Steel and Composite Structures, Vol. 30, No. 5 (2019) 471-481
DOI: https://doi.org/10.12989/scs.2019.30.5.471

An alternative evaluation of the LTB behavior
of mono-symmetric beam-columns

Tolga Yilmaz *2, Nevzat Kirac'® and Ozgiir Anil *

! Department of Civil Engineering, Eskisehir Osmangazi University, Eskisehir, Turkey
2 Department of Civil Engineering, Gazi University, Ankara, Turkey

(Received January 4, 2018, Revised February 8, 2019, Accepted March 7, 2019)

Abstract. Beam-columns are structural members subjected to a combination of axial and bending forces. Lateral-torsional
buckling is one of the main failure modes. Beam-columns that are bent about its strong axis may buckle out of the plane by
deflecting laterally and twisting as the values of the applied loads reach a limiting state. Lateral-torsional buckling failure occurs
suddenly in beam-column elements with a much greater in-plane bending stiffness than torsional or lateral bending stiffness.
This study intends to establish a unique convenient closed-form equation that it can be used for calculating critical elastic lateral-
torsional buckling load of beam-column in the presence of a known axial load. The presented equation includes first order
bending distribution, the position of the loads acting transversely on the beam-column and mono-symmetry property of the
section. Effects of axial loads, slenderness and load positions on lateral torsional buckling behavior of beam-columns are
investigated. The proposed solutions are compared to finite element simulations where thin-walled shell elements including
warping are used. Good agreement between the analytical and the numerical solutions is demonstrated. It is found out that the
lateral-torsional buckling load of beam-columns with mono-symmetric sections can be determined by the presented equation
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and can be safely used in design procedures.
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1. Introduction

Beam-columns are structural members that combine the
beam function of transmitting transverse forces or moments
with the compression (or tension) member function of
transmitting axial forces. Beam-columns are mostly loaded
in the plane of the weak axis so that bending occurs about
their strong axis. First order bending moments and in-plane
deformations are produced by the end moments and
transverse loadings of the beam-column, while axial force
will produce second-order moments and additional in-plane
deformations. When the values of the loads on the beam-
column reach a limiting state, the member will experience
out of plane bending and twisting. At this limiting state, the
compression flange of the member becomes unstable and
bends laterally while the remainder of the cross-section,
which is stable, tends to restrain the lateral flexure of the
compression flange. The net effect is that the whole section
rotates and moves laterally. Lateral-torsional buckling
(LTB) failure occurs suddenly in slender beam-columns
with a much greater in-plane bending stiffness than their
lateral bending or torsional stiffnesses (Torkamani and
Roberts 2009). LTB is often the main failure mode
controlling the strength of thin-walled structures and should
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be considered in the design of slender beam-columns with
insufficient lateral bracing due to it may occur long before
the bending stress at the extreme fiber of the section reaches
to yield point. Fig. 1 illustrates LTB of beam-column with I-
section. The limit state of the applied loads on the beam-
column members is called as the critical elastic LTB load.
The cross-section of the member, the unbraced length of the
member, the support conditions, the type of loads acting on
the member, the vertical positions of the applied loads with
respect to the shear center are effective on LTB behavior of
mono-symmetric beam-columns. The general concept of
flexural buckling and LTB of structural members has been
well presented in many textbooks (Timoshenko and Gere
1961, Chen and Lui 1987, Chen and Atsuta 1977, Galambos
and Surovek 2008, Trahair 1993).

The differential equilibrium equations obtained for
critical LTB load of an axially loaded beam subjected to
uniform bending can be solved and presented in closed
form by considering the boundary conditions (Trahair 1993,
Salvadori 1956, Hill and Clark 1951). However, the
analytical solutions are either too complex or involve
infinite series for load types where moment gradient is not
constant. In a situation like this, the solution of differential
equilibrium equations mostly requires use of numerical
approaches such as finite difference (Bleich 1952, Chajes
1974, Assadi and Roeder 1985, Suryoatmono and Ho 2002,
Serna et al. 2006), finite integral (Kitipornchai and Trahair
1975, Kitipornchai and Richter 1978, Kitipornchai et al.
1984, 1986), finite element (Barsoum and Gallagher 1970,
Powel and Klingner 1970, Hancock and Trahair 1978,
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Fig. 1 LTB of beam-column with I-section

Bradford and Ronagh 1997, Papangelis et al. 1998, Lim et
al. 2003, Lee et al. 1994, Park et al. 2004, Gu and Chan
2005, Mohri et al. 2008a) or finite strip (Bui 2009, 2012,
Adany and Schafer 2014, Naderian and Ronagh 2015)
methods.

Energy method is based on the equality between the
additional strain energy stored during LTB and the
additional work done by the applied forces. In this method,
the LTB load is calculated by substituting an approximate
buckled shape which satisfies the kinematic boundary
conditions and corresponds to real mode shape into the
energy equation. Kinematic boundary conditions are related
to geometrical constraints preventing one or more
deflections or rotations at the support of the structural
members (Trahair 1993). Extensive studies are carried out
in order to describe LTB behavior of thin-walled members
using energy method. Wang and Kitipornchai studied LTB
of mono-symmetric cantilevers using both the Ritz method
and the finite integral method (Wang and Kitipornchai
1986). Aydin et al. (2015) presented a compact closed-form
equation to calculate LTB loads of simply supported beams
with mono-symmetric I-section. Aydin et al. (2013) studied
the LTB behavior of double angle and tee section
cantilevers. Mohri et al. (2003) recomputed 3-factor
formula, which is commonly used for calculation of elastic
LTB loads of beams, and proposed some improvements.
Yilmaz and Kirac (2017) introduced an analytical study to
evaluate elastic LTB load of both doubly-symmetric and
mono-symmetric I-section beams. This study also includes
a parametric study where a simplified equation is proposed
for calculating the LTB load of the beams with European
standard I-section. The LTB of Europen wide flange I-
section beam is also studied by Yilmaz et al. (2017).
Andrade and Camotim (2004) developed an analytical
treatment for LTB behavior of doubly-symmetric prismatic
and tapered beams. In this study, the effect of pre-buckling
deflections on LTB behavior of both simply-supported

beams and cantilever beams, which are prismatic and web-
tapered, is investigated. LTB behavior of steel beams with
simultaneously tapered flanges and web were studied by
Kus (2015). This study revealed that tapering of flanges
affects much more the critical moments than tapering of the
web. The LTB loads of singly and doubly symmetric I-
section cantilevers were investigated by Andrade et al.
(2007). Ozbasaran et al. (2015) developed an alternative
design procedure for cantilever I-section and introduced a
parametric formula based on the energy method to calculate
LTB load. The proposed design procedure was compared
with code specifications and FEA. Yuan et al. (2013)
improved an analytical model to determine the LTB
behavior of steel web tapered tee-section cantilevers. Kim
et al. (2016) studied LTB of castellated beams. LTB of the
simply supported channel and Z-section purlins with top
flange horizontally restrained are investigated by Zhang and
Tong (2016). Mohammadi et al. (2016) studied the bracing
stiffness requirements of mono-symmetric 1-beams with
discrete torsional braces under pure bending condition.
Benyamina et al. (2013) introduced an analytical formula to
assess LTB behavior of the double-symmetric web tapered
I-section beam in function of the classical stiffness terms,
the load height level, and the tapering parameter. LTB of the
tapered thin-walled beam with arbitrary cross-section and
boundary conditions are investigated using the numerical
method based on power series by Asgarian et al. (2013).
The shape optimization of tapered I-beams with lateral-
torsional buckling, deflection and stress constraints are
investigated by Ozbasaran and Yilmaz (2018). Thai et al.
(2017) improved novel refined plastic hinge analysis
technique including the effect of the LTB and local
buckling.

Related to LTB of beam-columns, Wang and
Kitipornchai (1989) proposed a set of buckling parameters
to describe LTB behavior of mono-symmetric beam-
columns under uniform moment or eccentric axial loads.
Torkomani and Roberts (2009) derived the energy equations
for doubly symmetric beam-column members by expressing
in dimensional and non-dimensional forms. Magnucka-
Blandzi (2009) investigated beam-columns with I-section
subjected to a uniformly distributed transverse load, small
axial force and two different moments located at its both
ends. Cheng et al. (2013) studied flexural buckling and LTB
of cold-formed channel section beams under combined
compression and biaxial bending. They also concluded the
effect of non-symmetric pre-buckling stress due to bending
about the minor axis distribution on LTB of channel beams.
Kucukler et al. (2015) introduced a stiffness reduction
method for the flexural-torsional buckling assessment of
steel beam-columns subjected to major axis bending and
axial compression. Soula et al. (2016) demonstrated that the
distortion deformations are effective on the elastic lateral
buckling behavior of thin-walled box beam elements under
combined bending and axial forces. Challamel et al. (2010)
investigated the elastic flexural-torsional buckling of
linearly tapered cantilever strip beam-columns subjected to
axial and transversal point loads applied at the tip. In this
study, the governing differential equation is integrated into
closed form by means of confluent hypergeometric
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functions for prismatic and wedge-shaped members. For
general tapered members, solutions are presented using
Frobenius series and numerical treatment. Gu and Chan
(2005) developed finite element formulation which can be
used the geometrically nonlinear analysis of the space
beam-column members allowing for axial-flexural, lateral—
torsional and axial-torsional buckling. The quite detailed
study where the non-linear stability model for LTB of
beam-column elements with doubly-symmetric I-section is
established has been introduced by Mohri et al. (2008b).
The present analytical model included first-order bending
distribution, load height level, and presence of axial loads.
Then, this analytical model is further improved by Mobhri et
al. (2013) to consider the mono-symmetry property of
beam-columns. Besides, with the improvements performed,
the three-factor formula which is developed for beam
stability Mohri et al. (2003) has been extended with the
fourth factor for the presence of the axial load. These two
advanced studies which are developed for calculation LTB
load of doubly-symmetric and mono-symmetric beam
columns using Galerkin’s approach considers the effect of
pre-buckling deflections and also includes the finite element
analysis verifications. Tankova et al. (2017) introduced a
new design proposal for the out of plane buckling resistance
of the prismatic beam-columns subject to axial compression

and uniaxial major-axis bending that was developed based
on the well-known Ayrton-Perry format. The study focused
on elastic LTB of tapered beams with doubly-symmetric
section subjected to combined bending and axial forces
were presented by Osmani and Meftah (2018). The effect of
shear deformation is also considered in the study. Optimal
design of beam-column beam-columns with I-section
considering stress, deflection and stability constraints is
studied by Ozbasaran (2018).

This study focused on the effects of axial forces on
lateral buckling behavior of beams with mono-symmetric
cross sections. Ritz method is utilized in order to establish a
unique compact closed-form equation by considering the
total potential energy of beam-column elements subjected
to a constant axial force and various transverse load cases.
The presented equation includes first order bending
distribution, the position of the loads acting transversely on
the beam-column member respect to the shear center, the
mono-symmetry property of the section and the interaction
between buckling and lateral-torsional buckling. The effects
of axial loads, slenderness and load positions on LTB of
both doubly-symmetric and mono-symmetric beam-
columns are investigated. The presented solutions are
compared to finite element analysis in which beam-column
members are modeled with shell elements (S8R5) including
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Fig. 2 LTB of mono-symmetric beam-column: (a) side view; (b) a-a section
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warping. It is observed that the closed-form solutions are in
good agreement with the finite element simulation.

2. Analytical study

The LTB of mono-symmetric beam-columns consists of
two stages. First, combined transversely and compressive
axially loaded beam-column bends about its major axis, and
then it buckles by bending laterally and twisting as the
magnitude of the loads acting on the beam-column reaches
to a critical level. Fig. 2 shows the LTB of beam-column
with mono-symmetric I-section subjected to an axial force
that acts through the centroid of the cross section and
concentrated force that acts transversely at mid-span.

In Fig. 2(a), L is the beam-column length. a-a section of
beam-column is drawn in Fig. 2(b). S and C show the shear
center and the center of gravity of the section, respectively.
u is the lateral displacement of the shear center, v is vertical
displacement of the shear center and ¢ is the torsional
rotation. yg is the distance measured from the center of
gravity to the shear center. By utilizing Vlassov’s model,
which assumes that the cross section is rigid in its plane,
hence there is no distortion deformation of the section and
the shear deformation in the mean surface of the section are
negligible (Mohri et al. 2003). The total potential energy of
the beam-column given in Fig 2, at a slightly buckled
configuration can be written as follows by disregarding pre-
buckling deflections (Trahair 1993).

L L
n—leI dzuzd +1fEc ¢y’ d
2 azz) 72 azz) ¢
0 0

L
SE e

+%IMX [zq)(%) + B, <°:1qz’) ]dz+Wh

where E is young modulus, G is shear modulus, S is area of
cross-section, I, is moment of inertia about strong axis, I, is
moment of inertia about weak axis, Cw is warping constant,
J is torsional constant and M, is the bending moment about
strong axis and N is constant compressive axial load.
Wanger’s coefficient By associated with a mono-symmetry
property of the cross section is defined by Eq. (2) (Trahair
1993).

Bx =

NlH

f y(x? +y*)dS — 2y, )
S

where x and y are Cartesian coordinates of the infinitesimal
area (dS). y, is positive when the shear center below the
center of gravity. W, is work done by loads which are

acting outside of the shear center. This work results from
changing of the distance between the application points of
the loads and the shear center as cross-section rotates. W,
can be calculated by (3) as

EPH 87 + qu b?dz ?)

where H, and H, are the vertical distance of the acting point
of the concentrated (P) and uniformly distributed loads (q)
measured from the shear center, respectively. ¢, is the
torsional rotation at a point in which the concentrated load
is applied. In (3), H, and Hy are positive for loads that act in
below the shear center.

Assume that when lateral-torsional buckling occurs, the
lateral displacement of beam-column defined at the shear
center and the angle of rotation of the cross-section can be
described as follows

u=asin—-z (@)

¢ = bsin%z (5)

where A and B are the associated displacement amplitudes.
Note that the displacement functions assumed in Egs. (4)-
(5) satisfy the simply supported boundary conditions (u = ¢
= 0 and d’u/dz? = d*¢p/dz® = 0) at supports (z=0and z = L).

The strain energy stored in the beam-column due to
lateral bending, warping, and torsion can be calculated
using the following formula

o= o () a3 e ()
1o«

0

(6)

Substituting buckling displacements in Egs. (4)-(5) into
Eq. (6) yields

a’n*El, b%*m*EC, b?miG
g w Y 7)
413 413 4],

The work done by constant compressive axial forces is

L 2 2
L R o
+2() (3)]

By substituting Eqgs. (4)-(5) into Eq. (8), the work done
by the axial force can be written as

as

o _ _Na*[a’S + 2abSyy + b*(I, + 1, +Sy?)] g
1 4LS
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Fig. 3 Load types

The work done by external transverse forces is as

L
1 d%u dp\?
Vs —Eofo [2(1)(@)4‘[33( (E) ]dZ
(10)
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0

Assuming that the vertical positions of all transverse
loads on the beam-column are same (H, = Hy = H) and
substituting displacement functions into Eq. (10), the work
done by transverse forces can be written in the following
compact form

V, = D,b?*BR., + D,abR,, + D;b*HR,, (11)

Where D,, D,, and D; are integral parameters depending
on moment gradient about the strong axis along the beam
length. In this study, D;, D, and Dj coefficients are
calculated for eight load types shown in Fig. 3 and
presented in Table 1.

In Eq. (9), R, is the critical load which can be expressed
by Eq. (10) depending on the load type acting on the beam.

MCT

I (12)

Ry =P, =q,L=

where P¢, g and M, are critical concentrated load,
uniformly distributed load and moment, respectively. It is
noted that the critical buckling load type varies according to
considered loading case. For load case 3 in Fig. 3, the
critical LTB load is in terms of g, which implies that the
critical values of uniformly distributed load and
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Table 1 Material ratios for 1 m® concrete

Load type D1 D2 D3

P 0.183425 -0.86685 0.5

q 0.143117 -0.536234 0.25

g+0.5gL 0.234829 -0.969659 0.5

g+qL 0.326542 -1.40308 0.75

P+P  (L/3) 0.360811 -1.47162 0.75
M 2.4674 -4.9348 0

P+P (L/4) 0.337638 -1.17528 0.5
M+0.5M 1.85055 -3.7011 0

concentrated load are g and 0.5qL, respectively.

Using the flexural buckling load which is presented in
Eqg. (13), the total potential energy of the beam-column IT =
U + Vy + V, can be written as Eq. (14)

2EL
— Y
Ny = (13)
m? b%N,C,
n=—|b%G > +a?N,
4L[ ]+ o TN

I +1 14
—N <a2 + 2aby, + b? ( 5 a +y02)>l (14)

+D;b?B.R,, + D,abR,, + D;b*HR,,

When buckling occurs, the total energy function reaches
a stationary condition, which requires

on_ om (15)
da b
Substituting Eq. (14) into Eq. (15) yields
2
s
bDRer + 57 [aN, — N(a + byy)] =0 (16)
2bDiB R, + aDyR,,. + 2bD;HR,,
2 bC,N, L +1,
— vy _ 2 17
+or bGJ + L N(ay0+b< S +y0) a7

=0

Egs. (16) and (17) are standard eigenvalue equations and
can be expressed as matrix form

[ (N, = N)m? DR Nmty, 1
‘ 2L e 7L
CuN, L+1, ay
|DR _Nn_zyo 71'_2 G]+T—N(T+_’y0 ) {b}_0(18)
e L 2L 4LR,,
[ 0z (D18, + D3H) |

By using torsional buckling load which is presented in
Eqg. (19), Eq. (18) can be rearranged to obtain a more
compact matrix form as Eq. (20).

2
m f‘ZCW + G]
N, =t (19)
— tW
[ (N, —N)m? _ Nm?y, 1
2L DaRer 2L

N,—N a
L+1 z =0(20)
Nm? 2fx Ty {b}
DyR,, — T Yo rr( S ><+4L(Dlﬁx+D3H)Rcr>
Yo

Eq. (20) is satisfied when the determinant of the
coefficients matrix is equal to zero. Finally, LTB load of
beam-column can be calculated following equation in
presence of a known axial load

2 KZZ - 2K2K3

T
R =7 Ki| Ko + K3 + (21)

K,
+2—K1(N —N,)(N—N,)

where K;, K,, K; and K, parameters can be defined as
follows

k=557 @22)

K; = (N — N,)(D1f, + D3H) (23)
K3 = D;Nyj (24)

R 29

At the end of the analytical work, calculating critical
LTB of the beam-columns with the mono-symmetric section
in presence of a known axial load can be summarized in
four steps. First, D;-Ds integral parameters can be found for
considered load case in Table 1. The flexural buckling load
Ny, and the torsional buckling load N, can be calculated
using Egs. (13) and (19), respectively. Then, K;, K,, K3 and
K4 can be calculated by using Egs. (22)-(25). Finally,
critical LTB load can be found by substituting calculated
parameters in closed-form Eq. (21).

3. Numerical investigations

In numerical computations, effects of axial loads,
slenderness and the load positions on the LTB loads of
doubly-symmetric and mono-symmetric beam-columns are
investigated. For this purpose, the analytical LTB loads are
calculated for different values of the axial load by using the
presented formula. The analytical solutions are compared to
numerical simulations. ABAQUS finite element software
was utilized to validate LTB solutions obtained by the
presented equation. Beam-columns were modeled with
S8R5 shell elements. S8R5 element has eight-nodes and
five degrees of freedom at a node (ABAQUS 2013). Mesh
studies have indicated that it would be adequate to use sixty
elements along the longitudinal direction, eight elements
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through the depth of the web and four elements across the
width of the flange (Aydin et al. 2015). Shell finite element
model and buckled shape are given in Fig. 4.

The results obtained by the present analytical model
were also compared with the results obtained using the
equation that exist in the study presented by Mohri et al.
(2013), which is the most comprehensive and novel work
related to lateral-buckling of the beam-column element with
the mono-symmetric section. The improved analytical
model presented by Mohri et al. (2013) includes the first-
order bending distribution, load height level, pre-buckling
deflection and the presence of axial loads and is based on
Galerkin’s approach.

Fig. 5 illustrates the sections which are used for
numerical examples. Section A is a doubly-symmetric I-
shape. Dimensions of Section B is similar to Section A,
except the width of the bottom flange. The bottom flange
width of Section B is reduced to half of its top flange width
in order to design mono-symmetric beam-column for
numerical examples. Section properties are shown in Table
2.
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Table 2 Section properties
Properties Section A Section B Properties
t; 11.3 mm 11.3 mm t
tw 7.5 mm 7.5 mm tw
by 90 mm 90 mm by
bbf 90 mm 45 mm bbf
h 200 mm 200 mm h
E 200000 N/mm? 200000 N/mm? E
G 76923 N/mm? 76923 N/mm? G
J 113110 mm* 91466.3 mm* J
Cuw 12.222%10° mm®  2.716*10° mm® Cuw
Iy 21.618*10° mm*  16.280*10° mm* Iy
Iy 1.379*10° mm*  0.779*10° mm* ly
A 3364.5 mm? 2856 mm? A
By 0 131.4 mm By
Yo 0 -56.6 mm Yo
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Table 3 Section A and section B under load case 1

Load Case 1, P (kN)

Load Axial load Section A Section B
position  (N/Ny)  pg AB PM PE/AB PE/PM PE AB  PM PE/AB PE/PM
000 2146 2011 2124 107 101 1713 1620 1795 1.06 0.95
010 2046 19.29 2020 1.06 1.01 1642 1566 17.10 1.05 0.96
020 1940 1841 19.09 105 1.02 1566 1508 1622 1.04 097
030 1826 17.44 1792 105 1.02 1485 1444 1529 1.03 097
Top 040  17.02 1637 1665 1.04 1.02 1398 1372 1429 1.02 0.98
Flange 050 1566 1517 1527 1.03 1.03 1301 1291 1322 1.01 0.8
060 1414 1379 1374 103 103 1194 1196 12,04 1.00 0.99
070 1238 1216 1199 102 1.03 1071 1107 1071 097  1.00
080 1025 1014 989 101 104 923 940 914 098 101
0.90 738 735 710 1.00 104 726 742 711 098 1.02
000 2526 2373 2494 106 101 1778 1683 1861 1.06 0.96
010 2390 2260 2352 106 1.02 1701 1625 1770 1.05 0.96
020 2247 2140 2205 105 1.02 1620 1561 1675 1.04 0.97
030 2096 20.10 2050 1.04 1.02 1533 1492 1576 1.03 097
Shear 040 1935 1869 1886 1.04 1.03 1439 1415 1470 1.02 0.8
Center 050 17.61 17.13 1711 103 1.03 1337 1327 1356 1.01 0.99
060 1571 1538 1521 1.02 1.03 1223 1226 1232 1.00 0.99
070 1356 1336 13.09 101 1.04 1094 1106 1092 099  1.00
0.80  11.04 1095 1062 1.01 104 939 956 929 098 1.01
0.90 779 776 747 100 104 735 751 719 098 1.02
0.00 2973 2800 2930 1.06 1.01 2258 2125 2343 106 096
010 2791 2648 2740 1.05 1.02 2135 2032 2203 105 097
020  26.02 2487 2546 1.05 1.02 2007 19.32 2059 104 097
0.30 2405 2315 2345 1.04 103 1874 1823 1911 103 098
Bottom 040 2199 2131 2136 103 1.03 1734 1705 1757 1.02 0.99
Flange 050 19.80 19.32 19.17 1.02 1.03 1586 1576 1596 1.01  0.99
060 1745 17.13 1684 1.02 1.04 1425 1430 1425 1.00 1.00
070 1486 1467 1430 101 1.04 1249 1246 1239 1.00 1.01
080 1190 11.81 1142 101 1.04 1046 1066 1030 098 1.02
0.90 821 819 786 1.00 105 793 810 773 098 1.03

* PE: Present analytical model, AB: Abaqus numerical analysis, PM: Presented by Mohri et al. (2013)

In this numerical study, LTB loads of beam-columns
were determined for three loading positions, which are the
top flange, shear center, and bottom flange in order to
examine the effect of load height level on LTB behavior of
beam-columns. For the span of 6 m, LTB loads of beam-
columns with section A and B subjected to load type 1 are
calculated in presence of different axial load varied from
N/Ny = 0 to N/N, = 0.9. The analytical and numerical
solutions are presented in Table 3 for section A and section
B.

Results in Table 3 have shown that the analytical
solutions are in good agreement with both the numerical
solutions and the results obtained by the analytical model
presented by Mohri et al. (2013). The greatest difference

between present analytical solutions and finite element
solutions are 7%. This difference is quite admissible for
present analytical model based on Ritz method where
simplified displacement functions (Egs. (4) and (5)) are
used in order to establish a closed-form equation (Trahair
1993, Aydin et al. 2015). However, extensive displacement
functions with more terms provide better convergence for
exact buckling loads (Trahair 1993, Yuan et al. 2013). The
maximum difference between present analytical solutions
and solutions which is obtained using the equation proposed
by Mohri et al. (2013) are 5%. It is considered that this very
small difference stems from the fact that the analytical
model presented by Mohri et al. (2013) includes the pre-
buckling deflection effect. The numerical study also
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Table 2 Section A and B under load case 2

Load Case 2, g (kN/m)

seutioq Load  Length N/Ny = 0.2 N/Ny = 0.8
positon (M) PE AB PM PE/ABPEPM PE AB PM PE/AB PE/PM
400 1786 17.75 17.97 101 099 935 932 925 100 101
500 921 914 927 101 099 481 481 476 100 101
600 538 533 541 101 099 280 280 277 100 101
F;I;\?l%e 700 341 338 344 101 099 177 177 175 100 101
800 230 228 232 101 099 119 120 118 100 101
900 163 161 164 101 099 084 084 083 100 101
1000 119 118 120 101 099 061 062 061 099 1.01
400 2120 21.05 21.38 101 099 1022 1020 1011 100 101
500 1060 1051 10.69 101 099 517 517 512 100 101
600 605 600 611 101 099 298 298 294 100 101
Section A ng‘rfferr 700 378 375 381 10l 099 187 187 18 100 101
800 252 250 254 101 099 125 125 123 100 101
900 176 175 178 101 099 088 088 086 099 101
1000 128 127 129 10l 099 064 064 063 099 1.01
400 2516 2492 2543 101 099 1117 1115 11.04 100 101
500 1220 1208 1233 101 099 556 555 550 100 101
600 682 675 68 101 099 316 316 313 100 101
BF‘I’;;‘;’: 700 419 415 423 101 099 197 197 194 100 101
800 276 273 279 101 099 131 131 129 100 101
900 191 190 193 101 099 091 092 090 099 101
1000 138 137 139 101 099 066 067 065 099 1.01
400 1523 1536 1690 099 090 936 974 974 096 096
500 759 7.63 826 100 092 453 468 466 097 097
600 432 433 463 100 093 251 259 257 097 098
FE‘;E 700 268 269 28 100 094 154 158 156 097 0.98
800 178 178 188 100 095 101 103 102 097 099
900 124 125 130 100 095 069 071 070 097 099
1000 090 090 094 100 096 050 052 050 097 0.99
400 1586 1600 17.58 099 090 956 994 994 096 096
500 7.84 7.88 853 099 092 460 476 474 097 097
6.00 443 445 476 100 093 255 263 261 097 098
Section B g:r?f‘err 700 275 275 292 100 094 155 160 158 097 0.8
800 182 18 192 100 095 102 105 103 097 099
9.00 126 127 133 100 095 070 072 071 097 099
1000 092 092 096 100 096 050 052 051 097 0.99
400 2043 20.63 2250 099 091 1088 1128 1127 096 097
500 964 970 1045 099 092 511 527 525 097 097
600 528 530 565 100 093 278 286 284 097 098
Ef;gg 700 319 320 339 100 094 168 172 170 097 0.98
800 207 208 219 100 095 109 112 110 097 099
9.00 142 143 149 100 095 074 077 075 097 099
1000 1.02 102 106 099 096 053 055 053 097 0.99

* PE: Present analytical model, AB: Abaqus numerical analysis, PM: Presented by Mohri et al. (2013)
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includes the investigation of the effect of the slenderness on
LTB behavior of beam-columns. LTB loads of section A and
section B subjected to uniformly distributed load is obtained
by the present analytical model for different slendernesses
varied from L = 4000 mm to L = 10000 mm, in presence of
a constant axial load of N/Ny = 0.2 and N/Ny = 0.8.
Analytical results and ABAQUS solutions are summarized
in Table 4 for section A and section B.

It is observed from Table 4 that LTB loads of section A
and section B with different slendernesses subjected to
uniformly distributed load calculated by using present
closed-form equation are in excellent accordance with both
ABAQUS results and the results obtained by the analytical
model presented by Mohri et al. (2013). It can be suggested
that the proposed equation can be safely used to calculate
the elastic critical LTB loads of beam-column members
with the mono-symmetric cross-section in presence of an
axial load.

4. Conclusions

This paper presents a unique compact closed-form
equation based on Ritz Method in order to describe the LTB
behavior of beam-columns with mono-symmetric section
subjected to constant axial force and various transverse load
cases. The effect of axial loads, slenderness and load
positions on LTB loads of beam-columns are investigated
by using the proposed equation. ABAQUS finite element
software was utilized to validate LTB loads obtained by the
presented equation. It can be concluded that the results
obtained by the presented equation are in good accordance
with ABAQUS results. It is concluded that the proposed
equation can be safely used in the design of mono-
symmetric beam-column members.
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