis of the mid- 
surface (Mirsky 1959). By using this theory, the 

longitudinal and transverse deformation components are 

expressed by combination of displacement and rotation 

components as follows 
 

u x, z = u0(x) + zψ x  

w x, z = w0 x  
(7) 

 

where u x, z , w x, z  are the longitudinal and transverse 

components of displacement, respectively. u0 , w0  are 

longitudinal and transverse deformation of middle surface 

and ψ x  is rotation component. With regard to kinematic 

relation (7), the strain components is written as 
 

휀𝑥𝑥 =
𝜕𝑢

𝜕𝑥
=

𝜕𝑢0

𝜕𝑥
+ 𝑧

𝜕𝜓 𝑥 

𝜕𝑥
+ 𝛼𝑇(𝑥) 

𝛾𝑥𝑧 =
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
= 𝜓 𝑥 +

𝜕𝑤0

𝜕𝑥
 

(8) 
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Stress components in terms of strain components and 

temperature distribution are presented as follows 
 

𝜎𝑥𝑥 = 𝐸  
𝜕𝑢0

𝜕𝑥
+ 𝑧

𝜕𝜓 𝑥 

𝜕𝑥
+ 𝛼𝑇(𝑥)  

𝜏𝑥𝑧 = 𝐺  𝜓 𝑥 +
𝜕𝑤0

𝜕𝑥
  

(9) 

 

The principle of virtual work is used to derive governing 

equations as follows 
 

𝛿𝑈 =    𝜏𝑥𝑧𝛿𝛾𝑥𝑧 + 𝜎𝑥𝑥𝛿휀𝑥𝑥  𝑑𝑧𝑑𝐴
𝑧𝐴

 

=  (𝑁𝑥𝑧𝛿𝜓 + 𝑁𝑥𝑧

𝜕𝛿𝑤0

𝜕𝑥
+ 𝑁𝑥𝑥

𝜕𝛿𝑢0

𝜕𝑥
+ 𝑀𝑥𝑥

𝜕𝛿𝜓

𝜕𝑥
)𝑑𝑥

𝐴

 

(10) 

 

In which the resultant components are expressed as 

 

𝑁𝑥𝑥 =  𝜎𝑥𝑥𝑑𝑧 =

 
 
 
 
 

 𝐸 𝑥 𝑑𝑧

𝑔 𝑥 

2

−
𝑔 𝑥 

2  
 
 
 
 

𝑔 𝑥 

2

−
𝑔 𝑥 

2

𝜕𝑢0

𝜕𝑥
 

+

 
 
 
 
 

 𝑧𝐸 𝑥 𝑑𝑧

𝑔(𝑥)

2

−
𝑔(𝑥)

2  
 
 
 
 
𝜕𝜓

𝜕𝑥
+  𝐸 𝑥 𝛼 𝑥 𝑇(𝑥)𝑑𝑧

𝑔(𝑥)

2

−
𝑔(𝑥)

2

 

𝑁𝑥𝑧 =  𝜎𝑥𝑧𝑑𝑧 =

 
 
 
 
 

 𝐺 𝑥 𝑑𝑧

𝑔(𝑥)

2

−
𝑔(𝑥)

2  
 
 
 
 

𝑔(𝑥)

2

−
𝑔(𝑥)

2

 𝜓 𝑥 +
𝜕𝑤0

𝜕𝑥
  

𝑀𝑥𝑥 =  𝑧𝜎𝑥𝑥𝑑𝑧 =

 
 
 
 
 

 𝑧𝐸 𝑥 𝑑𝑧

𝑔 𝑥 

2

−
𝑔 𝑥 

2  
 
 
 
 

𝑔 𝑥 

2

−
𝑔 𝑥 

2

𝜕𝑢0

𝜕𝑥
 

+

 
 
 
 
 

 𝑧2𝐸 𝑥 𝑑𝑧

𝑔(𝑥)

2

−
𝑔(𝑥)

2  
 
 
 
 
𝜕𝜓

𝜕𝑥
+  𝐸 𝑥 𝛼 𝑥 𝑇(𝑥)𝑧𝑑𝑧

𝑔(𝑥)

2

−
𝑔(𝑥)

2

 

(11) 

 

where 𝑔 𝑥 = 𝑡𝑟 − (𝑡𝑟 − 𝑡𝑡)𝑥/𝐿. 

The external work due to body force and external force 

is derived as Eq. (13) 
 

𝑊 = − [𝐿1 𝑥 𝑢 + 𝐿2 𝑥 𝜓 + 𝐿3 𝑥 𝑤] 𝑑𝑥
𝑥

 (12) 

 

In which the vector of applied force is introduced as 
 

𝐿(𝑥) =  

𝐿1(𝑥)
𝐿2(𝑥)
𝐿3(𝑥)

 =  
𝜔2𝜌 𝑥  𝑥  𝑟0 + 𝑥 

0
−𝑃 𝑥 

  (13) 

 

and variation of external work can be written as 
 

𝛿𝑊 = − 𝐿1 𝑥 𝛿𝑢 + 𝐿2 𝑥 𝛿𝜓 + 𝐿3 𝑥 𝛿𝑤 𝑑𝑥
𝑧

 (14) 

 

After applying the integration by part and arranging the 

variables, the governing equations can be derived as 
 

𝛿𝑢0:  𝐵5 𝑥 𝑇 𝑥 +
𝜕𝑁𝑥𝑥

𝜕𝑥
= 𝐿1 𝑥  

𝛿𝜓: 𝑁𝑥𝑧 −
𝜕𝑀𝑥𝑥

𝜕𝑥
= 0 

𝛿𝑤: 𝐵6 𝑥 𝑇 𝑥 +
𝜕𝑁𝑥𝑧

𝜕𝑥
= 𝐿3(𝑥) 

(15) 

 

Substituting Eq. (11) into Eq. (15) the following 

differential equation is obtained 

 

𝐵1 𝑥 𝑢,𝑥𝑥 + 𝐵2 𝑥 𝜓,𝑥𝑥 + 𝐵5 𝑥 𝑇(𝑥) = 𝐿1(𝑥) 

−𝐵2 𝑥 𝑢,𝑥𝑥  𝑥 − 𝐵4 𝑥 𝜓,𝑥𝑥  𝑥  

+𝐵3 𝑥 𝜓(𝑥) + 𝐵3 𝑥 𝑤,𝑥(𝑥) = 0 

𝐵3 𝑥 𝜓,𝑥 𝑥 +𝐵3 𝑥 𝑤,𝑥𝑥  𝑥 + 𝐵6 𝑥 𝑇(𝑥) = 𝐿3(𝑥) 

(16) 

 

In Eqs. (15) and (16), 𝐵i (i = 1 . . . 6) are presented in 

Appendix A. 

To solve these second-order ordinary differential 

equations with variable coefficients, semi-analytical 

approach known as the division method is employed 

(Kordkheili and Naghdabadi 2007). Based on this method, 

the solution domain is divided into a finite number of sub-

domains (Fig. 3). 

With regard to second and tertiary relation of Eq. (15) 

can be written as 
 

−
𝜕𝑀𝑥𝑥

𝜕𝑥
+ 𝑁𝑥𝑧 = 0 →

𝜕2𝑀𝑥𝑥

𝜕𝑥2
=

𝜕𝑁𝑥𝑧

𝜕𝑥
→

𝜕2𝑀𝑥𝑥

𝜕𝑥2

= 𝐿3 𝑥
𝑘 − 𝐵6 𝑥

𝑘 𝑇(𝑥𝑘) 

(17) 

 

In which k = 1, 2, 3,…, m. 

Eqs. (15) and (16) are substituted into Eq. (17) for every 

section. 
 

𝜕𝑀𝑥𝑥

𝜕𝑥
= 𝐵2 𝑥

𝑘 𝑢,𝑥𝑥  𝑥
𝑘 + 𝐵4 𝑥

𝑘 𝜓,𝑥𝑥  𝑥
𝑘  

=
𝐵2 𝑥

𝑘 

𝐵1 𝑥
𝑘 

 
−𝐵2 𝑥

𝑘 𝜓,𝑥𝑥  𝑥
𝑘 

+𝐿1 𝑥
𝑘 − 𝐵5 𝑥 𝑇 𝑥 

  

+𝐵4 𝑥
𝑘 𝜓,𝑥𝑥  𝑥

𝑘  

=  𝐵4 𝑥
𝑘 −

(𝐵2 𝑥
𝑘 )2

𝐵1 𝑥
𝑘 

 𝜓,𝑥𝑥  𝑥
𝑘  

+
𝐵2 𝑥

𝑘 

𝐵1 𝑥
𝑘 

(𝐿1 𝑥
𝑘 − 𝐵5 𝑥 𝑇(𝑥)) 

(18) 

 

 

 

Fig. 3 Division of the beam into a finite number of 

subdomains 
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For using of second section of Eq. (17), we compute 

differential from Eq. (18) and then first relation of Eq. (16) 

is substituted into Eq. (17) as follows 
 

𝜕2𝑀𝑥𝑥

𝜕𝑥2
=  𝐵4 𝑥

𝑘 −
(𝐵2 𝑥

𝑘) 2

𝐵1 𝑥
𝑘 

 𝜓.𝑥𝑥𝑥  𝑥
𝑘  

+
𝐵2 𝑥

𝑘 

𝐵1 𝑥
𝑘 

(𝐿1.𝑥
 𝑥𝑘 − 𝐵5 𝑥 𝑇1.𝑥 𝑥  

= 𝐿3 𝑥
𝑘 − 𝐵6 𝑥 𝑇(𝑥) 

(19) 

 

ψ,xxx  xk , u,xx xk  and w,x xk  are calculated at all 

division points as follows 
 

𝜓.𝑥𝑥𝑥  𝑥
𝑘  

=

𝐵1 𝑥
𝑘  𝐿3 𝑥

𝑘 − 𝐵6 𝑥 𝑇 𝑥  

−𝐵2 𝑥
𝑘 (𝐿1,𝑥

 𝑥𝑘 − 𝐵5 𝑥 𝑇,𝑥(𝑥))

𝐵1 𝑥
𝑘 𝐵4 𝑥

𝑘 − (𝐵2 𝑥
𝑘) 2

𝑢.𝑥𝑥  𝑥
𝑘  

=
1

𝐵1 𝑥
𝑘 

 𝐿1 𝑥
𝑘 −𝐵2 𝑥

𝑘 𝜓.𝑥𝑥  𝑥
𝑘 −𝐵5 𝑥 𝑇 𝑥   

𝑤,𝑥 𝑥
𝑘  

=
1

𝐵3 𝑥
𝑘 

 
𝐵2 𝑥

𝑘 𝑢,𝑥𝑥  𝑥
𝑘 + 𝐵4 𝑥

𝑘 𝜓,𝑥𝑥  𝑥
𝑘 

−𝐵3 𝑥
𝑘 𝜓 𝑥𝑘                                    

  

(20) 

 

The continuity relations between two adjacent divisions 

are expressed as 
 

𝑢  𝑥𝑘 +
𝑡𝑘

2
 = 𝑢  𝑥𝑘+1 −

𝑡𝑘+1

2
  

𝜓 𝑥𝑘 +
𝑡𝑘

2
 = 𝜓 𝑥𝑘+1 −

𝑡𝑘+1

2
  

𝑤 𝑥𝑘 +
𝑡𝑘

2
 = 𝑤 𝑥𝑘+1 −

𝑡𝑘+1

2
  

𝑑𝑢

𝑑𝑥
 𝑥𝑘 +

𝑡𝑘

2
 =

𝑑𝑢

𝑑𝑥
 𝑥𝑘+1 −

𝑡𝑘+1

2
  

𝑑𝜓

𝑑𝑥
 𝑥𝑘 +

𝑡𝑘

2
 =

𝑑𝜓

𝑑𝑥
 𝑥𝑘+1 −

𝑡𝑘+1

2
  

𝑑𝑤

𝑑𝑥
 𝑥𝑘 +

𝑡𝑘

2
 =

𝑑𝑤

𝑑𝑥
 𝑥𝑘+1 −

𝑡𝑘+1

2
  

(21) 

 

The boundary conditions of the problem are presented 

for root and tip of the beam as follows 
 

B. c:  
𝑢 = 0
𝜓 = 0
𝑤 = 0

                                       𝑥 = 0 

B. c:

 
 
 

 
 𝑁𝑥𝑧 =  𝜏 𝑥, 𝑧 𝑑𝐴 = 0

𝑀𝑥𝑥 =  𝑧𝜎𝑥𝑥𝑑𝐴 = 0

𝑁𝑥𝑥 =  𝜎𝑥𝑥𝑑𝐴 = 0

        𝑥 = 𝐿 

(22) 

The updated integration constants are presented in 

Appendix B. 

By increasing the number of sub-domains, the accuracy 

of numerical results can be improved. 
 

3.1 Time-dependent creep analysis 
 

For time-dependent creep analysis, creep strains are 

included into the stress-strain relations. Total stresses are 

the sum of elastic, thermal, and creep stresses as follows 
 

𝜎𝑥𝑥 =
𝐸

 1 + 𝜈  1 − 2𝜈 
  1 − 𝜈 휀𝑥𝑥 + 𝜈 휀𝑥𝑥 + 휀𝑥𝑥    

−
𝐸

1 − 2𝜈
𝛼𝑇 

−
𝐸

 1 + 𝜈  1 − 2𝜈 
[(휀𝑥𝑥

𝑐 + 𝜈 휀𝑦𝑦
𝑐 + 휀𝑧𝑧

𝑐  ] 

𝜏𝑥𝑧 = 𝜏𝑥𝑧
𝑒𝑙𝑎𝑠𝑡𝑖𝑐 − 2𝐺휀𝑥𝑧

𝑐  

(23) 

 

where εxx
c , εyy

c  and εzz
c  are creep strains along x, y and z 

directions respectively and εxz
c  is creep strain in x-z plane. 

Creep strains are depending on time, temperature and stress. 

According to the Prandtl–Reuss relations, creep strain 

increments are related to the current stresses and the 

material uni-axial creep behavior (Mendelson 1968) as 

follows 

∆휀𝑥𝑥
𝑐 =

∆휀𝑒
𝑐

2𝜎𝑒
(2𝜎𝑥𝑥 ) 

∆휀𝑧𝑧
𝑐 =

∆휀𝑒
𝑐

2𝜎𝑒
(−𝜎𝑥𝑥 ) 

∆휀𝑦𝑦
𝑐 = −∆휀𝑥𝑥

𝑐 − ∆휀𝑧𝑧
𝑐  

∆휀𝑥𝑧
𝑐 =

3∆휀𝑒
𝑐

2𝜎𝑒
(𝜏𝑥𝑧 ) 

(24) 

 

where ∆εxx
c , ∆εyy

c  and ∆εzz
c  are increment of creep 

normal strain along x, y, z directions respectively and ∆εxz
c  

is increment of shear strain. Also, ∆εe
c  and σe  are 

equivalent creep strain increment and equivalent stress, 

respectively. Third relation of Eq. (24) is obtained from the 

incompressibility condition. Equivalent and effective strain 

and stress are defined as follows 
 

∆휀𝑒
𝑐 =

 2

3
 

7

2
(∆휀𝑥𝑥

𝑐 )2 + 6(∆휀𝑥𝑧
𝑐 )2 

𝜎𝑒 =  𝜎𝑥𝑥
2 + 3𝜏𝑥𝑧

2 

(25) 

 

By using the creep behavior model (Eq. (5)), the 

increment of creep strain is calculated in terms of time and 

effective stress as follows 
 

∆휀𝑐 = [𝑀(𝜎𝑒 − 𝜎0)]𝑛∆𝑡 (26) 
 

The history of stresses, strains and displacements can be 

calculated using Eqs. (23)-(26) based on method of 

successive elastic solution. The procedure of successive 

elastic solution is including seven steps that are presented 

as: 
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(1) An identical time interval is selected 3000s for 

timing steps of i’th step (∆ti = 3000s). The total 

time is the sum of time intervals as 
 

𝑡𝑖 =  ∆𝑡𝑗 + ∆𝑡𝑖

𝑖−1

𝑗=1

 (27) 

 

(2) To start the creep analysis, an initial increment of 

strains must be assumed. The initial estimates of 

∆εxx .ik
c = +0.0001  and ∆εxz

c = −0.000102  are 

selected for all sub-domains points (k) for i’th 

timing step. 

Creep strain at any point throughout the length of 

the beam is the cumulative sum of all previous 

creep strains. 
 

휀𝑥𝑥 ,𝑖𝑘
𝑐 =  ∆휀𝑥𝑥 ,𝑗𝑘

𝑐 + ∆휀𝑥𝑥 ,𝑖𝑘
𝑐

𝑖−1

𝑗=1

 

휀𝑧𝑧 ,𝑖𝑘
𝑐 =  ∆휀𝑧𝑧 ,𝑗𝑘

𝑐 + ∆휀𝑧𝑧 ,𝑖𝑘
𝑐

𝑖−1

𝑗=1

 

휀𝑥𝑧 ,𝑖𝑘
𝑐 =  ∆휀𝑥𝑧 ,𝑗𝑘

𝑐 + ∆휀𝑥𝑧 ,𝑖𝑘
𝑐

𝑖−1

𝑗=1

 

∆휀𝑦𝑦 ,𝑖𝑘
𝑐 = −(∆휀𝑥𝑥 ,𝑖𝑘

𝑐 + ∆휀𝑧𝑧 ,𝑖𝑘
𝑐 ) 

(28) 

 

where the subscripts i and j imply the timing step 

and division point, respectively. 

(3) With the initial estimates of creep strains increment 

and using Eq. (28), new axial and shear stresses can 

be calculated based on Eq. (23). Using the 

computed stresses, the initial estimates of strains 

and displacements and then current axial and shear 

stresses are computed. 

(4) For all division points, effective stresses are 

calculated as follows 
 

𝜎𝑒 ,𝑖𝑘 =  𝜎𝑥𝑥 ,𝑖𝑘
2 + 3𝜏𝑥𝑧 ,𝑖𝑘

2 (29) 

 

(5) Then, effective creep strain are calculated at all 

division points (k) for the i’th timing step using the 

Sherby’s creep constitutive model as follows 
 

∆휀𝑐 ,𝑖𝑘 = [𝑀𝑘(𝜎𝑒 ,𝑖𝑘 − 𝜎0,𝑘)]8∆𝑡𝑖  (30) 
 

where 
 

𝑙𝑛𝑀𝑘 = 0.2077 𝑙𝑛 𝐷𝑘 𝑥  

+4.98 𝑙𝑛 𝑇 𝑥𝑘 − 0.622 𝑙𝑛 𝑉𝐹(𝑥𝑘) − 35.38 

𝜎0,𝑘 = 0.01057 𝑇 𝑥𝑘 + 1.00536 𝑉𝐹 𝑥𝑘  

−2.11916 − 0.03507𝐷𝑘(𝑥) 

(31) 

 

In this article, value of particle size is assumed 

constant of Dk x = 1.7𝜇m. 

(6) From Prandtl–Reuss relations, new values of creep 

strain increments are obtained as follows 

∆휀𝑥𝑥 ,𝑖𝑘
𝑐 ,𝑛𝑒𝑤 =

∆휀𝑒 ,𝑖𝑘
𝑐

2𝜎𝑒 ,𝑖𝑘
(2𝜎𝑥𝑥 ,𝑖𝑘 ) 

∆휀𝑧𝑧 ,𝑖𝑘
𝑐 ,𝑛𝑒𝑤 =

∆휀𝑒 ,𝑖𝑘
𝑐

2𝜎𝑒,𝑘
(−𝜎𝑥𝑥 ,𝑖𝑘 ) 

∆휀𝑦𝑦 ,𝑖𝑘
𝑐 ,𝑛𝑒𝑤 = −∆휀𝑥𝑥 .𝑖𝑘

𝑐 ,𝑛𝑒𝑤 − ∆휀𝑧𝑧 ,𝑖𝑘
𝑐 ,𝑛𝑒𝑤

 

∆휀𝑥𝑧 ,𝑖𝑘
𝑐 ,𝑛𝑒𝑤 =

3∆휀𝑒 ,𝑖𝑘
𝑐

2𝜎𝑒 ,𝑖𝑘
(𝜏𝑥𝑧 ,𝑖𝑘 ) 

(32) 

 

(7) These new calculated values of creep strain 

increments are compared with the previous values 

for inspection of required convergence. If 

convergence is satisfied, time is advanced one 

increment and the procedure is repeated for the 

new time increment from step 1. If convergence is 

not obtained, these new calculated values of creep 

strain increments will be replaced as initial values 

and the procedure will be repeated from step 2. 
 

 

 

 

Fig. 4 Longitudinal distribution of dimensionless axial 

displacement of composite beam for various 

reinforcements 
 

 

 

 

Fig. 5 Longitudinal distribution of dimensionless 

transverse displacement of composite beam for 

various reinforcements 
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4. Numerical results and discussion 
 
In this section, the numerical results and corresponding 

conclusions are presented. This section is including the 

elastic results and history of them after various creep times. 

 

4.1 Elastic results 
 

Fig. 4 shows variation of dimensionless axial 

deformation of composite beam along the longitudinal 

direction for various distributions of reinforcement. The 

longitudinal distribution of transverse deformation of 

composite beam for various distributions of reinforcement 

is presented in Fig. 5. One can conclude that the higher 

deformations are achieved for pattern (c) and lower one for 

pattern (b). 

Shown in Figs. 6, 7 and 8 are longitudinal variations of 

dimensionless axial, shear and effective stresses in terms of 

various distributions of reinforcement. It is observed that 

maximum normal, shear and effective stresses are presented 

for patterns c, a and a respectively. In addition the minimum 

normal, shear and effective stresses are presented for 

pattern b. 

 

 

Fig. 6 Longitudinal distribution of dimensionless axial 

stress of composite beam for various reinforcements 
 

 

 

Fig. 7 Longitudinal distribution of dimensionless shear 

stress of composite beam for various reinforcements 
 

 

Fig. 8 Longitudinal distribution of dimensionless effective 

stress of composite beam for various reinforcements 
 

 

 

 

Fig. 9 History of dimensionless axial displacement of 

composite beam for various creep times and case b 
 

 

 

 

Fig. 10 History of dimensionless transverse displacement of 

composite beam for various creep times and case b 
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In continuation of the presentation of numerical results, 

the history of deformations, strains and stresses are 

provided. 

Figs. 9 and 10 show longitudinal distributions of axial 

and transverse deformations of middle surface for various 

creep times (0, 10000, 20000, 30000 and 40000 hours). The 

numerical results indicate that with increase of creep time, 

the deformations are increased. In addition, it is observed 

that the rates of change of deformations are decreased for 

higher times and it reaches to an asymptotic value. 

Figs. 11, 12 and 13 show longitudinal distributions of 

axial, shear and effective stresses for various creep times (0, 

10000, 20000, 30000 and 40000 hours). The numerical 

results indicate that with increase of creep time, all stress 

components are decreased. 

One can conclude that the rates of change of 

deformations are decreased for higher creep times and 

reaches to an asymptotic value. 

Figs. 14, 15 show variation of creep normal and shear 

strains along the longitudinal direction for various creep 

 

 

 

Fig. 11 History of dimensionless axial stress of composite 

beam for various creep times and case b 

 

 

 

Fig. 12 History of dimensionless shear stress of composite 

beam for various creep times and case b 
 

 

Fig. 13 History of dimensionless effective stress of 

composite beam for various creep times and case b 
 

 

 

 

Fig. 14 History of creep normal strain of composite beam 

for various creep times and case b 
 

 

 

 

Fig. 15 History of creep shear strain of composite beam 

for various creep times and case b 
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times. It is concluded that with increase of creep times, the 

strains are increased significantly. The convergence 

condition can be observed for high creep times. 
 

 

5. Conclusions 
 

Time dependent creep analysis of a functionally graded 

beam with trapezoidal longitudinal cross section was 

studied in this paper. First order shear deformation theory 

was used for derivation of governing equations of a 

functionally graded beam subjected to longitudinally 

variable thermal and mechanical loads. The creep properties 

of structure were described by the Sherby’s constitutive 

model. All mechanical and thermal properties except 

Poisson’s ratio were assumed to be variable longitudinally 

based on the volume fraction of constituent. Method of 

successive elastic solution was employed to obtain history 

of stresses and creep deformations. 

The numerical results were presented in terms of various 

important parameters along the longitudinal direction. 

Based on numerical results, it is concluded that minimum 

axial deflection distribution and maximum uniform 

distribution of axial, shear and effective thermoelastic 

stresses is illustrated in FGM beam of aluminum with a 

linear distribution of 0% SiC particles at root of the beam 

and 30% SiC particles at tip of the beam. In addition, the 

minimum axial deformation of functionally grade beam is 

reached for composite case b. 
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Appendix A 
 

𝐵1 𝑥 =  𝐸 𝑥 𝑑𝑧

𝑔(𝑥)

2

−
𝑔(𝑥)

2

 

𝐵2 𝑥 =  𝑧𝐸 𝑥 𝑑𝑧

𝑔(𝑥)

2

−
𝑔(𝑥)

2

 

𝐵3 𝑥 =  𝐺 𝑥 𝑑𝑧

𝑔(𝑥)

2

−
𝑔(𝑥)

2

 

𝐵4 𝑥 =  𝑧2𝐸 𝑥 𝑑𝑧

𝑔(𝑥)

2

−
𝑔(𝑥)

2

 

𝐵5 𝑥 =  𝐸 𝑥 𝛼(𝑥)𝑑𝑧

𝑔(𝑥)

2

−
𝑔(𝑥)

2

 

𝐵6 𝑥 =  𝐸 𝑥 𝛼(𝑥)𝑧𝑑𝑧

𝑔(𝑥)

2

−
𝑔(𝑥)

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Appendix B 
 

𝐵1 𝑥
𝑘 =  𝐸 𝑥𝑘 𝑑𝑧

𝑔(𝑥𝑘 )

2

−
𝑔(𝑥𝑘 )

2

 

𝐵2 𝑥
𝑘 =  𝑧𝐸 𝑥𝑘 𝑑𝑧

𝑔(𝑥𝑘 )

2

−
𝑔(𝑥𝑘 )

2

 

𝐵3 𝑥
𝑘 =  𝐺 𝑥𝑘 𝑑𝑧

𝑔(𝑥𝑘 )

2

−
𝑔(𝑥𝑘 )

2

 

𝐵4 𝑥
𝑘 =  𝑧2𝐸 𝑥𝑘 𝑑𝑧

𝑔(𝑥𝑘 )

2

−
𝑔(𝑥𝑘 )

2

 

𝐵5 𝑥
𝑘 =  𝐸 𝑥𝑘 𝛼(𝑥𝑘)𝑇(𝑥)𝑑𝑧

𝑔(𝑥𝑘 )

2

−
𝑔(𝑥𝑘 )

2

 

𝐵6 𝑥
𝑘 =  𝐸 𝑥𝑘 𝛼 𝑥𝑘 𝑇(𝑥)𝑧𝑑𝑧

𝑔(𝑥𝑘 )

2

−
𝑔(𝑥𝑘 )

2
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