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1. Introduction 

 

Recently, nanostructural elements such as graphene 

sheets (GSs) have attracted considerable attention from the 

researches community for their superior properties. GSs are 

new class of two-dimensional carbon nanostructures and 

duo to rapid developments in science and technology, 

especially in micro and nano-scale fields, are widely used in 

micro-electromechanical systems (MEMS) and nano-

electromechanical systems (NEMS) for their excellent 

properties (Craighead 2000). Thus, determining the 

mechanical behaviors of graphene sheets is important and 

many researchers have focused on them in recent years 

(Ansari et al. 2012, Farajpour et al. 2013a, b, Jalali et al. 

2016, Naderi and Saidi 2014). 

In the past years, studies on graphene have been 

conducted in different areas such as fabrication methods of 

graphene sheets (Whitener and Sheehan 2014). It is well 

known that graphene sheets are experimentally fabricated 

and duo to restrictions in manufacturing and production 

processes, they are not generally perfect and some defects 

in different forms may exist in the GSs (Banhart et al. 

2010). From experimental point of view (Hashimoto et al. 

2004) and atomistic simulations (Ariza and Ortiz 2010), the 

existence of unavoidable defects in graphene structure is 

verified during the fabrication process. Different investiga- 
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tions have been shown that defects can change the perfect 

two-dimensional hexagonal lattice of graphene sheets. 

Moreover, physical, electrical and mechanical properties of 

graphene are sensitive to lattice imperfections (Ansari et al. 

2012, Baimova et al. 2013, Fan et al. 2010, Jing et al. 2012, 

Kotakoski et al. 2014, Lehmann et al. 2013, Lherbier et al. 

2011, Neek-Amal and Peeters 2012, Wang et al. 2013, Xiao 

et al. 2009, 2010). 

The defects of graphene structure are classified as (i) 

incomplete bonding defects by removing carbon atoms 

(vacancies), (ii) heterogeneous defects by adding carbon 

atoms or other impurities (adatoms), and (iii) topological 

defects by rearrangement of existing carbon atoms 

(different ring sizes like Stone-Wales (SW) defects made by 

rotating of a carbon bond). The effects of various types of 

defects on elastic properties of graphene sheets were 

investigated by different researchers (Ansari et al. 2011, 

2012, Hao et al. 2008, Ito and Okamoto 2012, Neek-Amal 

and Peeters 2010b, Wang et al. 2013). Most of researchers 

reported the influence of SW defects on physical and 

mechanical properties of graphene using atomistic and 

continuum computational methods (Baimova et al. 2013, 

Fan et al. 2010, Lusk et al. 2010, Ma et al. 2009, Partovi-

Azar et al. 2013, Rodrigues et al. 2011, Sun et al. 2012, 

Wang et al. 2013, Xiao et al. 2009, 2010). 

The understanding of GSs stability response is 

important due to this fact that some potential applications of 

graphene sheets such as NEMS, flexible electronics and 

composite materials are related to its compressive or 

buckling responses. Many studies have been conducted on 

the buckling and postbuckling behaviors of the perfect 
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graphene sheets (Ansari and Sahmani 2013, Ansari et al. 

2013, Chandra et al. 2011, Farajpour et al. 2012, 2013a, b, 

Karličić et al. 2014, Mahdavi et al. 2012, Mohammadi et 

al. 2014, Naderi and Saidi 2014, Pradhan 2009, Rouhi and 

Ansari 2012). Despite the existence of numerous investiga-

tions on the physical and mechanical properties of defective 

graphene, to the authors‟ knowledge, the buckling behavior 

of defective graphene have been studied in few works 

(Montazeri et al. 2015, Neek-Amal and Peeters 2010a, 

2012). The effect of grain boundary on the buckling 

response of graphene nanoribbons (GNRs) was investigated 

by Neek-Amal et al. (Neek-Amal and Peeters 2012) via MD 

simulations. Ebrahimi (2015) studied the effect of SW 

defects orientations and SW concentration on the buckling 

of GNRs using MD simulations. 

Since the experimental studies of nanostructures are 

difficult, the simulations have become the prominent tool in 

order to model and study the nanostructures and their 

mechanical behaviors. Generally, the simulations can be 

classified into three main categories: (i) bottom-up 

simulations; (ii) the hybrid of bottom-up simulations; and 

(iii) top-down simulations. Atomistic lattice dynamics, 

molecular dynamics simulations (Brodka et al. 2007, Tang 

et al. 2008), and hybrid simulations (Bodily and Sun 2003, 

Li and Chou 2003a, b) belong to first two categories and are 

computationally expensive. Therefore, their application to 

the structures with small atoms and molecules are limited 

and are not suitable for analyzing large scale systems. The 

continuum simulations (Dastjerdi and Jabbarzadeh 2016, 

Radić and Jeremić 2016) which belong to the top-down 

simulations category, are less computationally expensive 

relative to the former two simulations categories. Thus, the 

continuum modeling simulations have been widely used for 

the study of nanostructures (Apuzzo et al. 2017, Bağdatlı 

2015, Dastjerdi et al. 2016). 

The original or classical continuum modeling cannot 

capture the small size effect in small-scale nanostructures 

and its application may lead to erroneous results, since the 

continuum assumption may not valid in the small scales 

(Adeli et al. 2017, Ansari et al. 2015, Daneshmehr et al. 

2015, Farajpour et al. 2018, Hadi et al. 2018a, b, c, 

Hosseini et al. 2018, Nejad and Hadi 2016a, b, Nejad et al. 

2017, Norouzzadeh and Ansari 2018a, Zargaripoor et al. 

2018a, b). A number of continuum-based theories such as 

nonlocal elasticity (Bağdatlı 2015, Eringen 1983, 2002), 

strain gradient elasticity (Fleck and Hutchinson 1997, 

Jamalpoor and Hosseini 2015) and couple stress (Jung et al. 

2014, Toupin 1962) have been proposed to account the size 

effect in the micro or nano-scale structures. Nonlocal 

elasticity theory introduced by Eringen (2002), have been 

widely applied to analyze many nanostructures problems 

and unlike classical continuum models, it assumes that the 

stress at a reference point is a function of strain field at all 

of points in the body. Both atomistic simulation results and 

experimental observations on phonon dispersion have 

shown the accuracy of this observation. According to this 

theory, a stress–strain relationship for a homogeneous 

elastic solid is 
 

   ,nl l

ij ij

v

x x dv x     
 

where 𝛼 is the nonlocal modulus or kernel function. It 

contains the small-scale effects incorporating into 

constitutive equations the nonlocal effects at the reference 

point 𝑥 produced by local strain at the source x′ and μ is a 

material constant that depends on internal and external 

characteristic length such as the lattice spacing and 

wavelength. Also, σnl is the nonlocal stress tensor at the 

reference point and σl is the classical stress tensor at local 

point. By appropriate choice of the kernel function, Eringen 

showed that the nonlocal constitutive equation given in 

integral form can be represented, for unbounded domains, 

in an equivalent differential form as 
 

 21 :nl C    
 

 

Differential model of nonlocal elasticity theory has been 

widely used to study nanostructures behavior. Some 

previous studies indicated that in some cases differential 

form of nonlocal theory results in inconsistent prediction of 

nanostructure behavior. So, some researchers suggested 

integral form of nonlocal theory for such cases (Ansari et 

al. 2018). Recently Integral form of nonlocal elasticity is 

employed to investigate bending of nano-scale Timoshenko 

beams (Norouzzadeh and Ansari 2017) and nanoplates 

(Ansari et al. 2018). Also Norouzzadeh et al. (2017) have 

studied pre-buckling responses of Timoshenko nanobeams 

using both differential and integral form of Eringen‟s 

nonlocal elasticity theory and compared the results. 

It has been shown that the nonlocal elasticity theory is 

quite accurate and reliable for the free vibration and 

buckling analysis of SLGSs and nanostructures by 

employing molecular dynamics modeling (Ahouel et al. 

2016, Ansari and Sahmani 2013, Ansari et al. 2010, Arda 

and Aydogdu 2018, Belkorissat et al. 2015, Bounouara et al. 

2016, Daneshmehr et al. 2015, Jandaghian and Rahmani 

2017, Li and Hu 2015, 2016, Li et al. 2016a, b; Nejad  and 

Hadi 2016a, b, Nejad et al. 2016, Rahmani et al. 2017, 

Uzun et al. 2018). In another work, Farajpour et al. (2013a 

reported that the results of nonlocal plate theory with 

consideration of surface effects are in good agreement with 

those of MD simulations for the buckling of circular single-

layered graphene sheets. Many buckling studies based on 

nonlocal elasticity are reported in the literatures (Ansari and 

Sahmani 2013, Ansari et al. 2013, Farajpour et al. 2012, 

2013b, Mohammadi et al. 2014, Pradhan 2009) for the 

study of perfect graphene nanoplates subjected to the 

mechanical loading. In the past few years, some 

investigations have been performed on the postbuckling 

behavior of graphene sheets based on the nonlocal elasticity 

(Farajpour et al. 2013a, Naderi and Saidi 2014). In all of the 

past investigations, the graphene sheet was considered as a 

perfect nanoplate. 

According to the literature, graphene sheets may be 

defected and as far as the authors aware, there is no 

published work for postbuckling behavior of defective 

graphene sheet. Therefore, this paper investigates the effect 

of out-of-plane defects on the postbuckling behavior of 

single-layered graphene sheets (SLGSs) based on nonlocal 

first order shear deformation theory (FSDT) and von-

Karman model. In this work, the nonlocal elasticity theory 
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is applied to study the small scale effects. The out-of-plane 

defect as an initial imperfection is considered by employing 

a generic imperfection function (Jalali et al. 2016) and 

nonlinear equilibrium equations are derived from the 

principle of virtual work. 

The isogeometric analysis (IGA) based on non-uniform 

rational B-splines (NURBS) basis functions introduced by 

Hughes et al. (2005) which fulfills a gap between (CAD) 

and finite element analysis (FEA) and Newton-Raphson 

iterative method are used to determine the postbuckling 

equilibrium path of imperfect graphene sheets. IGA is a 

very robust and efficient numerical approach and have been 

used for analyzing of plates (Ansari and Norouzzadeh 2016, 

Fantuzzi and Tornabene 2016, Farzam-Rad et al. 2017, Le-

Manh and Lee 2014, Nguyen-Xuan et al. 2013, 2014, 

Norouzzadeh and Ansari 2018b, Soleimani et al. 2016, Tran 

et al. 2013, Yin et al. 2016) recently. Standard finite 

element analysis uses Lagrange polynomials for approxima-

tion of both geometry and unknown solution field while 

IGA employs basis functions such as NURBS which are 

common in CAD approaches to describe the geometry for 

approximation of the physical response in an isoparametric 

sense. In other words, the IGA method uses the same basis 

functions for the approximation of both the geometry and 

unknown field variables, e.g., deflection in our case. The 

IGA method have many advantage features including, exact 

modeling of complex geometries with curved boundary, 

smoothness and higher order continuity, avoiding shear 

locking in very thin plates, simple meshing and mesh 

refinement (Ansari and Norouzzadeh 2016). Moreover, in 

contrast to regular finite element methods, the total degrees-

of-freedom are reduced in IGA method which results in 

reducing of computational efforts. In this study, the IGA 

method was employed for nonlocal postbuckling analysis of 

imperfect graphene sheet due to its good inherent 

characteristics. Finally, the influence of shape, amplitude, 

extension on the surface, and location of initial imperfection 

and nonlocal parameter on the postbuckling behavior of 

SLGSs are studied. The results would be useful for the 

engineering design of graphene-based nano-structures. 
 

 

2. Analysis 
 

2.1 Numerical simulation procedure 
 

Consider a rectangular single layered graphene sheet 

under compressive in-plane loading in the x and y directions 

(Fig. 1). The graphene sheet is modelled as orthotropic 

continuum plate with length a, width b, effective thickness 

h, and initial geometrical imperfection w*(x, y). The 

Cartesian coordinates system (x, y, z) is located at the corner 

of plate in the reference state. 

It is supposed that the defective nanoplate is in a stress-

free state and only transverse direction is considered for the 

initial geometric imperfection. In order to consider the 

effect of shear deformation through-the-thickness of plate 

and improving the accuracy of the results, according to the 

 

 

 

Fig. 1 Schematic diagram of imperfect GS subjected to 

in-plane loading. 

 

 

first order shear deformation theory, the displacements field 

can be written as follows 
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where u0, v0, w0, ϕx and ϕy are the mid-plane displacement 

components of plate in the x, y, and z directions and 

rotations around y and x axes, respectively. w*(x, y) is the 

initial displacement of the mid-plane in transverse direction. 

The strain-displacement relations in the von-Karman form 

are defined as 
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According to Eringen (1983), the nonlocal constitutive 

equation is written in the following differential form 
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where σnl and σl are the nonlocal stress tensor at the 

reference point and the classical stress tensor at the local 

point, respectively. Also μ = (e0a0)
2 is nonlocal parameter 

where e0 is a material constant and a0 is the internal 

characteristic length. C is the fourth-order elasticity tensor 

and „:‟ denotes the double dot product. Using Eq. (4), the 

stress-strain relations can be expressed for a nonlocal 

orthotropic graphene sheet as Eq. (5). In which components 

Qij (i, j = 1, 2, 4, 5, 6) are the elastic properties of the 

graphene sheet and can be defined as Eq. (6), where E, G 

and 𝑣 are Young‟s modulus, shear modulus and Poisson‟s 

ratio of plate, respectively. 

The stress resultants 𝑁𝑖𝑗
𝑛𝑙 , 𝑀𝑖𝑗

𝑛𝑙  and 𝑄𝑘
𝑛𝑙  are expressed 

by Eqs. (7)-(9). In Eq. (8) ks the transverse shear correction 

coefficient. By substituting Eq. (5) into Eqs. (7)-(9), the 

nonlocal constitutive relations are derived as Eqs. (10)-(12). 

The coefficients Aij and Dij in Eqs. (10)-(12) are expressed 

as Eqs. (13)-(15). 
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Principle of virtual work is independent of constitutive 

relations. So by using the principle of virtual work and 

considering the small scale effect, the nonlocal governing 

equations based on first order shear deformation plate 

theory can be obtained as Eqs. (16)-(20). 
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2.2 Variational form 
 

First, both sides of the above governing equations Eqs. 

(16)-(20) are multiplied by the first term of Eq. (4), (1 ‒ 

μΔ2). Then, the weak form of the governing equations is 

obtained by pre-multiplying the equations of motion with 

δu0, δv0, δw0, δϕx and δϕy respectively and integrating by 

parts over the element domain. Substituting force, moment 

and shear force resultants in the governing equations would 

result in variational form of equation which are presented in 

Appendix A. 

 

2.3 Isogeometric analysis 
 

In this section, the concept of NURBS-based IGA which 

firstly presented by Hughes et al. (2005) and Cottrell et al. 

(2009), will be briefly reviewed. More details of B-spline 

functions can be found in reference (Piegl and Tiller 2012). 

NURBS are generalization of B-spline functions with a 

prescribed degree of continuity which can be applied for 

constructing the shape functions. A NURBS curve is 

defined as 
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(21) 

 

where Bi, wi and n are the i-th control point, individual 

weight for Bi, and total number of control points, 

respectively. Ni,p(ξ) is the i-th one-dimensional B-spline 

basis function of order p with knot value ξ which is defined 

as a series of non-decreasing real numbers in the parametric 

space of the knot vector, Ξ 
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(22) 

 

where ξi is the i-th knot, i (i = 1, 2,..., n + p + 1) is the knot 

index, p is the order of the B-spline, and n is the number of 

basis functions. The interval [ξ1, ξn+p+1] and the half-open 

interval [ξi, ξi+1] are called patch and the i-th knot span, 

respectively. A knot vector is referred as uniform if its knots 

are equally spaced. It can be noted that if more than one 

knot may be placed at the same location in the parametric 

space, the basis functions are Cp‒m continuous at that 

location, where m is the multiplicity of the knot. In the 

isogeometric analysis, in order to satisfy the kronecker delta 

property at the boundary points, an open knot vector (a knot 

vector with p+1 repeated knots at the ends) is used. B-spline 

basis functions of order p are constructed using the Cox-de 

Boor recursion formula (Piegl and Tiller 2012) 
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and for p ≥ 1 
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(24) 

B-spline functions are non-negative, and their important 

property is that they constitute a partition of unity, 

 𝑅𝑖,𝑝(𝜉)
𝑛
𝑖=1 = 1, ξ, which makes B-spline be the basis for 

the approximate displacement field. The NURBS surface of 

order p in ξ direction and order q in η direction is defined as 

Eq. (25) in which Bij and wij are the control mesh net of n × 

m control points, and the corresponding weights, 

respectively. Ni,p(ξ) is B-spline basis function defined on the 

Ξ and Mj,q(η) is B-spline basis function defined on the H 

knot vector. 
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In Eqs. (21) and (25), 𝑅𝑖
𝑝
(𝜉) and 𝑅𝑖,𝑗

𝑝,𝑞
(𝜉, 𝜂) represent 

the univariate and bivariate NURBS basis functions for the 

curve and surface, respectively. By applying the quotient 

rule, the first derivative of 𝑅𝑖,𝑗
𝑝,𝑞
(𝜉, 𝜂) with respect to each 

parametric variable (for example ξ) can be obtained as 
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where 
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The higher order derivatives of the NURBS functions 

can be derived in a similar way. 

 

2.4 NURBS-based finite element formulation 
 

The interpolation of dependent displacement variables 

in the physical space can be performed by the rational basis 

function of NURBS surfaces 
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where nCP is the number of control points in the element, 
Rj is NURBS basis function, and (uj, vj, wj, ϕxj, uyj) are the 

displacements of control points in the homogenous space. 

The global set of discrete equations for this nonlinear 

problem can be derived in matrix form by substitution of 

the interpolating Eqs. (29)-(33) into the weak form of Eqs. 

(A1)-(A5) obtained for postbuckling analysis of graphene 

sheet 
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The following nonlinear equation can be formed for 

finding the solution 
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where KT, R and δq are tangent stiffness matrix, the residual 

load vector and the increment of the displacement, 

respectively. The nonlinear equations can be solved using 

Newton-Raphson iterative method. Although, more details 

of this scheme can be found in the literature (Reddy, 2014), 

a brief explanation is provided below. The incremental 

displacement vector at the i-th iteration is found by the 

following equation (Le-Manh and Lee 2014) 
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where R and KT at the (r-1)-th iteration are obtained as 

follows 
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where 𝐹 and 𝐹  are load vector and the equivalent load 

vector, respectively. The displacement and total displace-ent 

vector at the r-th iteration are obtained as 
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The iterations in the calculations are continued until the 

convergence within the error tolerance 10-3 is satisfied. The 

error norm used for checking the convergence is given by 
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where, N and 𝑞𝑖
𝑟  stand for the total degree of freedom and 

the i-th component of displacement vector qr, respectively. 

3. Results and discussion 
 

In this section, the postbuckling analysis of defective 

graphene sheet under symmetrically biaxial in-plane 

loading (Fig. 1) is presented in order to investigate the 

effect of out-of-plane defects on the postbuckling 

equilibrium paths. Here, the graphene sheet is modeled as 

an isotropic material and the results are presented based on 

the following properties (Soleimani et al. 2016) 
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The shear correction factor, ks is set to be 5/6 and the 

simply supported boundary conditions are considered for 

graphene nanoplates and are given as follow 
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In order to investigate the postbuckling analysis of 

defective graphene sheet in other boundary conditions, the 

postbuckling behavior are studied for SCSC and CCCC 

boundary conditions. Here the SCSC and CCCC boundary 

conditions are defined as follow 
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It should be noted that a graphene sheet with the size of 

5×5 nm is considered for SSSS boundary conditions while a 

10×10 nm nanoplate is chosen for SCSC and CCCC 

boundary conditions. 

The out-of-plane defect of SLGS which is presented as 

an initial geometrical imperfection, w*(x, y), is defined as a 

three-dimensional surface. In this study, a generic model 

which takes the form of products of hyperbolic and 

trigonometric functions is applied to simulate various 

possible imperfection modes. The assumed general function 

have controllable parameters and is presented for initial 

imperfection as follows (Jalali et al. 2016, Yang et al. 2006) 
 

*

1 1 1

2 2 2

( , ) sech ( ) cos ( )

sech ( ) cos ( )

x x
w x y h

a a

y y

b b

    

    

   
       

   

   
    

     

(44) 

 

where 𝜓1 =
𝑥𝑐

𝑎
, 𝜓2 =

𝑦𝑐

𝑏
, and Γ is non-dimensional 

maximum amplitude of the initially defected geometry or 

amplitude to thickness ratio. The half-wave numbers of the 

imperfection in the direction of x and y axes are introduced 

by μ1 and μ2, respectively. It should be noted that the 

trigonometric cosine functions create a transverse bulge 

with the dimensionless maximum amplitude Γ and the 

maximum location at (xc, yc) while the extension of bulge 

on the surface of SLGS would be controlled by changing δ 

522



 

Effect of out-of-plane defects on the postbuckling behavior of graphene sheets based on nonlocal elasticity theory 

parameter in hyperbolic functions. As shown in Fig. 2, 

when δ = 0, the transverse bulge is fully extended and 

increasing of δ localizes the bulge to the point (xc, yc). In 

order to obtain more comprehensive results, non-

dimensional postbuckling load and non-dimensional lateral 

deflection are defined as 
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where w0c is the additional mid-plane deflection in the 

center of nanoplate. 

In this study, two types of out-of-plane defects defined 

by Eq. (55) have been studied which are presented in Fig. 3. 

 

 

 

Fig. 2 Controlling of the extension of bulge on the surface 

of SLGS by changing δ parameter 
 

 

 

Fig. 3 Schematic diagram of two types of out-of-plane 

defects: (a) bulge defect with δ = 8, μ1 = μ2 = 1, 

ψ1 = ψ2 = 0.5 and Γ = 0.5; (b) five bulge defects 

with δ = 10, μ1 = μ2 = 1, Γ = 0.5 and (ψ1 = ψ2) = 

(0.25, 0.25), (0.5, 0.5), (0.75, 0.75), (0.25, 0.75), 

(0.75, 0.25) 

Convergence test of IGA method is shown in Figs. 4 and 

5 for local and nonlocal postbuckling analysis of simply 

supported isotropic imperfect graphene sheet under biaxial 

in-plane loading, respectively. For evaluating the 

postbuckling equilibrium paths, quadratic NURBS elements 

with different number of control points for each edge of 

graphene sheet (n) are used. The initial geometrical 

imperfection of graphene sheet is considered as a bulge 

defect with δ = 8, ψ1 = ψ2 = 0.5, μ1 = μ2 = 1, and Γ = 0.1. It 

can be seen from these figures that for more number of 

distributed control points over each edge of the graphene 

nanoplate, the postbuckling paths tend to each other. As can 

be found, for control points of 11 on each edge, a 

considerable convergence can be observed for both local 

and nonlocal results. 

In order to validate the accuracy of the proposed 

method, the effect of aspect ratio (b/a) on postbuckling 

behavior of simply supported armchair perfect graphene 

sheet with properties of E1 = 1949 GPa, E2 = 1962 GPa, G12 

= 846 GPa and v12 = 0.201 is studied and results are given 

in Table 1. For the purpose of comparison, the results of 

Naderi and Saidi (2014) for a graphene sheet subjected to 

symmetrical biaxial loading are also given in Table 1. In 

Naderi and Saidi‟s work, the edge length (a), nonlocal 

parameter (μ) and nanoplate thickness (h) are considered to 

be 10, 0.04 and 0.156 nm, respectively. For each aspect  
 

 

 

Fig. 4 Convergence test of IGA method for local analysis 
 

 

 

Fig. 5 Convergence test of IGA method for nonlocal 

analysis (μ = 0.2) 
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Table 1 Effect of the aspect ratio on the postbuckling 

behavior of simply supported armchair graphene 

sheet 

b/a 𝒘 𝒄 (𝒎′, 𝒏′) 

N (nN/nm) 

Present: 

IGA 

Ref. (Naderi and 

Saidi 2014) 

0.25 

0 

(1,1) 

1.092 1.020 

0.5 1.260 1.191 

1 1.801 1.704 

0.5 

0 

(1,1) 

0.321 0.316 

0.5 0.361 0.354 

1 0.475 0.469 

0.75 

0 

(1,1) 

0.199 0.178 

0.5 0.202 0.194 

1 0.255 0.245 

1 

0 

(1,1) 

0.135 0.128 

0.5 0.149 0.140 

1 0.181 0.173 
 

 

 

ratio, the postbuckling loads are found for three values of 

non-dimensional lateral deflection and first mode of 

buckling (𝒎′ , 𝒏′  are half wave numbers in the x and y 

directions, respectively). There is a good agreement 

between the results of present study and those obtained by 

Naderi and Saidi (2014). It is also observed that by 

increasing the aspect ratio of the nanoplate, the 

postbuckling loads decrease. 

Figs. 6 and 7 show compressive postbuckling 

equilibrium paths of both perfect and imperfect graphene 

sheets based on local and nonlocal analyses, respectively 

for SSSS boundary conditions. In perfect case, an initial 

imperfection (with small amplitude) is considered to create 

a deviation in the plate in order to obtain postbuckling path. 

The smaller the deviation, the more distinct value for the 

critical buckling load is observed. For imperfect case, a 

bulge defect with δ = 8, ψ1 = ψ2 = 0.5, μ1 = μ2 = 1 and Γ = 

0.25 is considered as initial geometrical imperfection. It can 

be seen from these figures that initially the postbuckling 

curves of the imperfect nanoplate are lower than their 

perfect counterparts before specific 𝑤 𝑐 , and then cross each 

other at some points, so that at large enough loads, defective 

graphene sheet behaves stiffer than perfect one. 

The effect of nonlocal parameter on the postbuckling 

behavior of simply supported imperfect graphene sheet with 

a bulge out-of-plane defect (δ = 8, ψ1 = ψ2 = 0.5, μ1 = μ2 = 

1, Γ = 0.1) is illustrated in Fig. 8. The postbuckling 

equilibrium path of defective graphene sheet is initially 

lower for higher nonlocal parameters, and as the 

postbuckling load increases it becomes higher. As a result, 

the influence of nonlocal parameter or size effect on the 

postbuckling response of imperfect graphene sheet seems to 

be important and cannot be ignored in the analysis. It is also 

found from this figure that in vicinity of critical buckling 

load, any increase in amount of external load leads to 

considerable deflections which demonstrate the softening 

 

Fig. 6 Comparison of the postbuckling equilibrium paths of 

perfect and imperfect GSs for local analysis 
 

 

 

Fig. 7 Comparison of the postbuckling equilibrium 

paths of perfect and imperfect GSs for nonlocal 

analysis (μ = 0.2) 
 

 

 

Fig. 8 Effect of nonlocal parameter on the postbuckling 

behavior of imperfect GS with a bulge out-of-plane 

defect 

 

 

effect of the graphene sheet. However, far from critical 

buckling load, no considerable deflection is observed and 

the graphene sheet shows stiffer behavior. In addition, as 

can be seen in this figure, there is a sudden jump in 

nonlocal postbuckling path. This sudden change shows the 

stiffness behavior of the structure by increasing load and 

happens more suddenly by increasing nonlocal parameter 
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Fig. 9 Effect of imperfection amplitude on the (a) local; 

and (b) nonlocal (μ = 0.2) postbuckling equilibrium 

path of SSSS defective GS 

 

 

 

Fig. 10 Influence of imperfection extension parameter on 

the (a) local; and (b) nonlocal (μ = 0.2) postbuckling 

equilibrium path of SSSS defective GS 

 

(µ) which reflects size effects. 

Figs. 9(a) and (b) display local and nonlocal 

postbuckling equilibrium paths of simply supported 

imperfect graphene sheet with different imperfection 

amplitudes in order to study the effect of imperfection 

amplitude on the postbuckling behavior of defective 

graphene nanoplate with a bulge out-of-plane defect (δ = 8, 

ψ1 = ψ2 = 0.5, μ1 = μ2 = 1). It can be found from these 

figures that increasing of the imperfection amplitude 

initially reduces the postbuckling path of nanoplate, and as 

the postbuckling load increases the postbuckling curve 

becomes higher for nanoplate and the GS stiffness 

increases. Also, Figs. 9(a) and (b) illustrate that the 

postbuckling equilibrium path of perfect nanoplate is closer 

to the postbuckling curve of imperfect nanoplate for smaller 

imperfection amplitude. 

The influence of the extension of out-of-plane defect on 

the postbuckling behavior of simply supported imperfect 

SLGSs is presented in Figs. 10(a) and (b) for local and 

nonlocal analyses, respectively. The postbuckling 

equilibrium paths of imperfect graphene nanoplate with a 

bulge out-of-plane defect (ψ1 = ψ2 = 0.5, μ1 = μ2 = 1, Γ = 

0.25) are depicted for several values of δ parameter. It can 

be observed from these figures that the postbuckling load-

carrying capacity is initially most weakened by decreasing 

of δ parameter, and as the external load increases the 

postbuckling load-carrying capacity increases for smaller δ 

parameter and the graphene sheet shows stiffer behavior. 

In order to investigate the postbuckling behavior of 

imperfect graphene sheet with a bulge defect in different 

boundary conditions, postbuckling equilibrium paths in 

various Γ and δ for SCSC and CCCC boundary conditions 

are presented in Figs. 11-14. As can be seen from Figs. 11 

and 12, similar to Fig. 9, the postbuckling paths of SCSC 

and CCCC nanoplates reduce initially by increasing of Γ, 

and as the postbuckling load increases the postbuckling 

curve becomes higher for nanoplate. Moreover, as shown in 

Figs. 13 and 14, the effect of δ on the postbuckling response 

Figs. 15 and 16, illustrate the effect of defect location on the 

postbuckling curves of SSSS defective graphene sheet for 

local and nonlocal analyses, respectively. An out-of-plane 

defect with δ = 8, μ1 = μ2 = 1, ψ2 = 0.5 and Γ = 0.25 is 

assumed to move from the point ψ1 = 0.1 to the center of 

plate (ψ1 = 0.5). The postbuckling equilibrium paths are 

plotted for different values of defect location. As can be 

seen, by increasing of the ψ1 from 0.1 to 0.3, the 

postbuckling curve of defective graphene sheet is slightly 

lower  for higher ψ1 and as expected, the central lateral 

deflections of nanoplate related to these defect locations are 

negative. Also, similar result is obtained for ψ1 equal to 0.4 

and 0.5, and the postbuckling curve of graphene sheet is 

slightly lower for larger ψ1. It should be noted that in the 

cases of 0.4 and 0.5 the central lateral deflections of 

nanoplate are positive. Overall, the postbuckling strengths 

of defective GS with ψ1 = 0.1  0.3 are close together and 

similarly for ψ1 = 0.4, 0.5. From this figure it can be 

concluded that the direction of central deflection of 

graphene sheet was changed by moving the geometric 

center of defect (ψ1) from edge to center of plate. 
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Fig. 11 Effect of imperfection amplitude on the (a) 

local; and (b) nonlocal (μ = 0.2) postbuckling 

equilibrium path of SCSC defective GS (δ = 8, 

ψ1 = ψ2 = 0.5, μ1 = μ2 = 1) 

 

 

 

Fig. 12 Effect of imperfection amplitude on the (a) 

local; and (b) nonlocal (μ = 0.2) postbuckling 

equilibrium path of CCCC defective GS (δ = 8, 

ψ1 = ψ2 = 0.5, μ1 = μ2 = 1) 

 

 

Fig. 13 Influence of imperfection extension parameter on 

the (a) local; and (b) nonlocal (μ = 0.2) postbuckling 

equilibrium path of SCSC defective GS (ψ1 = ψ2 = 

0.5, μ1 = μ2 = 1, Γ = 0.25) 

 

 

 

 

Fig. 14 Influence of imperfection extension parameter on 

the (a) local; and (b) nonlocal (μ = 0.2) postbuckling 

equilibrium path of CCCC defective GS (ψ1 = ψ2 = 

0.5, μ1 = μ2 = 1, Γ = 0.25) 
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Fig. 15 Effect of imperfection location on the local 

postbuckling behavior of SLGS with a bulge 

out-of-plane defect 

 

 

 

Fig. 16 Effect of imperfection location on the 

nonlocal postbuckling behavior of SLGS with 

a bulge out-of-plane defect (μ = 0.2) 

 

 

In the following, the results of imperfect GS with five 

bulge defects with (ψ1, ψ2) equals to (0.25, 0.25), (0.5, 0.5), 

(0.75, 0.75), (0.25, 0.75), and (0.75, 0.25) (Fig. 3(b)) 

dispersed on the surface of graphene sheet are discussed. In 

these five bulge defects, μ1 = μ2 = 1 and δ = 12. Figs. 17 and 

18 demonstrate the local and nonlocal postbuckling 

sensitivity of SSSS GS to five bulge defects with Γ = 0.6, 

respectively. As expected, the postbuckling load-carrying 

capacity is initially lower and as the external load increases 

it is higher than perfect one and the graphene sheet shows 

stiffer behavior. 

The influence of imperfection amplitude of imperfect 

GS with five bulge defects (μ1 = μ2 = 1, δ = 12) on the 

postbuckling behavior of SSSS GS is shown in Figs. 19 and 

20 for local and nonlocal analyses, respectively. As can be 

seen from these figures, for postbuckling curve of GS under 

the perfect path, the distance between perfect and imperfect 

curves increases for Γ = 0.1  0.4, but decreases for Γ > 0.4. 

Also, it should be noted that as the external load increases, 

the perfect and imperfect paths cross each other and for 

postbuckling curves upper the perfect path, the distance of 

perfect and imperfect curves increases by increasing Γ and 

the postbuckling strength of SLGS will be higher. 

 

Fig. 17 Sensitivity of local postbuckling equilibrium path of 

SLGS to initial imperfection (five bulge defects) 

 

 

 

Fig. 18 Sensitivity of nonlocal postbuckling equilibrium 

path of SLGS to initial imperfection (μ = 0.2) 

 

 

 

Fig. 19 Effect of imperfection amplitude on the local 

postbuckling behavior of SLGS with five bulge 

defects 

 

 

In order to study the small scale effect on the 

postbuckling equilibrium paths of SSSS imperfect SLGS 

with five bulge defects (μ1 = μ2 = 1, δ = 12, Γ = 0.2) 

postbuckling curves are plotted for different nonlocal 

parameters in Fig. 21. It can be found from this figure that 

the postbuckling curves of imperfect GS are initially lower 

for higher nonlocal parameters, and as the external load 
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Fig. 20 Effect of imperfection amplitude on the nonlocal 

postbuckling behavior of SLGS with five bulge 

defects (μ = 0.2) 

 

 

 

Fig. 21 Influence of nonlocal parameter on the 

postbuckling paths of imperfect SLGS with five 

bulge defects 

 

 

 

Fig. 22 Influence of imperfect SLGS with a bulge defects 

on the postbuckling paths with various boundary 

conditions 

 

 

increases they become higher. It should be noted that the 

effect of nonlocal parameter on the postbuckling behavior 

of imperfect SLGS with five bulge defects is important and 

cannot be ignored. 

Fig. 22 investigated influence of imperfect SLGS with a 

bulge defects on the postbuckling paths for SSSS and 

CCCC boundary conditions. The size of SLGS  is 

considered 5 nm × 5 nm for both boundary conditions. This 

figure demonstrated SSSS is a flexible boundary condition 

than CCCC. Moreover, the postbuckling curve of imperfect 

is lower than perfect SLGS. 

 

 

4. Conclusions 
 

The sensitivity of postbuckling response of SLGS under 

uniform edge compression to initial imperfections (out-of-

plane defects) has been investigated in this paper using 

nonlinear nonlocal FSDT-based isogeometric plate model. 

The effects of various controllable imperfection parameters 

such as amplitude, extension on the surface, and location of 

initial imperfection on the postbuckling behaviour of 

graphene sheet were studied and the following results are 

obtained: 

 

 The postbuckling curves of the imperfect GSs are 

initially lower than perfect counterparts while as the 

external load increases, the imperfect postbuckling 

curves are higher. 

 The imperfect postbuckling paths initially decrease 

by increasing of the imperfection amplitude for GS 

with a bulge defect, and then increase after certain 

points as the external load increases for both one and 

five bulge defects. Moreover, the postbuckling 

curves of perfect and imperfect graphene nanoplate 

with small imperfection amplitude are closer to each 

other. 

 The postbuckling load-carrying capacity of GS is 

initially low for small extension parameter of 

imperfection and then increases by increasing of the 

postbuckling load. 

 The postbuckling curves of perfect and imperfect 

GSs with high extension parameters of imperfection 

are closer to each other. 

 The direction of central deflection of GS is changed 

by moving the geometric center of imperfection 

from edge to center of nanosheet with a bulge defect. 

 The postbuckling load-carrying capacity of 

imperfect GS is initially lower for higher nonlocal 

parameters and then as the external load increases, 

the postbuckling strength increases. Therefore, it can 

be concluded that the effect of small scale is very 

important and cannot be ignored in the analysis. 

 Finally, the postbuckling strength of defective GSs is 

initially lower than perfect one and as the external 

load increases, it is higher. 
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Appendix A. Variational form of governing equations  

Variational form of governing equations can be obtained as Eqs. (A1)-(A5).  
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