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1. Introduction 

 

Due to higher slenderness of steel structures, the 

stability considerations to mitigate the effects of buckling 

problem become more significant in the design philosophy 

of steel structures. Geometric imperfection generally 

resulting from manufacturing, construction, storage and 

shipping is an additional critical point to be considered, 

which makes structural steel elements more vulnerable to 

buckling. The flexural capacities of steel I-beams depend on 

four different limits states: (i) Yielding (plastic failure); (ii) 

Local (web and flange) buckling (LB); (iii) Lateral tor-

sional buckling (LTB); (iv) Lateral distortional buckling 

(LDB). As depicted in Fig. 1, the last three of them (LB, 

LTB and LDB) are pertinent to stability problems of steel 

beam. A steel girder is capable of resisting moments as high 

as its full flexural capacity (plastic moment capacity), if 

these three forms of buckling (LB, LTB and LDB) can be 

prevented by various means (lateral braces, transverse and 
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longitudinal web stiffeners, presence of a slab on top of the 

beam, etc.). LB corresponds to the plate buckling of the 

individual components (web or flange) with no lateral 

bending and twisting rotations of the beam. LTB; on the 

other hand, corresponds to the buckling of the beam as a 

whole without any distortion in the web and flange plates, 

i.e., no local buckling. In LTB, the compression side of a 

beam tends to undergo flexural (Euler) or flexural-torsional 

buckling about the minor axis, while the tension side tends 

to remain stable. The differential tendencies of the two sides 

result in beam rotations about the longitudinal axis, as well 

as lateral bending of the beam. Hence, coupled lateral 

bending deformations and twisting rotations take place in 

LTB. Finally, LDB is called to be a combination of LTB and 

web buckling. Unlike LTB, the web plate buckles and 

distorts in LDB in addition to the overall buckling of the 

beam. 

Stability of steel beams, and thus these three modes of 

buckling are affected by the initial imperfections markedly. 

The initial imperfections of steel members can be 

categorized into two major groups as material imperfections 

(residual stresses, etc.) and geometrical imperfections. Steel 

girders in a finished superstructure might possess three 
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Abstract.  In the current study, the influence of the initial lateral (sweep) shape and the cross-sectional twist imperfection on 

the lateral torsional buckling (LTB) response of doubly-symmetric steel I-beams was investigated. The material imperfection 

(residual stress) was not considered. For this objective, standard European IPN 300 beam with different unbraced span was 

numerically analyzed for three imperfection cases: (i) no sweep and no twist (perfect); (ii) three different shapes of global sweep 

(half-sine, full-sine and full-parabola between the end supports); and (iii) the combination of three different sweeps with initial 

sinusoidal twist along the beam. The first comparison was done between the results of numerical analyses (FEM) and both a 

theoretical solution and the code lateral torsional buckling formulations (EC3 and AISC-LRFD). These results with no 

imperfection effects were then separately compared with three different shapes of global sweep and the presence of initial twist 

in these sweep shapes. Besides, the effects of the shapes of initial global sweep and the inclusion of sinusoidal twist on the 

critical buckling load of the beams were investigated to unveil which parameter was considerably effective on LTB response. 

The most compatible outcomes for the perfect beams was obtained from the AISC-LRFD formulation; however, the EC-3 

formulation estimated the Pcr load conservatively. The high difference from the EC-3 formulation was predicted to directly 

originate from the initial imperfection reduction factor and high safety factor in its formulation. Due to no consideration of 

geometric imperfection in the AISC-LFRD code solution and the theoretical formulation, the need to develop a practical 

imperfection reduction factor for AISC-LRFD and theoretical formulation was underlined. Initial imperfections were obtained to 

be more influential on the buckling load, as the unbraced length of a beam approached to the elastic limit unbraced length (Lr). 

Mode-compatible initial imperfection shapes should be taken into account in the design and analysis stages of the I-beam to 

properly estimate the geometric imperfection influence on the Pcr load. Sweep and sweep–twist imperfections led to 10% and 

15% decrease in the Pcr load, respectively, thus; well-estimated sweep and twist imperfections should considered in the LTB of 

doubly-symmetric steel I-beams. 
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Fig. 1 Buckling types of I-beam: (a) LB (web); 

(b) LDB; (c) LTB (Bas et al. 2016) 
 

 

different types of initial geometric imperfections, namely 

the vertical (in-plane) imperfection (camber), the lateral 

(out-of-plane) imperfection (sweep) and the initial angle of 

twist. Camber mainly affects the vertical deformations of a 

girder in the prebuckling stage (prior to bifurcation). The in-

plane flexural deformations up to buckling have rather 

minor influence on the buckling moments and buckling 

behavior of flexural members, particularly if the major-axis 

flexural rigidity of a member is much higher than its minor-

axis flexural rigidity. In steel I-girders, the difference 

between the major-axis (in-plane) and minor-axis (out-of-

plane) flexural rigidities is generally so significant that the 

in-plane deformations in the pre-buckling stage, and hence 

the camber can be totally neglected in the buckling 

analyses. The second and third forms of initial geometric 

imperfection (sweep and twisting angle), on the contrary, do 

have a deep impact on the buckling behavior of flexural 

members. 

Many investigations in literature have continuously 

focused on the lateral torsional buckling behavior of steel 

beams. In addition, various important structural steel codes, 

including AISC-LRFD (2016), Eurocode-3 (2005) and 

AS4100-1998 (2016) pay special attention to stability 

problems pertinent to buckling of steel structures. However, 

limited studies were conducted in literature on how initial 

geometric imperfections affect the lateral torsional buckling 

response of doubly-symmetric steel I-beam. A practical 

approach to predicting the location of buckling and the 

bending capacity of slender tubes was developed by Mirzaie 

et al. (2018) proposing a new measure of geometric 

imperfection. Based on the verification of a newly 

developed approach with the experiments on eight large-

scale slender tubes, they intended to quantify the effect of 

imperfection on the buckling behavior of such slender 

tubes. Patch laoding resistance of girders stiffened in 

longitudinal direction was studied in the study of Kövesdi et 

al. (2018). In that study, the first eigen modes were obtained 

as suitable imperfection shapes for safe resistances. Dou et 

al. (2018) made extensive numerical analyses on inelastic 

lateral flexural buckling of uniaxially loaded columns to 

specify their restraint stiffness and strength requirements 

considering the random imperfections. They demonstrated 

that for accurately estimating the restraint force, full 

restraining stiffness approach was more suitable than the 

traditional estimation ignoring random imperfections. Beyer 

et al. (2018) studied the effects of geometric imperfections 

on hot-rolled U-shaped members. They made certain 

recommendations on the form and amplitude properties of 

geometric imperfection and material imperfection of 

residual stresses. The effects of half sine wave and other 

possible buckling mode geometrical imperfection shapes on 

flexural inelastic buckling strength of columns with evenly 

located lateral braces were estimated performing FE 

analysis by Dou and Pi (2016). Eigen buckling results from 

the theoretical geometric imperfections were also compared 

to the buckling results obtained for the statistical geometric 

imperfections based on the measurements in laboratory. 

Thus, the most critical geometric imperfection shape was 

presented in Dou et al. (2018) to reliably make an advanced 

inelastic buckling analysis for laterally braced columns. The 

ultimate buckling load capacities of beams and columns 

with a flexible restraint at the mid-span was predicted in the 

study of Unterweger et al. (2017) through geometrically 

and materially non-linear analyses (GMNIA). In this study, 

the first mode geometric imperfection was interestingly 

determined to be an increasing buckling load parameter 

when compared to the beam with rigid restraint. A study on 

the reasons for the finite element analysis (FEA) of I-

sections yielding to smaller lateral torsional buckling (LTB) 

moment values than the AISC/AASHTO LTB equations 

was conducted by Subramanian and White (2017). They 

recommended certain improvements to the formulations 

given in the codes. A set of investigations on stability 

problem were carried out by Kala (2013, 2017), Kala and 

Valeš (2017) and Kala et al. (2017). In those studies, 

inelastic FE analyses on lateral buckling of beam elements, 

global sensitivity analysis of LTB according to FE analysis 

results and the effect of initial random imperfection on the 

stability of truss system were studied. Another random 

initial imperfection was considered by Chen et al. (2016) to 

estimate the load carrying capacity of shell structures or 

shell-like space frames. They determined the main 

statistical characteristics of the random imperfection model 

according to measurements obtained from real reticulated 

shell structures. Agüero et al. (2015) made an investigation 

on the approach presented in EN 1993-1-1 (EC-3) to refine 

the provisions of the code for the magnitude of the 

geometric equivalent imperfection. They recommended to 

consider higher buckling modes as geometric imperfection. 

With regard to different boundary conditions and geometric 

imperfections, Dahmani and Boudjemia (2014) and Nguyen 

et al. (2013) made similar studies on steel and pultruded 

FRP I-beam, respectively. They showed that FE modeling 

methodology was effective for parametric analysis on 

lateral torsional buckling of beam element. 

Recent other studies in the literature accounted for the 
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influence of the different initial geometric imperfections on 

the buckling response of steel beams and columns to a 

limited extent. In these studies, buckling response was 

investigated in terms of different aspects of design and 

numerical modeling. Thai et al. (2017) improved the 

generalized plastic hinge analysis taking the local and 

lateral torsional buckling modes into account. Flexural 

strength degradation owing to the buckling effects was 

calculated in that study with the well-known LRFD 

formulations. Buckling restrained braced frames were 

analyzed under the earthquake motion by Roy et al. (2015) 

as a limiting tool for adapting torsional eccentricity of steel 

buildings with four storey. Aydin et al. (2015) made an 

effort in their study to determine critical buckling loads of 

prismatic steel beams with I-section. They proposed new 

analytical and design procedures for lateral buckling of 

prismatic steel beams using energy approach. Similarly, 

considering the potential energy assumption, Kuś (2015) 

developed an approach to attain critical lateral torsional 

buckling (LTB) of beams with tapered section. For this aim, 

he conducted parametric analyses on LTB of the beams with 

simultaneously tapered flanges and web and revealed that 

tapering of the flanges was more crucial than tapering of the 

web. Many other studies in the literature (Mohebkhah 2004, 

Zirakian 2008, Kalkan and Buyukkaragoz 2012, Zirakian 

and Zhang 2012, Naderian et al. 2014, Pezeshky and 

Mohareb 2014, Hassan and Mohareb 2015, Sonck and Belis 

2015, Yang et al. 2016, Zhou et al. 2016, Lei and Li 2017, 

Subramanian and White 2017, Winkler et al. 2017, Tankov 

et al. 2018, Tohidi and Sharifi 2018) took the influence of 

geometrical imperfections on LTB response of structural 

members into account. 

The above-mentioned literature survey indicates that the 

effects of the initial out-of-plane shape of the longitudinal 

axis of a beam and its twist along the span on LTB have not 

been studied in the literature. Most of the previous 

researchers investigated the influence of the magnitude of 

initial geometric imperfections on LTB response. To 

understand the main idea behind the present study, the 

differences between the LTB behavior of an initially 

imperfect beam and a perfect beam should be explained. A 

steel I-girder with lateral imperfections has a completely 

different buckling behavior compared to its initially perfect 

counterpart. Unlike the bifurcation type of buckling in 

geometrically perfect steel beams, the beams with sweep 

and twist exhibit a “limit-load type of buckling”. Sweep and 

twist cause a beam to undergo lateral deformations from the 

start of loading and an initially imperfect beam buckles at a 

limit load lower than the critical load of its perfect 

configuration after excessive lateral deformations along the 

course of loading. The difference between the limit load of 

a beam with sweep and the critical buckling (bifurcation) 

load of its perfect counterpart depends on the magnitude of 

sweep and twist in the first place. The present study, on the 

other hand, tries to answer another important question of 

whether the shape of the initial lateral bow influences the 

buckling load and the buckling behavior of a beam, or not. 

The main idea behind the study is based on the fact that the 

flexural (Euler) or flexural-torsional buckling transforms a 

compression member with end supports to a half-sine wave 

between the ends. In other words, the buckling deforma-

tions are distributed in a sinusoidal manner from 0 at 

supports to a maximum at mid-span. LTB is a type of 

column buckling, since the compression side of a beam 

behaves as a compression member and undergoes buckling 

if not supported adequately. Therefore, both the lateral 

deformations and twist rotations in a beam follow a half-

sinusoidal pattern between the ends in LTB, as well. 

Theoretically, the resistance of a beam to LTB and the 

buckling load are expected to decrease as the initial lateral 

bow is closer to a half-sine wave. 

In this respect, the present study investigates the 

relationship between the closeness of the initial sweep 

shape with or without cross-sectional twist to a half-sine 

wave and the buckling load of doubly-symmetric steel 
 

 

 

Fig. 2 Geometrical and material properties of IPN300 
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Fig. 3 Boundary and loading condition of IPN300 

 

 

I-beams. Three different shapes of sweep, namely the 

half-sine wave, a complete parabola and a full-sine wave 

between the end supports were adopted together with the 

analyses on reference beams, i.e., beams with no initial 

geometric imperfections. In an effort to verify the accuracy 

of the FE results, the results of numerical analyses on 

reference beams were first compared to the analytical 

estimates from a theoretical solution and the code LTB 

formulations (EC3 and AISC-LRFD). Later, the FE analysis 

results of beams with no imperfections were compared to 

the respective values of the beams with three different 

shapes of global sweep both in the presence and absence of 

initial twist. In this way, the effects of initial global sweep 

shapes and the inclusion of sinusoidal twist on the critical 

buckling load (Pcr) was tried to be unveiled. 
 

 

2. Numerical study 
 

The standard European IPN300 beam, whose 

geometrical and material details are given in Fig. 2, was 

adopted in the analyses. The ABAQUS (2017) FEA 

software was used in the numerical stage. For this objective, 

C3D20R solid element with 20-node quadratic brick and 

reduced integration properties were used by also 

considering the fillets at the web-flange interfaces and the 

unstiffened (free) ends of the flanges. Free meshing 

approach was adapted with the meshed element size of less 

than 10 mm. 

As demonstrated in Fig. 3, the beams were simply 

supported in and out of plane at the ends. In other words, 

the lateral and vertical deformations of the beam ends were 

prevented. Furthermore, lateral support was provided along 

the entire beam height at the support locations to restrain 

the twisting rotations. One of the most significant concerns 

in the buckling analyses of I-beams is the restraint against 

warping deformations at beam-ends. I-beams undergo 

significant warping deformations under major-axis bending 

moments. If these deformations are prevented at the 

supports, the buckling moments increase considerably. In 

the present FE analysis, the longitudinal deformations were 

allowed all along the beam height at the roller-supported 

end, yet only the longitudinal displacement was restrained 

at the pinned-supported end. In this way, the beam was 

 
 

 

Fig. 4 General views from the 1st bucklingmode of FE 

model of IPN300 beam with the length of L = 10 m 

 

 

allowed to undergo free warping deformations. The beams 

were subjected to concentrated loading at mid-span. The 

load was applied on top of the beam to simulate the actual 

loading conditions in practice. The destabilizing effect of 

the load location with respect to the shear center of the 

section was also considered in the analytical study. General 

view from the 3-D FE model of IPN300 beam is depicted in 

Fig. 4. The geometric sweep imperfections of full-sine, 

half-sine and full-parabola as well as sinusoidal twist 

imperfection were considered in the buckling analysis with 

large-deflection option of the ABAQUS (2017) FEA. 

Steel IPN 300 girders with different un-braced lengths 

were analyzed in the present study. The beams with no 

initial geometric imperfections were denoted as the 

reference beams. The unbraced lengths of the reference 

beams were chosen in a way that all reference beams were 

ensured to undergo elastic LTB. In other words, none of the 

reference beams yielding was allowed to initiate before 

buckling. In this way, influence of the material behavior 

was tried to be minimized in the buckling analyses. Steel 

grade of S275 was considered for numerical and analytical 

analysis. The un-braced lengths of the analyzed beams are 

6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5 and 10.0 meters, which 

exceed the limiting laterally unbraced length for the limit 

state of inelastic LTB, i.e., the elastic limit length (Lr), 

calculated from the AISC-LRFD (2016) equation (Eq. (1)) 
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rts: effective radius gyration of the section in mm, E: the 

modulus of elasticity of steel (200 GPa), Fy: the yield stress 

(275 MPa), J: the torsional constant, Sx: the elastic section 

modulus with respect to the horizontal principal axis, ho: the 

distance between the flange centroids in mm. The term “c” 

in Eq. (1) is simply taken equal to 1.0 for I sections. As 

defined above, rts is the radius of gyration of the effective 

area of the section, which encompasses the entire 

compression flange and one-sixth of the web and it can be 

calculated from the following simplified formula of Eq. (2) 

for I-beams according to AISC-LRFD (2016) 
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where, bf: the flange width, tf :the flange thickness, tw: the 

web thickness, h: the clear distance between flanges. 

The Lr value for the IPN 300 section was calculated as 

5.56 m from Eq. (1) and then the smallest unbraced length 

of the analyzed beams was chosen as 6.0 m to guarantee 

complete elastic LTB. Thus, as stated above, FE analysis 

was performed for the beam having unbraced length of 6.0, 

6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5 and 10.0 meters. The FE 

analysis software ABAQUS was utilized in the analyses. 

The reference beams, i.e., the beams with no sweep and 

twist, were analyzed with the help of the “eigenvalue 

buckling analysis” tool of the software. Three different 

groups of imperfect beams with or without sinusoidal twist 

were analyzed for identical unbraced lengths with the 

reference beams. The sweep shapes of the imperfect 

analyzed beams are as follows and these sweep 

imperfection were depicted schematically in Fig. 5: 
 

 Half-sine wave between the supports (zero at the 

supports and maximum at mid-span) with the 

formulation given in Eq. (3) 
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 A complete parabola between the supports (zero at 

the supports and maximum at mid-span) with the 

formulation given in Eq. (4) 
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 Full-sine wave between supports (zero at the 

supports and mid-span and maximum at quarter 

points on the span) with the formulation given in Eq. 

(5) 
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where, u0: amplitude (maximum value) of sweep in 

mm, Lb: unbraced length in mm 

 

Fig. 5 Schematic presentation of sweep imperfections 

 

 

The maximum sweep value (u0) was identical for all the 

three cases, which was taken as u0 = Lb/1000. Lb corresponds 

to the distance between the end supports, i.e., the unbraced 

length. The variation of sectional twist with the amplitude 

of ϕ0 = Lb/(2000h) is also given in Eq. (6) for all three 

shapes of sweep 
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where, ϕ0: amplitude of twist angle in rad, Lb: unbraced 

length in mm. The initial twisting angle of the beams was 

adjusted in such a way that the top flange of a beam has 

greater lateral imperfection compared to the bottom flange. 

In this way, the initial twisting angle has an additional 

decreasing effect on the buckling load in addition to the 

reduction associated with the sweep along the beam 

longitudinal axis. 
 

 

3. Analytical study 
 

The buckling moments of the analyzed beams were 

compared to the analytical estimates from the AISC-LRFD 

(2016) specification and Eurocode-3 (2005) LTB solutions 

and the theoretical formulation proposed by SSRC (2010). 

The elastic LTB moment (Mn) can be calculated from the 

following formula Eq. (7), according to the AISC-LRFD 

(2016) specifications 
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where, Cb is the lateral-torsional buckling modification 

factor for non-uniform moment diagrams when both ends of 

the unsupported segment are braced, obtained from the 

following equation Eq. (8) 
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where, Mmax is the absolute value of the maximum moment 

in the unbraced segment in kNm; MA, MB and MC refer to 

the absolute values of the bending moment at quarter point, 

centerline and three-quarter point of the unbraced segment 

in kN.m, respectively. The term Rm is denoted as the cross-

section mono-symmetry parameter and it is taken equal to 

1.0 for doubly-symmetric I-beams. The mid-span 

concentrated loading and simple support conditions at the 

ends create a bending moment diagram with a Cb value of 

about 1.32, implying that the buckling moments of the 

analyzed beams were about 32% higher than an identical 

beam with a uniform bending moment along the span. 
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LTB moment estimates are obtained with this simplifica- 

 

 

tion. The elastic LTB solution (Eq. (9)) of EC3 (1995) is a 

little more complicated and detailed compared to the AISC-

LRFD (2016) LTB solution. The input parameters of the Eq. 

(9) are also given with Eqs. (10). In Eqs. (10), χLT,mod: a 

modification factor for LTB, accounting for the non-

uniform moment distribution between the braces (similar to 

Cb in the AISC-LRFD solution), χLT: reduction factor, αLT: 

imperfection factor, kc: correction factor for moment 

distribution, f: modification factor for χLT, 𝜆 𝐿𝑇 : non-

dimensional slenderness for LTB, ФLT: value to determine 

the reduction factor χLT and γM1: the safety factor for the 

limit state of LTB. 

A rather generic form of the lateral torsional buckling 

moment equation for steel beams was presented in SSRC 

(2010) with Eq. (11) 
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The factor Cb in this equation accounts for the loading 

and support conditions of the beam (non-uniform moment 

distribution along the span) and the location of the load with 

respect to the shear center of the section. Cb can be obtained 

from the following Eq. (12) 
 

2 y
h

bC A B


 
 

(12) 

 

where, y: the distance from the mid-height of the section to 

the load application point, h: the entire depth of the section 

(300 mm). The constants A and B are taken as 1.35 and (1- 

0.180.W2 + 0.649W), respectively, for a simply-supported 

beam with concentrated mid-span loading. This equation 

given in SSRC (2010) is estimated to yield to elastic LTB 

moment value within 5% accuracy with respect to the test 

results. Considering the calculation of the maximum 

bending moment (Mmax) for simply-supported beam with a 

concentrated load at mid-point, the critical buckling load 

(Pcr) was found with the help of Eq. (13) 
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cr
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Table 1 Comparison between FE and analytical formulations (AISC-LRFD, EC3 and SSRC 2010) 

Buckling load (Pcr, t) 

Unbraced 

length 

(m) 

Reference 

(FE) 

Pcr,FE 

AISC-LRFD (2016) EC-3 (2005) SSRC (2010) 

Pcr,AISC 
Pcr,AISC/Pcr,FE 

(%) 
Pcr,EC3 

Pcr,EC3/Pcr,FE 

(%) 
Pcr,SSRC 

Pcr,SSRC/Pcr,FE 

(%) 

6.0 8.83 9.28 105 6.99 79 8.40 95 

6.5 7.64 7.84 103 6.09 80 7.18 94 

7.0 6.72 6.71 100 5.30 79 6.22 92 

7.5 5.91 5.82 99 4.73 80 5.44 92 

8.0 5.27 5.09 97 4.20 80 4.80 91 

8.5 4.70 4.49 96 3.78 80 4.27 91 

9.0 4.28 7.00 93 3.43 80 3.82 89 

9.5 3.89 3.58 92 3.13 80 3.44 88 

10.0 3.56 3.22 91 2.86 81 3.12 88 
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4. Results and comparison 
 
4.1 Numerical and analytical results 
 

In an effort to prove the accuracy of the FE modeling 

considerations including mesh size, boundary and load 

conditions, analysis options etc., eigenvalue buckling 

analysis was conducted for each perfect beam. For this aim, 

the results obtained from the FE analyses of the perfect 

 

 

 

Fig. 6 Variation of the results of numerical (FE) and 

analytical calculations (AISC-LRFD, EC3 and 

SSRC, 2010) 

 

 

beams were compared to the analytical estimates (Fig. 

6) and the percent differences between the numerical and 

analytical results were set forth (Table 1). 

Besides, the variation of the results from the theoretical 

(SSRC 2010) and the code calculations of AISC-LRFD and 

EC-3 are depicted in Fig. 6 according to FE analysis results. 

From the comparative results in Table 1, the numerical 

results were found to be in rather good agreement with the 

values calculated according to the LTB solution of AISC- 

 

 

 

Fig. 7 Variation of the results of numerical (FE) and   

sweep shapes 

 

 

 

 

Table 2 Comparison between the results of numerical (FE) and sweep shapes 

Buckling load (Pcr, t) 

Unbraced 

length 

(m) 

Reference 

(FE) 

Pcr,FE 

Sweep shape 

Half-Sine (HS) Full-Sine (FS) Full-Parabola (FP) 

Pcr,HS 
Pcr,HS/Pcr,FE 

(%) 

Decrease 

(%) 
Pcr,FS 

Pcr,FS/Pcr,FE 

(%) 

Increase 

(%) 
Pcr,FP 

Pcr,FP/Pcr,FE 

(%) 

Decrease 

(%) 

6.0 8.83 7.94 90 -10 14.20 161 61 8.04 91 -9 

6.5 7.64 7.02 92 -8 13.08 171 71 7.08 93 -7 

7.0 6.72 6.20 92 -8 12.17 181 81 6.25 93 -7 

7.5 5.91 5.53 94 -6 11.18 189 89 5.57 94 -6 

8.0 5.27 5.04 96 -4 10.35 196 96 4.99 95 -5 

8.5 4.70 4.58 97 -3 9.73 207 107 4.51 96 -4 

9.0 4.28 4.06 95 -5 8.94 209 109 4.09 96 -4 

9.5 3.89 3.70 95 -5 8.33 214 114 3.72 96 -4 

10.0 3.56 3.39 95 -5 7.76 218 118 3.42 96 -4 
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Fig. 8 Variation of the results of numerical (FE) and   

sweep-twist 
 

 

LFRD and the theoretical formulation of SSRC (2010). The 

major differences between the analytical estimates from the 

EC3 solution and the numerical results imply that the EC-3 

formulation given in Eq. (9) predicts the critical loads 

conservatively. These conservative estimates might stem 

from the initial imperfection reduction factor (αLT) in the 

EC-3 formulation (Eq. (9)). On the other hand, lower 

difference than the EC-3 was shown to be obtained from the 

theoretical formulation developed from SSRC (2010). The 

AISC-LFRD formulation also provides much closer 

estimates to the numerical results than EC3 solution. 

Consequently, the percent differences from the numerical 

 

 

results can be given as follows: AISC-LRFD (max. 9%), 

SSRC (2010) (max. 12%) and EC-3 (max. 21%). 
 

4.2 Effect of sweep shapes 
 

The verified FE models of the beams were utilized to 

determine the influence of the global sweep shapes of half-

sine, full-sine and full-parabola on the critical buckling load 

(Pcr). Due to lateral imperfection along the beam, a limited 

decrease in Pcr value was estimated for each sweep shape 

before the analysis. Accounting for these points, the 

comparative results are given in Table 2 and depicted in Fig. 

7. As in the other estimation, all results were checked in 

percentage manner against the FE analysis results with 

respect the reference beams with no imperfection. 

The variation of the results from the sweep shapes was 

also depicted in Fig. 7 according to the reference (FE) 

outcomes. As clearly demonstrated in Fig. 7, the beams 

were considerably affected from the full-sine (FS) 

imperfection with high increase in the Pcr load. This 

dramatic increase pertained to 2nd buckling mode shapes of 

the beam. Therefore, the full-sine lateral bow and its 

derivative forms were decided not to be deemed as an 

imperfection type for the LTB analysis with the increase in 

the Pcr reaching to 120%. 

As expected, the half-sine (HS) and full-parabola (FP) 

imperfection shapes caused considerable decrease in the 

buckling load and these two shapes yielded to relatively 

comparable results to each other. The maximum decrease in 

Pcr was obtained as 10% and 9% for the half-sine (HS) and 

full-parabola (FP) imperfection shapes, respectively. So, the 

beams were understood to be influenced to a higher degree 

in the case of half-sine sweep than the full-parabola sweep.  

In general, an imperfect beam can be said to buckle at lower 

load values as the out-of-plane shape of its longitudinal axis 

approaches the half sine wave. This conclusion is related to 

the fact that the longitudinal axis turns into a half-sine wave 

between the end supports after buckling. Furthermore, the 

use of different imperfection forms other than the half-sine 

curve might produce higher buckling load estimates in the 

design of doubly-symmetric steel I-beam. 

Table 3 Comparison between the results of numerical (FE) and sweep-twist 

Buckling load (Pcr, t) 

Unbraced 

length 

(m) 

Reference 

(FE) 

Pcr,FE 

Sweep-twist imperfection 

Half-Sine + Twist (HS-T) Full-Parabola + Twist (FP-T) 

Pcr,HS-T 
Pcr,HS-T/Pcr,FE 

(%) 

Decrease 

(%) 
Pcr,FP-T 

Pcr,FP-T/Pcr,FE 

(%) 

Decrease 

(%) 

6.0 8.83 7.62 86 -14 7.66 87 -13 

6.5 7.64 6.69 88 -12 6.73 88 -12 

7.0 6.72 5.92 88 -12 5.98 89 -11 

7.5 5.91 5.29 90 -10 5.40 91 -9 

8.0 5.27 4.75 90 -10 4.85 92 -8 

8.5 4.70 4.36 93 -7 4.32 92 -8 

9.0 4.28 3.91 91 -9 3.94 92 -8 

9.5 3.89 3.57 92 -8 3.58 92 -8 

10.0 3.56 3.28 92 -8 3.29 93 -7 
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4.3 Effect of sweep-twist imperfection 
 

Apart from the initial lateral sweep, another important 

imperfection relatively effective on the buckling load is the 

initial angle of twist along the beam. To understand the 

influence of twist on the buckling behavior, the beams with 

both sweep and twist imperfection (named sweep-twist 

imperfection) were analyzed and the comparative results are 

given in Table 3. For half-sine and twist (HS-T), max. 14% 

decrease in the buckling load was obtained whereas this 

decrease was max. 13% for full-parabola and twist (FP-T). 

It is also interesting to note that for both cases that the 

percentage decrease in the buckling load increases with 

decreasing unbraced length (Lb) of the beam. 

The differences between the imperfection cases are also 

seen clearly in Fig. 8. From the Figs. 7 and 8, initial 

imperfection was determined to be more effective for short 

beams than long beams. The effect of the twist imperfection 

on the buckling load was determined through the 

comparison of the values in Table 2, reflecting the results in 

the sole presence of sweep, with the values in Table 3, 

reflecting the results in the simultaneous presence of sweep 

and twist. Accordingly, the twist with a sinusoidal 

distribution along the span decreases the buckling load 6% 

and 4% at greatest for the half-sine and full-parabola shapes 

of sweep, respectively. This conclusion showed again that 

half-sine (HS) sweep is a more critical imperfection shape 

than full-sine parabola. 
 

 

5. Conclusions 
 

The present study aims to practically identify the 

influence of the initial imperfection from manufacturing, 

construction, storage and shipping etc. on the lateral 

torsional buckling (LTB) behavior of steel I-beams. 

Different from the previous studies in the literature, the 

effects of the shape of the initial lateral bow, i.e., the 

distribution of sweep along the span, on the buckling 

behavior rather than the amplitude of sweep was 

investigated. The material imperfection (residual stress) was 

not considered in this study. For this purpose, a set of 

IPN300 doubly-symmetric steel I-beams with different 

unbraced lengths were adopted in the numerical (FE) 

analyses and analytical calculations according to the code 

(AISC-LFRD and EC-3) LTB solutions and theoretical 

formulations (SSRC, 2010). Three shapes of global lateral 

sweep, namely the full-sine (FS), half-sine (HS) and full-

parabola, were used in the analyses both for the presence 

and absence of initial angle twist with sinusoidal 

distribution along the span. The maximum sweep value at 

mid-span (Lb/1000) was kept constant in all imperfection 

shapes. The FE analyses of the beam with different lengths 

of 6.0 m, 6.5 m, 7.0 m, 7.5 m, 8.0 m, 8.5 m, 9.0 m, 9.5 m 

and 10 m were conducted for the following imperfection 

cases: (i) no imperfection; (ii) only global sweep 

imperfection; and (iii) sweep-twist imperfection. The results 

from the last two (ii, iii) imperfection cases were compared 

to results of the (i) no imperfection case. Based on the 

comparative results from the numerical and analytical 

studies, the following conclusions were drawn; 

 For eigenvalue elastic buckling response of the 

beams with no imperfections, EC-3 yielded to more 

conservative results than the FE analysis, AISC-

LRFD and theoretical formulation by SSRC (2010). 

When compared to the reference (FE) results, AISC-

LRFD and theoretical formulation showed a close 

match. Thus, these formulas can be adopted to 

reliably predict the elastic eigenvalue LTB of the 

doubly-symmetric steel I-beams with no initial 

imperfections. 

 The over-conservativity of the EC-3 formulation was 

estimated to directly originate from the initial 

imperfection reduction factor in this formulation in 

its formulation. So, these parameters were stated in 

the current study to be revised or updated according 

to various numerical studies. 

 Mode-compatible initial imperfection shapes should 

be taken into account to properly estimate the 

geometric imperfection influence on the buckling 

load. The full-sine imperfection shape, which is not 

compatible to the 1st LTB mode shape of the beam, 

was found to increase the buckling load, rather than 

decreasing it. 

 Due to the fact that the AISC-LFRD code solution 

and the theoretical formulation were specified not to 

consider the effect of geometric imperfection shape 

(sinusoidal, parabolic, etc.) on the Pcr load, the need 

to develop a practical imperfection reduction factor 

for AISC-LRFD and theoretical formulation was 

underlined.  

 The beams were determined to be influenced higher 

in the case of half-sine sweep than full-parabola 

sweep according to the maximum decrease values in 

the buckling load, 10% and 9% for the half-sine 

(HS) and full-parabola (FP) imperfection, 

respectively. These reductions increase to 14% and 

13% in the presence of twist in addition to the half-

sine and full-parabola imperfection shapes, 

respectively. 

 According to comparative outcomes, initial imper-

fections were obtained to be more influential on the 

buckling load, as the unbraced length of a beam 

approaches the elastic limit unbraced length (Lr). 

 Due to an approximately 15% decrease in the 

buckling load, the sinusoidal distributions of sweep 

and twist imperfections is recommended to be 

considered in the LTB analyses of doubly-symmetric 

steel I-beams. 
 

Constant values of maximum sweep and initial angle of 

twist at mid-span were used in the present study for 

different shapes of initial imperfection. Further studies are 

recommended to be conducted to assess the influence of the 

variations in the maximum sweep and twist values together 

with the shape of lateral imperfection. 
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