
Steel and Composite Structures, Vol. 30, No. 6 (2019) 493-516 

DOI: https://doi.org/10.12989/scs.2019.30.6.493 

Copyright ©  2019 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=scs&subpage=6                                      ISSN: 1229-9367 (Print), 1598-6233 (Online) 

 

1. Introduction 
 

One of the interesting subjects, which was attracted the 

attention of researchers, is to investigate the nonlinear static 

and the dynamic behavior of plane problems, including 

beams and frames. In this area, developing an efficient 

element, which can accurately predict the nonlinear 

behavior of structures, is desired. This kind of formulation 

leads to the element, which can reach the exact solution by 

using fewer numbers of elements and reduces the 

computational costs. Hence, an efficient triangular plane 

element is formulated for the nonlinear analysis of plane 

structures. It is obvious that the behavior of plane elements 

is different from that of beam ones. Based on this fact, an 

applicable plane element which can analyze beam and 

frame structures is very useful for researchers. This kind of 

element can be validated by using well-known beam 

structures as benchmark and also for the problems having 

membrane behavior. According to the brief literature 

review, several researches have concentrated so far on 

developing new plane elements, which have been employed 

for the beam and frame structures analyses (Gupta 1979, 

Allman 1984, Bergan and Felippa 1985, Fajman 2002, 

Felippa 2003, Liew et al. 2006, Tian and Yagawa 2007, 

Rezaiee-Pajand and Yaghoobi 2014, Rezaiee-Pajand and 
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Rajabzadeh-Safaei 2016, Masoodi and Arabi 2018, Rezaiee-

Pajand et al. 2018a, d). 

Alongside of the element generation, developing new 

materials and studying their applications in structural 

engineering attract the attentions of researchers due to high 

strength and performance with low weight, which are 

basically suitable for civil and mechanical structures. One 

of these materials is Carbon Nanotube (CNT). Several 

researches were performed about investigating the 

mechanical properties of CNTs Salvetat et al. 1999, Allaoui 

et al. 2002, Erik and Chou 2002, Valentini et al. 2003, 

Ansari and Hemmatnezhad 2012, Lin and Xiang 2014a, 

Heydari et al. 2015, Mir et al. (2017). Some other peoples 

investigated the application of CNTs in structures. For 

instance, single and multi-walled CNTs were studied by Tu 

and Yang. They explored the influence of the layer number 

on the effective elastic modulus Tu and Ou-Yang (2002). In 

2005, Wan et al. used a continuum model to study the 

mechanisms of load transfer and effective elastic modulus 

of Single Walled Carbon Nanotube (herein SWCNT). The 

impacts of CNT length and CNT-matrix inter-phase in 

(CNTRC) were also considered in that research (Wan et al. 

2005). 

In another paper, bending and local buckling analyses of 

nano-composite beams reinforced by SWCNT were 

implemented using the Airy-stress functions by 

Vodenitcharova and Zhang (2006). Furthermore, 

Wattanasakulpong and Ungbhakorn decided to present the 

results of bending, buckling and vibration of CNTRC 

beams resting on elastic foundation (Wattanasakulpong and 

Ungbhakorn 2013). In another research, thermal loading 

was also incorporated in bending, buckling and vibration 
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analysis of FG-CNTRC beams (Mayandi and Jeyaraj 2015). 

In 2014, a literature review was provided by Liew et al. on 

the topic of FG-CNTRC structural analysis Liew et al. 

(2015). In a recently published article, a complete analysis 

was done by Kumar and Srinivas to study the static and 

dynamic characteristics, including bending, buckling and 

vibration parameters of FG-CNTRC beams Kumar and 

Srinivas (2017a). Moreover, an experimental and numerical 

static bending analysis of CNT reinforced composite plates 

has been performed by Mehar and Panda (2018). It is 

obvious that developing formulation to predict the 

mechanical behavior of FG-CNTRC beams and also other 

plane problems still attracts the researcher‘s attentions. On 

the other hand, other analytical aspects of this topic may be 

interesting for the investigators. 

One of the most important subjects, which have an 

essential impact on the dynamic behavior of structures, is 

free vibration analysis specified by obtained linear and 

nonlinear natural frequencies, based on the geometrically 

nonlinear analysis. Alijani and Amabili collected a literature 

review of nonlinear vibration analysis of shells. They 

discussed on different methods of obtaining nonlinear 

frequencies of shell structures Alijani and Amabili (2014). 

According to the authors‘ knowledge, some new and 

important works were performed on the linear vibration 

analysis of beams, especially FG-CNTRC ones. Although 

several papers were published in the end of 20th century 

about linear and nonlinear vibration analysis of structures 

(Mei 1972, 1973, 1986, Rehfield 1973, Gupta 1978, 

Bhashyam and Prathap 1980, Sarma and Varadan 1982, Iu 

et al. 1985, Dumir and Bhaskar 1988, Sarma et al. 1988, 

Leung and Fung 1989, Singh et al. 1990a, b, Weaver Jr. et 

al. 1990, Feng and Bert 1992, Lewandowski 1994, Qaisi 

1997, Zhong and Guo 2003, Rezaiee-Pajand and Masoodi 

2016, Rezaiee Pajand and Rajabzadeh Safaei 2016b, Sadri 

et al. 2016, Yazdani Sarvestani and Ghayoor 2016, Hirwani 

et al. 2017, Hirwani and Panda 2018, Rezaiee-Pajand et al. 

2018b), there are not sufficient researches available in 

which linear and nonlinear vibration of composite beam, 

especially CNT beam, have been studied in details. 

In an interesting paper, Chen et al. used incremental 

harmonic balance method for nonlinear vibration analysis 

of plane problems. They used beam element in which 

nonlinear behavior was taken into account by considering 

longitudinal stretching Chen et al. (2001). In 2004, 

trapezoidal Fourier p-element was employed to investigate 

the vibration of plane problems by Leung et al. They 

utilized trigonometric functions instead of polynomials to 

prevent ill-conditioning problem (Leung et al. 2004). To 

obtain free vibration responses of the well-known plane 

problem, Zhang and Rajendran employed a QUAD4 plane 

element, which had been developed in the static analysis 

before Rajendran and Zhang (2007). Based on the finite 

element formulation, another research was implemented by 

Yang et al. for achieving in-plane vibration. They utilized 

extended-Hamilton principle to derive the governing 

differential equation of the curved beams Yang et al. (2008). 

In 2010, the formulations of a multivariable hierarchical 

beam element were expressed by Yu et al. for using in static 

and vibration analyses. These investigators utilized the 

generalized variational principle with two kinds of the 

variables to develop their scheme Yu et al. (2010). In one of 

the newest researches, nonlinear damping effects were 

studied for obtaining the large-amplitude vibration 

responses by Amabili. Both numerical and experimental 

investigations were performed in this research (Amabili 

2017). Further, nonlinear vibration of beams composed of 

viscoelastic materials was performed by Wielentejczyk and 

Lewandowski. They also examined the stability of steady-

state solution Wielentejczyk and Lewandowski (2017). In 

2018, Zhou et al. could develop a nonlinear quadrature 

Timoshenko beam element with high accuracy and 

performance using mechanics-based variables. They 

employed their proposed element in order to analyze the 

composite wind turbine blades (Zhou et al. 2018). In 

another research, nonlinear free and forced vibration 

analysis of curved clamped–clamped beams resting on 

elastic foundation were numerically implemented using 

differential integral quadrature method with Newton‘s 

iterative solution Mohamed et al. (2018). 

Recently, Caliò and Greco studied the free vibration 

responses of the spatial arches. They obtained natural 

frequencies and mode shapes of Timoshenko beam in which 

both in-plane and out-of-plane motions were taken into 
account Caliò and Greco (2014). In 2017, a C0 enriched 

quadrilateral element was formulated by Shang et al. based 

on the generalized finite element method. The result was 

applied for vibration analysis of plane problems considering 

mesh distortion. In this study, the trigonometric and 

exponential functions were utilized to enrich the shape 

functions of the element Shang et al. (2017). Alongside of 

these researches about vibration analysis of beams and 

plane structures, it was observed that some researchers were 

attracted into investigating the effects of using composite 

materials, such as Functionally Graded Mateial (FGM) and 

Carbon Nanotube (CNT). Although most of these papers 

were published for the nano-composite beam and plate 

structures due to more applicability (Zhang et al. 2015, 

Mehar et al. 2016, Kumar and Srinivas 2017b, Zhang 

2017), few articles have been studied the static and dynamic 

behaviors of plane structures reinforced by CNT. In 2014, 

Lin and Xiang implemented the linear free vibration 

analysis of CNTRC beam. They considered single-walled 

CNTs for deriving the formulation of their beam element. 

Accordingly, these investigators incorporated two different 

types of reinforcement, including Uniform Distributed 

(UD) and Functionally Graded (FG) CNT reinforcements 

(Lin and Xiang 2014b). The nonlinear free vibration 

behavior of functionally graded carbon nanotube reinforced 

composite flat panel for temperature dependent materials 

was investigated by Mehar and Panda (2016b). Tahouneh 

studied the effects of CNTs waviness and aspect ratio on the 

vibration responses of FG-plate. He considered first and 

higher-order shear deformation theories of plate. In 

addition, this investigator implemented linear vibration and 

mode shape analyses on the sandwich curved panels having 

MWCNTs FG-reinforcement core in other paper Tahouneh 

(2017). This study dealt with the modified Halpin-Tsai 

equation to estimate the effective material properties of FG-

MWCNT. Some other researches were concentrated on the 
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bending, buckling and vibration analyses of FG-CNTRC 

composite plates (Chavan and Lal 2017, Kolahdouzan et al. 

2018, Tahouneh 2018). In another research, nonlinear 

vibration analysis of composite laminate beam was done by 
researchers Shen et al. (2017). They considered the effects 

of thermal environment on the vibration responses of FG 

graphene-reinforced composite beam. For FG-CNT 

sandwich structures, an extensive and comprehensive study 

in the field of linear/nonlinear static and dynamic analyses 

in thermal environment was presented by Mehar and Panda 

(Mehar and Panda 2016c, 2018b, c, Mahapatra et al. 2017, 

Mehar et al. 2017b, 2018a, b, c). They also studied on the 

thermomechanical behavior of FG-CNT shear deformable 
plates (Mehar and Panda 2016a, 2017). Recently, Kumar 

and Srinivas presented another research, in which complete 

analyses, including free vibration, bending and buckling of 

FG-CNTRC beams were performed. They also compared 

their results with that obtained for hybrid laminated 

composite beams (Kumar and Srinivas 2017a). Shafiei and 

Setoodeh performed nonlinear free vibration analysis of 

FG-CNTRC beams resting on the foundation with nonlinear 

behavior. They also investigated the post-buckling of this 

structure Shafiei and Setoodeh (2017). Ding et al. could 

approximately solve the nonlinear transverse vibration of 

the visco-elastic beam using harmonic balance method. 

They considered periodic excitation to obtain steady-state 

responses. Pseudo arc-length method was also employed in 

their solution procedure Ding et al. (2018). In one of the 

new researches, nonlinear forced vibration of FG-CNTRC 

curved micro-beam was performed by Allahkarami et al. 

(2018). They used strain gradient theory for deriving the 

governing equations. Furthermore, Differential Quadrature 

and Newmark methods were employed to solve the 

problem. 

Based on the stated literature review, there are still 

interesting topics in this area to be developed by 

researchers. Accordingly, the main aim of the authors in this 

paper is to perform the linear and nonlinear vibration 

analysis of plane structures made of isotropic and UD-CNTs 

materials by using the high-performance triangular plane 

element. It is obvious that geometrically nonlinear 

behaviour of structures is incorporated to obtain nonlinear 

vibration parameters, including nonlinear natural 

frequencies and mode shapes. For considering the large 

deflection of plane structure, Total Lagrangian relation is 

employed. It should be mentioned that the authors utilize 

MITC formulation in order to avoid membrane locking 

phenomena, especially in the nonlinear analysis. On the 

other hand, an improved procedure is employed to obtain 

nonlinear natural frequencies and mode shapes based on the 

obtained first mode shape of structure in the linear analysis 

as an initial displacement. Hence, the influences of the 

different ratios of amplitude parameter, CNT‘s mechanical 

properties, various support conditions and length to height 

of beam ratios on the obtained nonlinear responses are 

studied separately. Findings of several well-known 

benchmark problems and some suggested novel 

complicated plane problems indicate the high performance 

and accuracy of the proposed formulation. Therefore, it can 

be widely employed in the structures having membrane 

behaviour, such as, structural shear wall and portal frames. 

 

 

2. Governing formulations of plane element 
 

In this study, an efficient curved triangular plane 

element with six nodes, in which there are two transitional 

degrees of freedom, is considered. The thickness of element 

is constant and defined by parameter t. It is assumed that 

this element is made of CNT material. In other words, the 

geometry of element is similar to Linear Strain Triangular 

(LST) element. The main contribution of this research is to 

improve the behavior of this element by using mixed 

interpolation of strain fields, and make it suitable for 

complex material. To be more general, the curvilinear 

coordinate system (r,s) is utilized for this formulation. The 

thickness of element is assumed to be constant. 

Accordingly, the geometry field of the element is defined by 

 

 
6

1

( , )x x x
T

i i i i i

i

N r s where x y


 
 

(1) 

 

where Ni (r, s) is the shape function, which is obtained for 

iso-parametric six-node triangular element (LST). To obtain 

the displacement field of the element, the following relation 

is held 

 

 
6

1

( , )u u u
T
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(2) 

 

Here, the horizontal and vertical displacements are 

defined by ui and vi, respectively. The covariant strain 

tensor, including the linear and nonlinear parts, is written in 

the following form 

 

0 0 0ε e η
t t t

ij ij ij 
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. .
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t t t t t
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.
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η u u

t t t
ij i j

 

(3) 

 

where, eij and ηij are the linear and nonlinear Green-

Lagrange strain tensors. Moreover, the covariant base 

vector and first derivation of the displacements relative to 

the local convected coordinates vectors are defined by gi 

and u,i, as follows 

 

x
gi

ir





,

  
,

u
u i

ir





 

:

   
1 2andr r r s 

 

(4) 

 

To consider the geometric nonlinear behavior, Total 

Lagrangian principles are utilized. In the common way, the 

strain vector is presented in the below form 

 

 11 22 122ε
T

ij   
 

(5) 

Note that, ε11 = εrr, ε22 = εss and ε33 = εrs. To improve the 
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behavior of element and alleviate the membrane locking, a 

mixed interpolation is applied to the local strains using the 

tying points. The assumed covariant strain components are 

defined using the following relation 

 

( , )
1

( , ) ( , )

ij

k k
ij ij

m

ij ij ij r s
k

r s N r s 



 

(6) 

 

where mij is the number of tying points. The interpolation of 

strains starts using the linear interpolation functions as 

follows 

 

1 1 1rr a b r c s   
 

2 2 2ss a b r c s   
 
 3 3 3 1nn a b r c r s     

 

(7) 

 

In which, 𝜀 𝑛𝑛  is the normal strain of the oblique side of 

triangular stress element. To achieve the nine unknown 

constants of Eq. (7), one can find 𝜀 𝑟𝑠  in the terms of 

𝜀 𝑟𝑟 , 𝜀 𝑠𝑠  and 𝜀 𝑛𝑛  

 

0.5( )rs rr ss nn       (8) 

 

The linear interpolations between nine tying points are 

shown in Fig. 1. In addition, Table 1 presents the position of 

tying points in the local system. 

Applying the conditions of satisfying the strains at tying 

points, gives the values of unknown constants 
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Fig. 1 The schematic position of tying points for strain 

interpolation 
 

Table 1 The tying points positions 
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To transform the Green-Lagrange strain from the local 

curvilinear coordinate system to global Cartesian system, 

contravariant base vectors are employed, as follows 

 

ε̂=ε g g
ji

ij  
(10) 

 

in which g
i is contravariant base vector, which can be 

calculated by using the next metric vector and covariant 

components of metric tensor ij
g

 

 

g g
i ij

j g
 

(11) 

 

The tensorial form of the second Piola-Kirchhoff stress 

can be achieved by utilizing the following relation 

 

ˆS C ε
ij ijkl

kl
 (12) 

 

where C
ijkl is the fourth-order tensor of material, which is 

obtained in the convected coordinates. To establish the 

finite element stiffness matrix, the following linearized 

governing relations for two states of the linear and 

nonlinear analyses are available based on the principle of 

virtual work 
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0
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ij t ij
ij ij
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 


 

(13) 

 

in which R is the external virtual work. It is worth 

mentioning that using 3 Guass points for numerically 

integration of the first and second parts of the left side of 

Eq. (12), the linear and nonlinear parts of stiffness matrices 

are calculated. 

496



 

Nonlinear vibration analysis of carbon nanotube reinforced composite plane structures 

3. Linear and nonlinear vibration solution 
 

If the structural system behaves nonlinearly, the linear 

frequency domain analysis will not be desirable to reflect 

all nonlinear characteristics. To overcome this limitation, 

nonlinear frequency responses can be utilized to consider 

nonlinear dynamic effects. The nonlinear frequency 

response can reveal complex resonance, which cannot be 

seen in linear state Billings (2013). In this section, the 

authors present the procedure used for obtaining the linear 

and nonlinear vibration analysis of the plane structures. By 

substituting the kinetic energy relation into linearized 

governing Eq. (12), the following equality is obtained 
 

 𝐮 𝑖0
𝑡 𝜌0 𝛿

𝑉0
𝐮𝑖0
𝑡 𝑑 𝑉0 + 𝐒𝑖𝑗0 𝛿

𝑉0
𝛆 𝑖𝑗0 𝑑 𝑉0  

+ 𝐒𝑖𝑗0
𝑡 𝛿

𝑉0
𝛈 𝑖𝑗0 𝑑 𝑉0 = 𝐑𝑡+∆𝑡 − 𝐒𝑖𝑗0

𝑡 𝛿
𝑉0

𝐞 𝑖𝑗0 𝑑 𝑉0  

(14) 

 

To achieve the vibration responses, including natural 

frequencies and mode shapes, the subsequent eigenvalue 

problem should be solved 
 

2 0K M 
 

(15) 

 

in which K and M are the stiffness and mass matrices, 

respectively. In order to derive the mass matrix, the 

following relation is employed 
 

0

0 0
M

T
i i

V

N N d V 
 

(16) 

 

where Ni is the shape function of node i. In addition, ρ is 

mass density. It is proven that FEM is a reliable technique 

to use in the vibration analysis of complicated structures. It 

is obvious that for the linear vibration analysis, the linear 

part of the stiffness matrix is used, while to obtain the 

nonlinear natural frequencies, the nonlinear part of the 

stiffness matrix should be added to the linear one (K = KL + 

KNL). For performing nonlinear vibration analysis, the first 

normalized mode shape vector is applied to the structure as 

an initial deflection. Different ratios of the amplitude 

vibration parameter (a/r) are considered for the nonlinear 

vibration analysis. An iterative solution method, such as 

Newton-Raphson scheme, is employed for performing 

structural nonlinear analysis. In fact, Eq. (14) is solved 

numerically based on the following procedure: 
 

Step 1: Evaluating the global stiffness and mass 

matrices using the proposed FEM and assembly 

process. 

Step 2: Linear eigenvalue problem of Eq. (14) (|KL ‒ 

ω2
M| = 0) should be solved to obtain the linear 

natural frequencies and mode shapes. 

Step 3: Extract the first mode eigenvector. This should 

be normalized by using the amplitude vibration 

ratio. In order to obtain the modified nonlinear 

stiffness matrix, the first mode‘s eigenvector is 

used to modify the nodal positions. 

Step 4: The nonlinear eigenvalue problem of Eq. (14) 

(|KL + KNL ‒ ω2
M| = 0) is solved iteratively by 

using Newton-Raphson solution method. The 

following relations are considered as the 

convergence criterion 
 

1
 th th

i i
Tolerance 

 
or 

1 1

1
 th th

i i
V V Tolerance

 

(17) 

 

where, V is the vector of mode shape values, which is 

normalized in each iteration. It is obvious that a known 

tolerance for the numerical convergence should be 

specified. If the convergence criterion is not satisfied, the 

procedure is repeated from Step 2. Otherwise, the 

fundamental nonlinear frequencies are obtained and the 

ratio of nonlinear frequency to the linear one is also 

calculated. 
 

 

4. Carbon Nanotube Reinforced Composites 
(CNTRC) 
 

In this section, the authors express the corresponded 

formulations, which are employed for incorporating the 

effects of CNTs on the mechanical behavior of structures. 

To reach this purpose, the governing constitutive matrix of 

the plane element should be changed. It is important to state 

that these materials are used due to their high strength and 

low weight. The CNTRC layer includes an isotropic 

polymer matrix and multi-walled CNTs (hereafter 

MWCNT). It is assumed that the effect of the interface is 

ignored. It should be mentioned that due to complexity of 

MWCNT formulations, an effective elastic characteristic 

can be employed. Hence, an equality, which was proposed 

by Tu and Ou-Yang, is defined as follows (Tu and Ou-Yang 

2002, Rezaiee Pajand et al. 2018e, 2019) 
 

( 1)

sw
mw w cnt i
i

w in cnt

N t X
X

N h t


 
 

(18) 

 

In the last relation, 𝑋𝑖
𝑚𝑤  and 𝑋𝑖

𝑠𝑤  are the 

corresponded elastic characteristics of MWCNTs and 

SWCNTs, respectively. Moreover, the thickness of walls 

and inter wall spacing are defined by tcnt and hin. It should 

be added that Nw is used to indicate the number of walls 

used in CNTRC layer. Note that the elastic properties of 

MWCNTs and SWCNTs are the same if the value of Nw is 

equal to 1. For CNTRC solid structure problem, the 

dependent mechanical and physical properties are elastic 

modulus (E), Poisson‘s ratio (ν) and mass density (ρ). A 

simple solid structure problem, which is investigated in this 

case, is a beam. To the best knowledge of the authors and 

the complete literature review, there are little studies about 

this topic. However, the nonlinear bending and vibration 

analysis of beam structure can still attract the attention of 

researchers. Thus, the authors decide to investigate the 

nonlinear behavior of SW-CNTRC beam using the 

proposed triangular plane element and Green-Lagrange 

strain formulations. 
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There are many techniques to estimate the mechanical 

properties of CNT reinforced composites such as Mori-

Tanaka, rule of mixture, Halpin-Tsai, etc. Among those, rule 

of mixture is one of the first schemes that has been used 

extensively due to the simplicity and convenience. 

Moreover, this method is suitable for unidirectional 

composites. On the other hand, Mori-Tanaka scheme is 

applicable for either unidirectional or randomly oriented 

CNT reinforced composites. However, for unidirectional 

cases these two techniques are almost equal (Mehar et al. 

2017a). Therefore, to find the mechanical and physical 

properties, the next rule of mixture is utilized (Shen 2009) 
 

1m cntV V 
 (19) 

 

in which Vm and Vcnt indicate the volume fraction of 

polymer matrix and CNT fibers, respectively. Based on the 

Eq.  (18), the following equalities can be employed for the 

elastic properties of the CNTRC beam by considering the 

orthotropic behavior of SWCNT 
 

11 1 11

2

22 22

3

12 12

cnt m

cnt m

cnt m

cnt m

cnt m

cnt m

E V E V E

V V

E E E

V V

G G G







 

 

 

 

(20) 

 

in which G is the shear modulus. The constant coefficients 

of CNT efficiency are defined by βi for i = 1, 2, 3 that were 

calculated according to the nano-scale size effect. Table 2 

presents the values of this factor for different amounts of 

CNTs volume fraction. In addition, the Poisson‘s ratios have 

the succeeding relations 
 

12 12

cnt m

cnt mV V   

     

22

21 12

11

E

E
 

 

(21) 

 

The mass density is presented in the following form 
 

12

cnt m

cnt mV V   
 (22) 

 

In this study, the distribution of the CNTs (UD-CNT) is 

assumed to be uniform along the thickness direction of 

structure. Accordingly, the volume fraction of CNT in the 

terms of the CNTs mass fraction and density of the 

constituent is calculated by 
 

1

cnt

cnt cnt cnt

cntm m

w
V

w
 

 


    
     
      

(23) 

 

where, wcnt is mass fraction. The constitutive stress-strain 

matrix can be derived in the below form 
 

1111 1122

1122 2222

1212

0

0

0 0

C
ijkl

C C

C C

C

 
 

  
 
    

(24) 

 

Table 2 The efficiency coefficients of CNTs 

Coefficient (βi) 
Vcnt 

0.12 0.17 0.28 

β1 1.2833 1.3414 1.3238 

β2 1.0556 1.7107 1.7380 

β3 1.0556 1.7107 1.7380 
 

 

 

in which the components of Cijkl are defined as follows 

 

1111 222211 22

1122 121211 21
12

12 211

E E
C C

E
C C G



 

 
 

 


  
 

(25) 

 

 

5. Numerical examples 
 

This part deals with the application of the employed 

plane element in the linear and nonlinear free vibration 

analysis. During the linear vibration analysis, only the linear 

part of the stiffness matrix is considered. In addition, a 

simple Newton-Raphson iterative solution is utilized to 

reach the nonlinear vibration parameters by employing the 

geometric nonlinear stiffness matrix. Three-Gauss points 

are used in order to accomplish numerical integration. In 

addition, the rate of convergence is checked for the case of 

homogenous plane problems. Different boundary conditions 

are also considered for the selected examples. On the other 

hand, the authors implement the linear and nonlinear 

vibration analysis of the plane structures by solving an 

eigenvalue problem to obtain the vibration parameters, 

especially the natural frequencies and mode shapes. First, a 

convergence study is performed to obtain the optimum and 

required number of elements. Then, the authors implement 

the nonlinear analysis using the optimum mesh 

discretization. Various values of the vibration amplitude 

ratio are considered for the nonlinear vibration analysis. It is 

worth mentioning that the initial deformation, which should 

be applied to the structure, is calculated based on the first 

normalized mode shape. 
 

5.1 Straight beam with different boundary 
conditions 

 

The first problem which can be solved to validate the 

proposed formulation is the linear and nonlinear vibration 

analysis of a straight beam. This structure is modeled using 

different numbers of elements. Accordingly, the results can 

present a convergence study, and lead to an optimum state 

of the mesh discretization for the nonlinear vibration 

analysis. After performing this action, the obtained 

optimum number of elements is found to be equal to 64. To 

present the comprehensive solutions for the natural 

frequencies and mode shapes, different support conditions, 

including Hinged-Hinged (H-H) and Clamped-Clamped (C-

C) are applied. For the (H-H) and (C-C) conditions, the 

authors take benefit of the structural symmetry, and half of 

the beam is modeled. Fig. 2 demonstrates the mesh 
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discretization used for this structure. 

It is clear that the slenderness ratio of the beam is 

effective on the vibration responses. To investigate this 

subject, various ratios for slenderness parameter, 𝐿 𝑟 , are 

utilized. The character r refers to the radius of gyration, 

while L is the length of the beam. In this problem, the 

elastic modulus and Poisson‘s ratio are equal to 1 and zero, 

respectively. Moreover, the density parameter is assumed to 

be 1. A convergence study is performed to find the optimum 

number of elements for mesh discretization. The results are 

provided for two cases of support conditions, including H-H 

and C-C in Table 3 and Figs. 3(a) and (b), respectively. 

 

 

 

 

 

 

To investigate the effects of the slenderness ratio on the 

vibration responses, different values of 𝐿 𝑟 , including, 50, 

100 and 150 are considered. In the case of 𝐿 𝑟 = 100 and 

150, the beam is assumed to be very thin. Consequently, 

this validation can show the high performance of proposed 

element for alleviating the locking phenomena occurring 

especially in thin structures. To reach this conclusion, the 

following geometry properties for the beam are used 
 

1
1.0 1.0

12
b t r  

 
 

 

 

 

 

(a) Hinged-hinged 

 

(b) Clamped-clamped 

 

(c) 24 elements 

 

(d) 32 elements 

 

(e) 200 elements 

Fig. 2 The geometry and mesh discretization of straight beam 

Table 3 First four natural frequencies of the straight beam 

 H-H (L/r = 100) C-C (L/r = 100) 

𝜔𝐿
𝑖  i = 1 i = 2 i = 3 i = 4 i = 1 i = 2 i = 3 i = 4 

Present (64 elements) 0.0034 0.0136 0.0305 0.0539 0.0077 0.0212 0.0414 0.0679 

Rao (2007) 0.0034 0.0136 0.0307 0.0547 0.0077 0.0213 0.0419 0.0692 
 

  

(a) H-H supports (b) C-C supports 

Fig. 3 Convergence study of linear vibration analysis of the straight beam 

y
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y
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(a) First and second modes (b) Third and fourth modes 

Fig. 4 Backbone curves of the H-H thin beam 

  

(a) First and second modes (b) Third and fourth modes 

Fig. 5 The backbone curves of the C-C thin beam 

Table 4 Nonlinear vibrations of the straight beam 

BCs 
𝑎

𝑟
 

𝜔𝑁𝐿
𝑖

𝜔𝐿
𝑖

 

i = 1 

i = 2 i = 3 i = 4 
Present 

Bhashyam and Prathap (1980), 

Marur and Prathap (2005), 

Rao (2007) 

H-H 

(L/r = 100) 

0.0 1.0000 1.0000 3.9802 8.8833 15.6194 

0.2 1.0038 1.0037 3.9795 8.8826 15.6187 

0.4 1.0149 1.0149 3.9773 8.8805 15.6165 

0.6 1.0325 1.0331 3.9728 8.8769 15.6128 

0.8 1.0552 1.0580 3.9649 8.8715 15.6074 

1.0 1.0812 1.0892 3.9518 8.8639 15.6001 

C-C 

(L/r = 100) 

0.0 1.0000 1.0000 2.7336 5.3003 8.6426 

0.2 1.0013 1.0012 2.7346 5.3005 8.6421 

0.4 1.0051 1.0048 2.7372 5.3013 8.6406 

0.6 1.0114 1.0110 2.7416 5.3027 8.6382 

0.8 1.0201 1.0189 2.7477 5.3047 8.6347 

1.0 1.0311 1.0295 2.7555 5.3074 8.6301 

1.5 1.0672 1.0650 2.7821 5.3176 8.6133 

2.0 1.1127 1.1127 2.8177 5.3347 8.5876 

2.5 1.1624 ---- 2.8601 5.3626 8.5506 
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In the line of responses‘ validation, different pervious 

solutions can be employed (Rao and Raju 2003, Marur and 

Prathap 2005). The linear and nonlinear responses for C-C 

and H-H support conditions are compared with the available 

results. To obtain the ratio of the nonlinear natural 

frequencies to the first linear one, several ratios of large 

amplitude, including 0.2, 0.4, 0.6, 0.8, 1.0, 1.5 and 2.0 are 

considered. After that, the results are provided for the 

different ratios of 
𝜔𝑁𝐿
𝑖

𝜔𝐿
1 , in which superscript i defines 

the number of modes. For the slenderness ratio of 100, the 

corresponded backbone curves are provided in Fig. 4 for H-

H supports. It is observed that for the first mode, the ratio of 

the first nonlinear natural frequency to first linear one 

increases by enhancing the ratio of amplitude vibration 

while this ratio for other modes decreases. Fig. 5 shows the 

related curves for C-C support condition. For this case, all 

ratios of the nonlinear natural frequencies to linear one 

increase except the fourth mode. Table 4 reports the ratios 

of the nonlinear natural frequencies to the linear one for 

some values of the amplitude vibration parameter. 

In this investigation, the effect of the slenderness ratio 

on the backbone curves for the straight beam is studied. The 

related backbone curves of the first two modes are provided 

 

 

 

 

for different ratios of slenderness, including, 50, 100 and 

150. Plots in Figs. 6-7 illustrate these curves for H-H and C-

C support conditions, respectively. 

It is observed that the effect of the slenderness ratio on 

the nonlinear vibration responses of H-H beam is more than 

C-C beam. For the slenderness ratios in the range of 50 to 

150, this effect can be ignored in the C-C beam and for the 

first mode. On the other hand, the effects of support 

conditions on the nonlinear vibration responses are 

investigated. Consequently, the backbone curves are also 

provided for the first four modes of the thin beam with the 

slenderness ratio of 100 for two cases of support conditions 

in Fig. 8. The shapes of the first four modes are depicted for 

two states of H-H and C-C straight beam in Figs. 9-10, 

respectively. To show the mode shapes of the beam 

smoothly and clearly, 200 triangular elements are 

employed. 

 

5.2 In-plane vibration of cantilever square plate 
 

A cantilever square plane problem, shown in Fig. 11(a), 

is analyzed. The structural dimensions and mesh refinement 

are depicted in Figs. 11(b)-(d). The value of thickness is 

equal to 1.0. For this plane stress state, the material 

parameters E = 1.0, v = 0.3 and ρ = 1.0 are considered. 
 

 

 

 

  

(a) Mode 1 (b) Mode 2 

Fig. 6 The effect of slenderness ratio on the backbone curves for H-H beam 

  

(a) Mode 1 (b) Mode 2 

Fig. 7 The effect of slenderness ratio on the backbone curves for C-C beam 
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The in-plane vibration of this problem was also 

investigated by Gupta using 2020 mesh, involving higher-

order dynamic correction terms related to stiffness and mass 

 

 

 

 

 

 

matrices (Gupta 1978). Other researchers have solved this 

problem to obtain the linear solution for the natural 
frequencies (Leung et al. 2004, Shang et al. 2017). At this 

  

(a) Mode 1 (b) Mode 2 

 

  

(c) Mode 3 (d) Mode 4 

Fig. 8 The effect of support conditions on the nonlinear vibration responses 

  

(a) Mode 1 (b) Mode 2 
 

  

(c) Mode 3 (d) Mode 4 

Fig. 9 Different mode shapes of H-H straight beam 

  

(a) Mode 1 (b) Mode 2 
 

  

(c) Mode 3 (d) Mode 4 

Fig. 10 Different mode shapes of C-C straight beam 
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stage, a convergence study for obtaining an optimum mesh 

discretization is performed, whose curves for the different 

number of the proposed triangular elements is shown in Fig. 

12. Afterwards, the results are employed for the nonlinear 

vibration analysis. In addition, the linear responses of 

natural frequencies are reported in Table 5. Moreover, the 

obtained mode shapes of the cantilever square plate 

discritized by 36 elements are depicted in Fig. 13. 

 

 

 

Fig. 12 Convergence study of six linear natural frequencies 

for the cantilever square plate 

 

 

 

 

 

 

On the other hand, the nonlinear responses of natural 

frequencies are provided based on different values of the 

amplitude vibration ratio. These results are presented in 

Table 6. Moreover, the corresponded backbone curves are 

provided in Fig. 14. 
 

5.3 In-plane vibration of a trapezoid dam 
 

In this section, a trapezoid dam is considered, whose 

structural geometry and mesh is depicted in Fig. 15. This 
 

 

Table 6 Nonlinear vibrations of the cantilever square plate 

𝑎

𝑟
 

𝜔𝑁𝐿
𝑖

𝜔𝐿
𝑖

 

i = 1 i = 2 i = 3 i = 4 

0 1.00000 2.39362 2.69307 4.28011 

0.1 0.99702 2.39259 2.68887 4.27438 

0.2 0.98806 2.38952 2.67628 4.25716 

0.3 0.97282 2.38434 2.65495 4.22766 

0.4 0.95046 2.37686 2.62389 4.18398 

0.5 0.91933 2.36664 2.58104 4.12209 

0.6 0.87568 2.35236 2.52123 4.03164 
 

 

 

 

    

(a) Square plate (b) 4 elements (c) 16 elements (d) 36 elements 

Fig. 11 The geometry and mesh discretizations of cantilever square plate 

Table 5 Linear natural frequencies of the cantilever square plate 

𝜔𝐿
𝑖  i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 

Present 0.0660 0.1581 0.1778 0.2827 0.3059 0.3228 

Shang et al. (2017) 0.0658 0.1580 0.1772 0.2816 0.3037 0.3223 

Leung and Fung (1989) 0.0660 0.1580 0.1775 0.2819 0.3044 0.3225 
 

    

(a) Mode 1 (b) Mode 2 (c) Mode 3 (d) Mode 4 

Fig. 13 The first four mode shapes of cantilever square plate 

    10   .  

 10
  

E=1.0 , ν=0.3

ρ=1.0 

t=1.0
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problem was also solved in other studies such as Leung et 

al. (Leung et al. 2004, Shang et al. 2017). The mechanical 
 

 

 

 

(a) Schematic (b) Mesh discretization 

Fig. 15 Trapezoid dam 
 

 

Table 7 Nonlinear and linear vibrations of the trapezoid 

dam 

𝑎

𝑟
 

𝜔𝑁𝐿
𝑖

𝜔𝐿
𝑖

 

i = 1 i = 2 i = 3 i = 4 

0 1.00000 2.30520 2.62819 4.73129 

0.1 0.99838 2.30112 2.63036 4.73185 

0.2 0.99504 2.29612 2.62974 4.72948 

0.3 0.98982 2.29003 2.62620 4.72401 

0.4 0.98251 2.28263 2.61955 4.71512 

0.5 0.97278 2.27354 2.60949 4.70230 

0.6 0.96014 2.26223 2.59559 4.68476 

0.7 0.94373 2.24774 2.57716 4.66106 

0.8 0.92192 2.22815 2.55295 4.62839 

 

 𝜔𝐿
𝑖  

Present 0.0373 0.0859 0.0979 0.1764 

Shang et al. 

(2017) 
0.0373 0.0862 0.0977 0.1755 

Leung and Fung 

(1989) 
0.0374 0.0863 0.0983 0.1767 

 

 

 

and physical parameters are: E = 1.0, v = 0.3 and ρ = 1.0. 

For this structure, the authors implement a convergence 

study for the first eight natural frequencies to reach the 

optimum number and type of mesh discretization. After 
 

 

 

Fig. 16 Convergence study of the eight linear natural 

frequencies for the trapezoid dam 
 

 

  

(a) Mode 1 (b) Mode 2 
 

  

(c) Mode 3 (d) Mode 4 

Fig. 17 The mode shapes of trapezoid dam 
 

E=1.0 , ν=0.3

ρ=1.0 

t=1.0

    10   .  

    20   .  

 20
  

  

(a) First and second modes (b) Third and fourth modes 

Fig. 14 The backbone curves of the cantilever square plate 
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that, nonlinear vibration analysis is also performed to 

achieve the nonlinear frequency ratio. Several values are 

considered for amplitude vibration (a/r) in which r is the 

radius of gyration of the cross-section at the free end. 

The results are provided for the linear and nonlinear 

natural frequencies in Table 7, where n is the number of 

subdivision in each side. In this Table, the comparison of 

the results is also implemented using the available ones 

Leung et al. (2004). In addition, Fig. 16 shows the 

convergence study, which is done for this structure. 

The first four mode shapes of this structure are 

demonstrated in Fig. 17. The nonlinear responses are also 

reported in the form of backbone curves, including the first 

four nonlinear natural frequencies. These curves are 

provided in Fig. 18. 

 

5.4 A one-story portal frame 
 

In this part, a one-story plane frame is analyzed. The 

linear vibration analysis of this problem was investigated by 

other researchers using beam element (Chen et al. 2001). 

Thus, the authors compare the obtained linear natural 

frequencies by the reference solutions to show the 

correctness and high performance of the employed 

triangular plane element in vibration analysis of skeletal 

structures with different conditions. The structure‘s 

geometry and values of frame‘s properties are given in Fig. 

19. 

 

 
 

 

Fig. 19 One-story portal frame 

 

 

 

Table 8 The obtained results of linear natural frequencies of 

the one-story frame 

Number of 

elements 
Mode 1 Mode 2 Mode 3 Mode 4 

26 1.66712 6.69316 11.30480 13.41672 

38 1.64796 6.44140 11.16982 12.40100 

124 1.60963 6.28499 10.30587 11.32009 
 

 

 

  

(a) Mode 1 (b) Mode 2 

Fig. 20 The mode shapes of one-story frame 
 

 

where, L and h refer to bay length and height of the frame. 

The thickness and width of the structure, which are 

considered for the employed elements are equal to 
5 3

27
 and 

9 3

50
, respectively. To completely model the frame, 124-

triangular elements are employed. The number of elements 

are specified by using a comparison study between the 

obtained results of the proposed method and those of other 

researches for the first two linear natural frequencies (Chen 

et al. 2001). Table 8 reports the linear natural frequencies of 

the one-story frame for the different number of elements. 

The first two mode shapes of structure are also provided in 

Fig. 20. 

Based on the nonlinear vibration results, the 

corresponded backbone curves are provided in Fig. 21. The 

large amplitude vibration ratios are assumed to be equal to 

0.1 up to 1.5. 
 

5.5 A two-story portal frame 
 

In this example, a two-story plane frame is analyzed 

 9.0
  

    9.0   .  

E=2.0105  , ν = 0

 ρ = 2.0

I = 0.00081 , A = 0.1  

L/r = 100 , r = 0.09

  

(a) First and second modes (b) Third and fourth modes 

Fig. 18 The backbone curves of the trapezoid dam 
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Fig. 22 Two-story plane frame 
 

 

 

Fig. 23 Convergence study of the two-story portal frame 

 

 

using the same geometric and mechanical properties, which 

was presented in section 5.4. The shape of structure is 

depicted in Fig. 22. This problem with linear behavior was 

 

 

  

(a) Mode 1 (b) Mode 2 
 

  

(c) Mode 3 (d) Mode 4 

Fig. 24 The mode shapes of two-story portal frame 

 

 

also solved previously (Chen et al. 2001). The obtained first 

four linear natural frequencies are compared with reference 

solutions. Fig. 23 proves that the error of converging to the 

accurate results by the new element is negligible. 

It is interesting to show the mode shapes of the two-

story frame, which is useful to predict the behavior of 

structure accurately and clearly. Fig. 24 illustrates the first 

four mode shapes of the frame and the nonlinear responses 

are reported for different values of the amplitude vibration 

ratio. This study leads to obtain the backbone curves, shown 

in Fig. 25 and provided for the ratio of the first four 

nonlinear natural frequencies to the first linear one. 

 9.0
  

 9.0
  

    9.0   .  

E=2.0105  , ν = 0

 ρ = 2.0

I = 0.00081 , A = 0.1  

L/r = 100 , r = 0.09

  

(a) First and second modes (b) Third and fourth modes 

Fig. 21 The backbone curves of the one-story portal frame 
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5.6 Coupled shear wall 
 

In this part, a four-floor coupled shear wall of Fig. 26 is 

analyzed. This structure was also analyzed by other 
researchers (Zhang and Rajendran 2008, Liu et al. 2009). 

The thickness of the shear wall is equal to 1.0 m. Moreover 

the next mechanical and physical properties are assumed 
 

2 310000 0.2 1.0N NE
m m

   
 

 

The details of geometric parameters and mesh discre-

tization are presented in Figs. 26-27. In order to reach the 

optimum mesh, a convergence study is shown in Fig. 28. 

 

 

 

Fig. 26 The geometry of coupled shear wall 

 

 

Moreover, the obtained results for linear and nonlinear 

vibrations are reported in Table 9. 

It is observed that the near exact responses can be 

achieved by using 144 triangular plane elements, which are 

employed in this research, while the number of triangular 

elements used in other investigations were equal to 952 and 

3808 (Rajendran and Zhang 2007). This is proven that the 

proposed element used in this formulation has high 

performance and accuracy compared to the finite element 

results of commercial software such as ANSYS and 
ABAQUS (Liu and Gu 2001a, Rajendran and Zhang2007). 

To show the behavior of structure in each mode, the linear 

first four mode shapes of the coupled shear wall are also 

presented in Fig. 29. 
 

 

  

(a) 72 elements (b) 104 elements 
 

  

(c) 136 elements (d) 144 elements 

Fig. 27 Different types of mesh discretization 

1.8

3.0

1.8

3.0

1.8

3.0

1.8

3.0

  3.0 .    3.0 .    4.8 .  

E=1.0104

ρ=1.0

t=1 , ν =0.2

  

(a) First and second modes (b) Third and fourth modes 

Fig. 25 The backbone curves of the two-story portal frame 
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Fig. 28 Convergence study of the coupled shear-wall 
 

 

 

 

 

 

Although more elements are required to show the mode 

shapes smoothly, the authors provided mode shapes of the 

shear wall using the obtained optimum number of elements 

equal to 144. Thus, some roughness may be observed in the 

presented mode shapes, especially in fourth mode. Besides, 

a nonlinear vibration analysis is implemented to obtain the 

ratio of nonlinear natural frequency to linear one for the 

first four modes. Based on the obtained responses, the 

corresponded backbone curves are provided in Fig. 30. 

 

5.7 Bending of CNTRC beam 
 

This problem is dedicated to investigate the static 

bending behavior of CNTRC beam. The solution is 

available, since this beam was also analyzed by other 
investigators Wattanasakulpong and Ungbhakorn (2013, 

 

 

 

    

(a) Mode 1 (b) Mode 2 (c) Mode 3 (d) Mode 4 

Fig. 29 The mode shapes of coupled shear wall 

Table 9 Linear and nonlinear vibrations of the coupled shear wall 

𝑎

𝑟
 

𝜔𝑁𝐿
𝑖

𝜔𝐿
𝑖

 

i = 1 i = 2 i = 3 i = 4 

0.0 1.00000 3.41326 3.65156 5.79159 

0.1 0.99741 3.41126 3.64822 5.79041 

0.2 0.98811 3.39861 3.64441 5.78514 

0.3 0.97133 3.37404 3.64031 5.77565 

0.4 0.94554 3.33524 3.63609 5.76169 

0.5 0.90765 3.27769 3.63194 5.74285 

0.6 0.85012 3.19037 3.62834 5.71842 

0.7 0.73758 3.02231 3.62759 5.68624 

 

 𝜔𝐿
𝑖  

Mode number i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 

Present 2.0902 7.1345 7.6326 12.11 15.4776 18.4283 19.9578 22.3206 

Rajendran and Zhang (2007) 2.064 7.071 7.625 11.895 15.288 18.315 19.843 22.185 

Brebbia and Walker (2016) 2.079 7.181 7.644 11.833 15.947 18.644 20.268 22.765 

Liu and Gu (2001) 2.086 7.152 7.647 12.019 15.628 18.548 20.085 22.564 

ANSYS plane 42 with bubble functions 

Zhang and Rajendran (2008) 
2.057 7.067 7.620 11.840 15.313 18.342 19.887 22.236 

ABAQUS Liu and Gu (2001) 2.073 7.096 7.625 11.938 15.341 18.345 19.876 22.210 
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Kumar and Srinivas (2017). A uniformly distributed load q 

= ‒10-5 
N/m

2 is applied to along the beam length. The 

slenderness ratio of the beam is defined by L/h. The width 

and height of the beam are considered to be the same (t = h 

= 1.0). It is worth mentioning that various boundary 

conditions, including Clamped-Clamped (C-C), Hinged-

Hinged (H-H), Clamped-Free (C-F) and Clamped-

Hinged(C-H). In addition, the effects of CNT volume 

 

 
 

fraction factor (Vcnt) and slenderness ratio are also studied. 

The efficiency factors of CNTs are presented in Table 2. 

This beam has the following mechanical parameters of 

material 
 

9 32.5 10 0.3 1190Pa kg/m
m m mE     

  
 

On the other hand, the properties of SWCNT materials 

  

(a) First and second modes (b) Third and fourth modes 

Fig. 30 The backbone curves of the coupled shear-wall 

  

(a) C-C (b) H-H 
. 

  

(c) C-H (d) C-F 

Fig. 31 The effects of CNT volume fraction factor on the deflection curves of beam with L/h = 15 and 𝑤 =
100𝐸𝑚 ℎ3𝑤(𝐿/2)

𝑞𝐿4
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at the room temperature (300°K) are considered as follows 

 
11 10

11 22

10

12

3

6.0 10 1.0 10

1.72 10 0.19

1400

Pa Pa

Pa

kg/m

cnt cnt

cnt cnt

cnt

E E

G 



   

  

  
 

The efficiency parameters associated with the given 

values of CNT volume fraction are presented in Table 2. By 

using 32 triangular elements, the CNTRC beam structure, 

with different slenderness ratio and values of the CNT 

volume fraction parameters, is modeled. Figs. 31 and 32 

provide the deflection curves for the beam. It is noted that 

the effect of the CNT volume fraction parameters on the 

structural deflection with different support conditions is 

investigated in Fig. 31. After solving this problem and for 

VCNT = 0.12, the results are compared with the available 
solutions (Kumar and Srinivas 2017a). It is worth 

mentioning that the slenderness ratio of beam for the 

obtained results in Fig. 31 is equal to 15. 

On the other hand, the influences of the slenderness 

ratio on the deflection curves of the beam with different 

boundary conditions are investigated in Fig. 32. It should be 

noted that the results of Fig. 32 are obtained for VCNT = 

0.12. A comparison between obtained responses and 

reference solutions is observed for the slenderness ratio of 

 

 

15 in Fig. 32. It is concluded that increasing the volume 

fraction factor of the CNT reduces the maximum deflection 

of beam structure in all the cases of support conditions. 

Based on the obtained responses, the maximum deflection 

of beam increases by reducing the slenderness ratio of the 

beam. In other words, the minimum structural deflection is 

occurred in the case of VCNT = 0.28 and L/h = 100. 

 

 

 

 

Fig. 33 The convergence study of linear natural frequencies 

of CNTRC beam 

  

(a) C-C (b) H-H 
. 

  

(c) C-H (d) C-F 

Fig. 32 The effects of slenderness ratio on the deflection curves of beam with Vcnr = 0.12 and 𝑤 =
100𝐸𝑚 ℎ3𝑤(𝐿/2)

𝑞𝐿4
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5.8 Vibration of CNTRC beam problem 
 

This example is dedicated to investigate the vibration 

responses of a CNTRC beam. All geometric and material 
 

 

properties of this structure are the same as the previous 

problem. It should be added that this problem is solved in 

the other researches (Kumar and Srinivas 2017a). After 

solving this structure, the results are employed for 

 

Table 10 The dimensionless frequency parameter of beam for Vcnr = 0.12 

BCs Mode number 15
L

h
  20

L

h
  100

L

h
  

C-C 

1
  

Present 1.5122 1.3310 0.3679 

Kumar and Srinivas (2017) 1.5874 --------- --------- 

Yas and Samadi (2012) 1.5085 --------- --------- 

2
  

Present 3.1989 2.9324 0.9921 

Kumar and Srinivas (2017) 3.3314 --------- --------- 

Yas and Samadi (2012) 3.1353 --------- --------- 

3  

Present 5.1504 4.8095 1.8923 

Kumar and Srinivas (2017) 5.4075 --------- --------- 

Yas and Samadi (2012) 4.9979 --------- --------- 

4  
Present 7.1707 6.7952 3.0293 

Kumar and Srinivas (2017) 7.6482 --------- --------- 

H-H 

1
  

Present 0.9419 0.7530 0.1648 

Kumar and Srinivas (2017) 1.0247 --------- --------- 

Yas and Samadi (2012) 0.9753 --------- --------- 

2
  

Present 2.8158 2.4561 0.6515 

Kumar and Srinivas (2017) 3.0473 --------- --------- 

Yas and Samadi (2012) 2.8728 --------- --------- 

3  

Present 4.8423 4.4483 1.4386 

Kumar and Srinivas (2017) 5.2566 --------- --------- 

Yas and Samadi (2012) 4.8704 --------- --------- 

4  
Present 6.8771 6.5012 2.4943 

Kumar and Srinivas (2017) 7.5561 --------- --------- 

C-H 

1
  

Present 1.2269 1.0379 0.2557 

Kumar and Srinivas (2017) 1.3087 --------- --------- 

Yas and Samadi (2012) 1.2444 --------- --------- 

2
  

Present 3.0185 2.7076 0.8148 

Kumar and Srinivas (2017) 3.2019 --------- --------- 

Yas and Samadi (2012) 3.0159 --------- --------- 

3  

Present 4.9970 4.6328 1.6609 

Kumar and Srinivas (2017) 5.3319 --------- --------- 

Yas and Samadi (2012) 4.9342 --------- --------- 

4  
Present 7.0237 6.6500 2.7598 

Kumar and Srinivas (2017) 7.6032 --------- --------- 

C-F 

1
  

Present 0.3635 0.2816 0.0658 

Kumar and Srinivas (2017) 0.3947 --------- --------- 

2
  

Present 1.6881 1.4388 0.3646 

Kumar and Srinivas (2017) 1.7899 --------- --------- 

3  
Present 3.6948 3.2981 1.0038 

Kumar and Srinivas (2017) 3.9010 --------- --------- 

4  
Present 5.7678 5.3227 1.9207 

Kumar and Srinivas (2017) 6.1165 --------- --------- 
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comparison study. Two parameters, including slenderness 

ratio and volume fraction of CNT factor are studied in this 

part separately. A convergence study is performed to reach 

the optimum number of triangular elements. Fig. 33 shows 
 

 

the convergence curves for the first four modes of vibration. 

For this purpose, the slenderness ratio and volume fraction 

factor are assumed to be L/h = 15 and VCNT = 0.12. In this 

example, the boundary condition of the beam is considered 
 

 

Table 11 The dimensionless frequency parameter of beam for Vcnr = 0.17 

BCs Mode number 15
L

h
  20

L

h
  100

L

h
  

C-C 

1
  

Present 1.9108 1.6648 0.4451 

Kumar and Srinivas (2017) 2.0130 --------- --------- 

Yas and Samadi (2012) 1.9144 --------- --------- 

2
  

Present 4.0807 3.7140 1.2039 

Kumar and Srinivas (2017) 4.2652 --------- --------- 

Yas and Samadi (2012) 4.0187 --------- --------- 

3  

Present 6.5992 6.1277 2.3048 

Kumar and Srinivas (2017) 6.9521 --------- --------- 

Yas and Samadi (2012) 6.4348 --------- --------- 

4  
Present 9.2211 8.6962 3.7045 

Kumar and Srinivas (2017) 9.8692 --------- --------- 

H-H 

1
  

Present 1.1585 0.9196 0.1989 

Kumar and Srinivas (2017) 1.2603 --------- --------- 

Yas and Samadi (2012) 1.1999 --------- --------- 

2
  

Present 3.5456 3.0604 0.7878 

Kumar and Srinivas (2017) 3.8439 --------- --------- 

Yas and Samadi (2012) 3.6276 --------- --------- 

3  

Present 6.1736 5.6219 1.7442 

Kumar and Srinivas (2017) 6.7213 --------- --------- 

Yas and Samadi (2012) 6.2363 --------- --------- 

4  
Present 8.8239 8.2861 3.0343 

Kumar and Srinivas (2017) 9.7284 --------- --------- 

C-H 

1
  

Present 1.5337 1.2846 0.3090 

Kumar and Srinivas (2017) 1.6396 --------- --------- 

Yas and Samadi (2012) 1.5602 --------- --------- 

2
  

Present 3.8285 3.4044 0.9870 

Kumar and Srinivas (2017) 4.0722 --------- --------- 

Yas and Samadi (2012) 3.8402 --------- --------- 

3  

Present 6.3880 5.8809 2.0183 

Kumar and Srinivas (2017) 6.8375 --------- --------- 

Yas and Samadi (2012) 6.3370 --------- --------- 

4  
Present 9.0226 8.4939 3.3660 

Kumar and Srinivas (2017) 9.8003 --------- --------- 

C-F 

1
  

Present 0.4431 0.3419 0.0710 

Kumar and Srinivas (2017) 0.4810 --------- --------- 

2
  

Present 2.1137 1.7849 0.4408 

Kumar and Srinivas (2017) 2.2470 --------- --------- 

3  
Present 4.6804 4.1455 1.2163 

Kumar and Srinivas (2017) 4.9553 --------- --------- 

4  
Present 7.3682 6.7540 2.3348 

Kumar and Srinivas (2017) 7.8387 --------- --------- 
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to be Clamped-Clamped. 

As it is shown in Tables 10-12, the linear natural 

frequencies of the beam are obtained for different values of 

the slenderness ratio (15, 20 and 100). It is observed that the 
 

 

natural frequencies are reported in the normalized form as 

follows 

2(1 )m m

m

I
L L

A E

 
  


 

 

(26) 

Table 12 The dimensionless frequency parameter of beam for Vcnr = 0.28 

BCs Mode number 15
L

h
  20

L

h
  100

L

h
  

C-C 

1
  

Present 2.1697 1.9318 0.5566 

Kumar and Srinivas (2017) 2.2631 --------- --------- 

Yas and Samadi (2012) 2.1618 --------- --------- 

2
  

Present 4.5451 4.1982 1.4947 

Kumar and Srinivas (2017) 4.7070 --------- --------- 

Yas and Samadi (2012) 4.4556 --------- --------- 

3  

Present 7.2828 6.8424 2.8377 

Kumar and Srinivas (2017) 7.6087 --------- --------- 

Yas and Samadi (2012) 7.0745 --------- --------- 

4  
Present 10.0993 9.6205 4.5192 

Kumar and Srinivas (2017) 10.7218 --------- --------- 

H-H 

1
  

Present 1.3945 1.1252 0.2501 

Kumar and Srinivas (2017) 1.5097 --------- --------- 

Yas and Samadi (2012) 1.4401 --------- --------- 

2
  

Present 4.0534 3.5797 0.9864 

Kumar and Srinivas (2017) 4.3677 --------- --------- 

Yas and Samadi (2012) 4.1362 --------- --------- 

3  

Present 6.8752 6.3787 2.1704 

Kumar and Srinivas (2017) 7.4327 --------- --------- 

Yas and Samadi (2012) 6.9245 --------- --------- 

4  
Present 9.6961 9.2363 3.7464 

Kumar and Srinivas (2017) 10.6136 --------- --------- 

C-H 

1
  

Present 1.7819 1.5253 0.3875 

Kumar and Srinivas (2017) 1.8892 --------- --------- 

Yas and Samadi (2012) 1.8040 --------- --------- 

2
  

Present 4.3135 3.9071 1.2309 

Kumar and Srinivas (2017) 4.5533 --------- --------- 

Yas and Samadi (2012) 4.3112 --------- --------- 

3  

Present 7.0789 6.6146 2.4985 

Kumar and Srinivas (2017) 7.5197 --------- --------- 

Yas and Samadi (2012) 6.9987 --------- --------- 

4  
Present 9.8970 9.4303 4.1313 

Kumar and Srinivas (2017) 10.6691 --------- --------- 

C-F 

1
  

Present 0.5446 0.4242 0.0893 

Kumar and Srinivas (2017) 0.5878 --------- --------- 

2
  

Present 2.4485 2.1091 0.5524 

Kumar and Srinivas (2017) 2.5799 --------- --------- 

3  
Present 5.2901 4.7632 1.5157 

Kumar and Srinivas (2017) 5.5557 --------- --------- 

4  
Present 8.1813 7.6053 2.8879 

Kumar and Srinivas (2017) 8.6321 --------- --------- 
 

513



 

Mohammad Rezaiee-Pajand, Amir R. Masoodi and Niloofar Rajabzadeh-Safaei 

These responses are provided for various states of 

support conditions, including C-C, H-H, C-H and C-F. It is 

worth mentioning that the volume fraction factor changes 

for each Table. 

 

 

6. Conclusions 
 

To analyze the UD-CNTRC and homogenous structures, 

considering geometric nonlinearity, an efficient plane 

triangular element was formulated. The related eigenvalue 

problem was solved to achieve the natural frequencies. To 

obtain nonlinear natural frequencies, by using a novel 

mixed interpolated tensorial finite element method 

procedure, large amplitude vibration analysis was 

implemented. It is worth mentioning that the first mode 

shape of the structure was selected to apply as initial 

deformation for geometrically nonlinear analysis. To 

considering large displacements, Total Lagrangian 

formulation was utilized. On the other hand, locking 

phenomena occurrence was prevented by using MITC 

method. The authors solved several benchmark problems to 

show the accuracy and capability of their scheme. Obtained 

results are in good agreement with those of the pervious 

researches with more degrees of freedom. That‘s while the 

number of degrees of freedom, used in this research, is 

considerably less than the other ones. In addition, some new 

plane problems were analyzed to indicate the high 

performance of proposed formulation in obtaining the linear 

and nonlinear vibration responses of homogenous and UD-

CNTRC‘s plane structures. 
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