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1. Introduction 

 

Beam-columns are structural members that combine the 

beam function of transmitting transverse forces or moments 

with the compression (or tension) member function of 

transmitting axial forces. Beam-columns are mostly loaded 

in the plane of the weak axis so that bending occurs about 

their strong axis. First order bending moments and in-plane 

deformations are produced by the end moments and 

transverse loadings of the beam-column, while axial force 

will produce second-order moments and additional in-plane 

deformations. When the values of the loads on the beam-

column reach a limiting state, the member will experience 

out of plane bending and twisting. At this limiting state, the 

compression flange of the member becomes unstable and 

bends laterally while the remainder of the cross-section, 

which is stable, tends to restrain the lateral flexure of the 

compression flange. The net effect is that the whole section 

rotates and moves laterally. Lateral-torsional buckling 

(LTB) failure occurs suddenly in slender beam-columns 

with a much greater in-plane bending stiffness than their 

lateral bending or torsional stiffnesses (Torkamani and 

Roberts 2009). LTB is often the main failure mode 

controlling the strength of thin-walled structures and should 
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be considered in the design of slender beam-columns with 

insufficient lateral bracing due to it may occur long before 

the bending stress at the extreme fiber of the section reaches 

to yield point. Fig. 1 illustrates LTB of beam-column with I-

section. The limit state of the applied loads on the beam-

column members is called as the critical elastic LTB load. 

The cross-section of the member, the unbraced length of the 

member, the support conditions, the type of loads acting on 

the member, the vertical positions of the applied loads with 

respect to the shear center are effective on LTB behavior of 

mono-symmetric beam-columns. The general concept of 

flexural buckling and LTB of structural members has been 

well presented in many textbooks (Timoshenko and Gere 

1961, Chen and Lui 1987, Chen and Atsuta 1977, Galambos 

and Surovek 2008, Trahair 1993). 

The differential equilibrium equations obtained for 

critical LTB load of an axially loaded beam subjected to 

uniform bending can be solved and presented in closed 

form by considering the boundary conditions (Trahair 1993, 

Salvadori 1956, Hill and Clark 1951). However, the 

analytical solutions are either too complex or involve 

infinite series for load types where moment gradient is not 

constant. In a situation like this, the solution of differential 

equilibrium equations mostly requires use of numerical 

approaches such as finite difference (Bleich 1952, Chajes 

1974, Assadi and Roeder 1985, Suryoatmono and Ho 2002, 

Serna et al. 2006), finite integral (Kitipornchai and Trahair 

1975, Kitipornchai and Richter 1978, Kitipornchai et al. 

1984, 1986), finite element (Barsoum and Gallagher 1970, 

Powel and Klingner 1970, Hancock and Trahair 1978, 
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Abstract.  Beam-columns are structural members subjected to a combination of axial and bending forces. Lateral-torsional 

buckling is one of the main failure modes. Beam-columns that are bent about its strong axis may buckle out of the plane by 

deflecting laterally and twisting as the values of the applied loads reach a limiting state. Lateral-torsional buckling failure occurs 

suddenly in beam-column elements with a much greater in-plane bending stiffness than torsional or lateral bending stiffness. 

This study intends to establish a unique convenient closed-form equation that it can be used for calculating critical elastic lateral-

torsional buckling load of beam-column in the presence of a known axial load. The presented equation includes first order 

bending distribution, the position of the loads acting transversely on the beam-column and mono-symmetry property of the 

section. Effects of axial loads, slenderness and load positions on lateral torsional buckling behavior of beam-columns are 

investigated. The proposed solutions are compared to finite element simulations where thin-walled shell elements including 

warping are used. Good agreement between the analytical and the numerical solutions is demonstrated. It is found out that the 

lateral-torsional buckling load of beam-columns with mono-symmetric sections can be determined by the presented equation 

and can be safely used in design procedures. 
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Fig. 1 LTB of beam-column with I-section 
 

 

Bradford and Ronagh 1997, Papangelis et al. 1998, Lim et 

al. 2003, Lee et al. 1994, Park et al. 2004, Gu and Chan 

2005, Mohri et al. 2008a) or finite strip (Bui 2009, 2012, 

Adany and Schafer 2014, Naderian and Ronagh 2015) 

methods. 

Energy method is based on the equality between the 

additional strain energy stored during LTB and the 

additional work done by the applied forces. In this method, 

the LTB load is calculated by substituting an approximate 

buckled shape which satisfies the kinematic boundary 

conditions and corresponds to real mode shape into the 

energy equation. Kinematic boundary conditions are related 

to geometrical constraints preventing one or more 

deflections or rotations at the support of the structural 

members (Trahair 1993). Extensive studies are carried out 

in order to describe LTB behavior of thin-walled members 

using energy method. Wang and Kitipornchai studied LTB 

of mono-symmetric cantilevers using both the Ritz method 

and the finite integral method (Wang and Kitipornchai 

1986). Aydin et al. (2015) presented a compact closed-form 

equation to calculate LTB loads of simply supported beams 

with mono-symmetric I-section. Aydin et al. (2013) studied 

the LTB behavior of double angle and tee section 

cantilevers. Mohri et al. (2003) recomputed 3-factor 

formula, which is commonly used for calculation of elastic 

LTB loads of beams, and proposed some improvements. 

Yilmaz and Kirac (2017) introduced an analytical study to 

evaluate elastic LTB load of both doubly-symmetric and 

mono-symmetric I-section beams. This study also includes 

a parametric study where a simplified equation is proposed 

for calculating the LTB load of the beams with European 

standard I-section. The LTB of Europen wide flange I-

section beam is also studied by Yilmaz et al. (2017). 

Andrade and Camotim (2004) developed an analytical 

treatment for LTB behavior of doubly-symmetric prismatic 

and tapered beams. In this study, the effect of pre-buckling 

deflections on LTB behavior of both simply-supported 

beams and cantilever beams, which are prismatic and web-

tapered, is investigated. LTB behavior of steel beams with 

simultaneously tapered flanges and web were studied by 

Kus (2015). This study revealed that tapering of flanges 

affects much more the critical moments than tapering of the 

web. The LTB loads of singly and doubly symmetric I-

section cantilevers were investigated by Andrade et al. 

(2007). Ozbasaran et al. (2015) developed an alternative 

design procedure for cantilever I-section and introduced a 

parametric formula based on the energy method to calculate 

LTB load. The proposed design procedure was compared 

with code specifications and FEA. Yuan et al. (2013) 

improved an analytical model to determine the LTB 

behavior of steel web tapered tee-section cantilevers. Kim 

et al. (2016) studied LTB of castellated beams. LTB of the 

simply supported channel and Z-section purlins with top 

flange horizontally restrained are investigated by Zhang and 

Tong (2016). Mohammadi et al. (2016) studied the bracing 

stiffness requirements of mono-symmetric I-beams with 

discrete torsional braces under pure bending condition. 

Benyamina et al. (2013) introduced an analytical formula to 

assess LTB behavior of the double-symmetric web tapered 

I-section beam in function of the classical stiffness terms, 

the load height level, and the tapering parameter. LTB of the 

tapered thin-walled beam with arbitrary cross-section and 

boundary conditions are investigated using the numerical 

method based on power series by Asgarian et al. (2013). 

The shape optimization of tapered I-beams with lateral-

torsional buckling, deflection and stress constraints are 

investigated by Ozbasaran and Yilmaz (2018). Thai et al. 

(2017) improved novel refined plastic hinge analysis 

technique including the effect of the LTB and local 

buckling. 

Related to LTB of beam-columns, Wang and 

Kitipornchai (1989) proposed a set of buckling parameters 

to describe LTB behavior of mono-symmetric beam-

columns under uniform moment or eccentric axial loads. 

Torkomani and Roberts (2009) derived the energy equations 

for doubly symmetric beam-column members by expressing 

in dimensional and non-dimensional forms. Magnucka-

Blandzi (2009) investigated beam-columns with I-section 

subjected to a uniformly distributed transverse load, small 

axial force and two different moments located at its both 

ends. Cheng et al. (2013) studied flexural buckling and LTB 

of cold-formed channel section beams under combined 

compression and biaxial bending. They also concluded the 

effect of non-symmetric pre-buckling stress due to bending 

about the minor axis distribution on LTB of channel beams. 

Kucukler et al. (2015) introduced a stiffness reduction 

method for the flexural-torsional buckling assessment of 

steel beam-columns subjected to major axis bending and 

axial compression. Soula et al. (2016) demonstrated that the 

distortion deformations are effective on the elastic lateral 

buckling behavior of thin-walled box beam elements under 

combined bending and axial forces. Challamel et al. (2010) 

investigated the elastic flexural-torsional buckling of 

linearly tapered cantilever strip beam-columns subjected to 

axial and transversal point loads applied at the tip. In this 

study, the governing differential equation is integrated into 

closed form by means of confluent hypergeometr ic 
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functions for prismatic and wedge-shaped members. For 

general tapered members, solutions are presented using 

Frobenius series and numerical treatment. Gu and Chan 

(2005) developed finite element formulation which can be 

used the geometrically nonlinear analysis of the space 

beam-column members allowing for axial–flexural, lateral–

torsional and axial–torsional buckling. The quite detailed 

study where the non-linear stability model for LTB of 

beam-column elements with doubly-symmetric I-section is 

established has been introduced by Mohri et al. (2008b). 

The present analytical model included first-order bending 

distribution, load height level, and presence of axial loads. 

Then, this analytical model is further improved by Mohri et 

al. (2013) to consider the mono-symmetry property of 

beam-columns. Besides, with the improvements performed, 

the three-factor formula which is developed for beam 

stability Mohri et al. (2003) has been extended with the 

fourth factor for the presence of the axial load. These two 

advanced studies which are developed for calculation LTB 

load of doubly-symmetric and mono-symmetric beam 

columns using Galerkin’s approach considers the effect of 

pre-buckling deflections and also includes the finite element 

analysis verifications. Tankova et al. (2017) introduced a 

new design proposal for the out of plane buckling resistance 

of the prismatic beam-columns subject to axial compression 

 

 

and uniaxial major-axis bending that was developed based 

on the well-known Ayrton-Perry format. The study focused 

on elastic LTB of tapered beams with doubly-symmetric 

section subjected to combined bending and axial forces 

were presented by Osmani and Meftah (2018). The effect of 

shear deformation is also considered in the study. Optimal 

design of beam-column beam-columns with I-section 

considering stress, deflection and stability constraints is 

studied by Ozbasaran (2018). 

This study focused on the effects of axial forces on 

lateral buckling behavior of beams with mono-symmetric 

cross sections. Ritz method is utilized in order to establish a 

unique compact closed-form equation by considering the 

total potential energy of beam-column elements subjected 

to a constant axial force and various transverse load cases. 

The presented equation includes first order bending 

distribution, the position of the loads acting transversely on 

the beam-column member respect to the shear center, the 

mono-symmetry property of the section and the interaction 

between buckling and lateral-torsional buckling. The effects 

of axial loads, slenderness and load positions on LTB of 

both doubly-symmetric and mono-symmetric beam-

columns are investigated. The presented solutions are 

compared to finite element analysis in which beam-column 

members are modeled with shell elements (S8R5) including 
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Fig. 2 LTB of mono-symmetric beam-column: (a) side view; (b) a-a section 

473



 

Tolga Yilmaz, Nevzat Kiraç and Ö zgür Anil 

warping. It is observed that the closed-form solutions are in 

good agreement with the finite element simulation. 

 

 

2. Analytical study 
 

The LTB of mono-symmetric beam-columns consists of 

two stages. First, combined transversely and compressive 

axially loaded beam-column bends about its major axis, and 

then it buckles by bending laterally and twisting as the 

magnitude of the loads acting on the beam-column reaches 

to a critical level. Fig. 2 shows the LTB of beam-column 

with mono-symmetric I-section subjected to an axial force 

that acts through the centroid of the cross section and 

concentrated force that acts transversely at mid-span. 

In Fig. 2(a), L is the beam-column length. a-a section of 

beam-column is drawn in Fig. 2(b). S and C show the shear 

center and the center of gravity of the section, respectively. 

u is the lateral displacement of the shear center, v is vertical 

displacement of the shear center and φ is the torsional 

rotation. y0 is the distance measured from the center of 

gravity to the shear center. By utilizing Vlassov’s model, 

which assumes that the cross section is rigid in its plane, 

hence there is no distortion deformation of the section and 

the shear deformation in the mean surface of the section are 

negligible (Mohri et al. 2003). The total potential energy of 

the beam-column given in Fig 2, at a slightly buckled 

configuration can be written as follows by disregarding pre-

buckling deflections (Trahair 1993). 
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(1) 

 

where E is young modulus, G is shear modulus, S is area of 

cross-section, Ix is moment of inertia about strong axis, Iy is 

moment of inertia about weak axis, Cw is warping constant, 

J is torsional constant and Mx is the bending moment about 

strong axis and N is constant compressive axial load. 

Wanger’s coefficient βx associated with a mono-symmetry 

property of the cross section is defined by Eq. (2) (Trahair 

1993). 
 

𝛽𝑥 =
1

𝐼𝑥
 𝑦 𝑥2 + 𝑦2 𝑑𝑆 − 2𝑦0
𝑆

 (2) 

 

where x and y are Cartesian coordinates of the infinitesimal 

area (dS). y0 is positive when the shear center below the 

center of gravity. Wh is work done by loads which are 

acting outside of the shear center. This work results from 

changing of the distance between the application points of 

the loads and the shear center as cross-section rotates. Wh 

can be calculated by (3) as 

 

𝑊ℎ =
1

2
 𝑃𝐻𝑝𝜙𝑝

2 +
1

2
 𝑞𝐻𝑞𝜙

2𝑑𝑧

𝐿

0

 (3) 

 

where Hp and Hq are the vertical distance of the acting point 

of the concentrated (P) and uniformly distributed loads (q) 

measured from the shear center, respectively. ɸp is the 

torsional rotation at a point in which the concentrated load 

is applied. In (3), Hp and Hq are positive for loads that act in 

below the shear center. 

Assume that when lateral-torsional buckling occurs, the 

lateral displacement of beam-column defined at the shear 

center and the angle of rotation of the cross-section can be 

described as follows 

 

𝑢 = 𝑎 sin
𝜋

𝐿
𝑧 (4) 

 

𝜙 = 𝑏 sin
𝜋

𝐿
𝑧 (5) 

 

where A and B are the associated displacement amplitudes. 

Note that the displacement functions assumed in Eqs. (4)-

(5) satisfy the simply supported boundary conditions (u = ϕ 

= 0 and d2u/dz2 = d2ϕ/dz2 = 0) at supports (z = 0 and z = L). 

The strain energy stored in the beam-column due to 

lateral bending, warping, and torsion can be calculated 

using the following formula 
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(6) 

 

Substituting buckling displacements in Eqs. (4)-(5) into 

Eq. (6) yields 

 

𝑈 =
𝑎2𝜋4𝐸𝐼𝑦
4𝐿3

+
𝑏2𝜋4𝐸𝐶𝑤
4𝐿3

+
𝑏2𝜋2𝐺𝐽

4𝐿
 (7) 

 

The work done by constant compressive axial forces is 

as 

𝑉1 = −
1

2
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2
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(8) 

 

By substituting Eqs. (4)-(5) into Eq. (8), the work done 

by the axial force can be written as 

 

𝑉1 = −
𝑁𝜋2 𝑎2𝑆 + 2𝑎𝑏𝑆𝑦0 + 𝑏

2 𝐼𝑥 + 𝐼𝑦 + 𝑆𝑦0
2  

4𝐿𝑆
 (9) 
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The work done by external transverse forces is as 
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(10) 

 

Assuming that the vertical positions of all transverse 

loads on the beam-column are same (Hp = Hq = H) and 

substituting displacement functions into Eq. (10), the work 

done by transverse forces can be written in the following 

compact form 

 

𝑉2 = 𝐷1𝑏
2𝛽𝑥𝑅𝑐𝑟 + 𝐷2𝑎𝑏𝑅𝑐𝑟 + 𝐷3𝑏

2𝐻𝑅𝑐𝑟  (11) 

 

 

Where D1, D2, and D3 are integral parameters depending 

on moment gradient about the strong axis along the beam 

length. In this study, D1, D2, and D3 coefficients are 

calculated for eight load types shown in Fig. 3 and 

presented in Table 1. 

In Eq. (9), Rcr is the critical load which can be expressed 

by Eq. (10) depending on the load type acting on the beam. 
 

𝑅𝑐𝑟 = 𝑃𝑐𝑟 = 𝑞𝑐𝑟𝐿 =
𝑀𝑐𝑟

𝐿
 (12) 

 

where Pcr, qcr and Mcr are critical concentrated load, 

uniformly distributed load and moment, respectively. It is 

noted that the critical buckling load type varies according to 

considered loading case. For load case 3 in Fig. 3, the 

critical LTB load is in terms of qcr which implies that the 

critical values of uniformly distributed load and 
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Table 1 Material ratios for 1 m3 concrete 

Load type D1 D2 D3 

P 0.183425 -0.86685 0.5 

q 0.143117 -0.536234 0.25 

q+0.5qL 0.234829 -0.969659 0.5 

q+qL 0.326542 -1.40308 0.75 

P+P  (L/3) 0.360811 -1.47162 0.75 

M 2.4674 -4.9348 0 

P+P (L/4) 0.337638 -1.17528 0.5 

M+0.5M 1.85055 -3.7011 0 
 

 

 

concentrated load are qcr and 0.5qcrL, respectively. 

Using the flexural buckling load which is presented in 

Eq. (13), the total potential energy of the beam-column Π = 

U + V1 + V2 can be written as Eq. (14) 

 

𝑁𝑦 =
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When buckling occurs, the total energy function reaches 

a stationary condition, which requires 
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Substituting Eq. (14) into Eq. (15) yields 
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Eqs. (16) and (17) are standard eigenvalue equations and 

can be expressed as matrix form 
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By using torsional buckling load which is presented in 

Eq. (19), Eq. (18) can be rearranged to obtain a more 

compact matrix form as Eq. (20). 
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𝑁𝑧 − 𝑁

+
4𝐿 𝐷1𝛽𝑥 + 𝐷3𝐻 𝑅𝑐𝑟

𝜋2  
𝐼𝑥+𝐼𝑦

𝑆
+ 𝑦0

2 

 

 
 
 
 
 
 

 
𝑎
𝑏
 = 0 (20) 

 

Eq. (20) is satisfied when the determinant of the 

coefficients matrix is equal to zero. Finally, LTB load of 

beam-column can be calculated following equation in 

presence of a known axial load 

 

𝑅𝑐𝑟 =
𝜋2

𝐿
𝐾1  −𝐾2 + 𝐾3 + 

𝐾2
2 − 2𝐾2𝐾3

+
𝐾4
2𝐾1

 𝑁 − 𝑁𝑦  𝑁 − 𝑁𝑧 
  (21) 

 

where K1, K2, K3, and K4 parameters can be defined as 

follows 

 

𝐾1 =
1

2𝐷2
2 (22) 

 

𝐾2 = (𝑁 − 𝑁𝑦)(𝐷1𝛽𝑥 + 𝐷3𝐻) (23) 

 

𝐾3 = 𝐷2𝑁𝑦0 (24) 

 

𝐾4 =
𝐼𝑥 + 𝐼𝑦
𝑆

+ 𝑦0
2 (25) 

 

At the end of the analytical work, calculating critical 

LTB of the beam-columns with the mono-symmetric section 

in presence of a known axial load can be summarized in 

four steps. First, D1-D3 integral parameters can be found for 

considered load case in Table 1. The flexural buckling load 

Ny and the torsional buckling load Nz can be calculated 

using Eqs. (13) and (19), respectively. Then, K1, K2, K3, and 

K4 can be calculated by using Eqs. (22)-(25). Finally, 

critical LTB load can be found by substituting calculated 

parameters in closed-form Eq. (21). 

 

 

3. Numerical investigations 
 

In numerical computations, effects of axial loads, 

slenderness and the load positions on the LTB loads of 

doubly-symmetric and mono-symmetric beam-columns are 

investigated. For this purpose, the analytical LTB loads are 

calculated for different values of the axial load by using the 

presented formula. The analytical solutions are compared to 

numerical simulations. ABAQUS finite element software 

was utilized to validate LTB solutions obtained by the 

presented equation. Beam-columns were modeled with 

S8R5 shell elements. S8R5 element has eight-nodes and 

five degrees of freedom at a node (ABAQUS 2013). Mesh 

studies have indicated that it would be adequate to use sixty 

elements along the longitudinal direction, eight elements 
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through the depth of the web and four elements across the 

width of the flange (Aydin et al. 2015). Shell finite element 

model and buckled shape are given in Fig. 4. 

The results obtained by the present analytical model 

were also compared with the results obtained using the 

equation that exist in the study presented by Mohri et al. 

(2013), which is the most comprehensive and novel work 

related to lateral-buckling of the beam-column element with 

the mono-symmetric section. The improved analytical 

model presented by Mohri et al. (2013) includes the first-

order bending distribution, load height level, pre-buckling 

deflection and the presence of axial loads and is based on 

Galerkin’s approach. 

Fig. 5 illustrates the sections which are used for 

numerical examples. Section A is a doubly-symmetric I-

shape. Dimensions of Section B is similar to Section A, 

except the width of the bottom flange. The bottom flange 

width of Section B is reduced to half of its top flange width 

in order to design mono-symmetric beam-column for 

numerical examples. Section properties are shown in Table 

2. 

 

 

 

Table 2 Section properties 

Properties Section A Section B Properties 

tf 11.3 mm 11.3 mm tf 

tw 7.5 mm 7.5 mm tw 

btf 90 mm 90 mm btf 

bbf 90 mm 45 mm bbf 

h 200 mm 200 mm h 

E 200000 N/mm2 200000 N/mm2 E 

G 76923 N/mm2 76923 N/mm2 G 

J 113110 mm4 91466.3 mm4 J 

Cw 12.222*109 mm6 2.716*109 mm6 Cw 

Ix 21.618*106 mm4 16.280*106 mm4 Ix 

Iy 1.379*106 mm4 0.779*106 mm4 Iy 

A 3364.5 mm2 2856 mm2 A 

βx 0 131.4 mm βx 

y0
 0 -56.6 mm y0

 

 

 

 

Fig. 4 (a) Shell finite element model; (b) buckled shape 

  

(a) (b) 

Fig. 5 (a) Section A; (b) Section B 
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In this numerical study, LTB loads of beam-columns 

were determined for three loading positions, which are the 

top flange, shear center, and bottom flange in order to 

examine the effect of load height level on LTB behavior of 

beam-columns. For the span of 6 m, LTB loads of beam-

columns with section A and B subjected to load type 1 are 

calculated in presence of different axial load varied from 

N/Ny = 0 to N/Ny = 0.9. The analytical and numerical 

solutions are presented in Table 3 for section A and section 

B. 

Results in Table 3 have shown that the analytical 

solutions are in good agreement with both the numerical 

solutions and the results obtained by the analytical model 

presented by Mohri et al. (2013). The greatest difference 

 

 

between present analytical solutions and finite element 

solutions are 7%. This difference is quite admissible for 

present analytical model based on Ritz method where 

simplified displacement functions (Eqs. (4) and (5)) are 

used in order to establish a closed-form equation (Trahair 

1993, Aydin et al. 2015). However, extensive displacement 

functions with more terms provide better convergence for 

exact buckling loads (Trahair 1993, Yuan et al. 2013). The 

maximum difference between present analytical solutions 

and solutions which is obtained using the equation proposed 

by Mohri et al. (2013) are 5%. It is considered that this very 

small difference stems from the fact that the analytical 

model presented by Mohri et al. (2013) includes the pre-

buckling deflection effect. The numerical study also 

Table 3 Section A and section B under load case 1 

Load Case 1, P (kN) 

Load 

position 

Axial load 

(N/Ny) 

Section A Section B 

PE AB PM PE/AB PE/PM PE AB PM PE/AB PE/PM 

Top 

Flange 

0.00 21.46 20.11 21.24 1.07 1.01 17.13 16.20 17.95 1.06 0.95 

0.10 20.46 19.29 20.20 1.06 1.01 16.42 15.66 17.10 1.05 0.96 

0.20 19.40 18.41 19.09 1.05 1.02 15.66 15.08 16.22 1.04 0.97 

0.30 18.26 17.44 17.92 1.05 1.02 14.85 14.44 15.29 1.03 0.97 

0.40 17.02 16.37 16.65 1.04 1.02 13.98 13.72 14.29 1.02 0.98 

0.50 15.66 15.17 15.27 1.03 1.03 13.01 12.91 13.22 1.01 0.98 

0.60 14.14 13.79 13.74 1.03 1.03 11.94 11.96 12.04 1.00 0.99 

0.70 12.38 12.16 11.99 1.02 1.03 10.71 11.07 10.71 0.97 1.00 

0.80 10.25 10.14 9.89 1.01 1.04 9.23 9.40 9.14 0.98 1.01 

0.90 7.38 7.35 7.10 1.00 1.04 7.26 7.42 7.11 0.98 1.02 

Shear 

Center 

0.00 25.26 23.73 24.94 1.06 1.01 17.78 16.83 18.61 1.06 0.96 

0.10 23.90 22.60 23.52 1.06 1.02 17.01 16.25 17.70 1.05 0.96 

0.20 22.47 21.40 22.05 1.05 1.02 16.20 15.61 16.75 1.04 0.97 

0.30 20.96 20.10 20.50 1.04 1.02 15.33 14.92 15.76 1.03 0.97 

0.40 19.35 18.69 18.86 1.04 1.03 14.39 14.15 14.70 1.02 0.98 

0.50 17.61 17.13 17.11 1.03 1.03 13.37 13.27 13.56 1.01 0.99 

0.60 15.71 15.38 15.21 1.02 1.03 12.23 12.26 12.32 1.00 0.99 

0.70 13.56 13.36 13.09 1.01 1.04 10.94 11.06 10.92 0.99 1.00 

0.80 11.04 10.95 10.62 1.01 1.04 9.39 9.56 9.29 0.98 1.01 

0.90 7.79 7.76 7.47 1.00 1.04 7.35 7.51 7.19 0.98 1.02 

Bottom 

Flange 

0.00 29.73 28.00 29.30 1.06 1.01 22.58 21.25 23.43 1.06 0.96 

0.10 27.91 26.48 27.40 1.05 1.02 21.35 20.32 22.03 1.05 0.97 

0.20 26.02 24.87 25.46 1.05 1.02 20.07 19.32 20.59 1.04 0.97 

0.30 24.05 23.15 23.45 1.04 1.03 18.74 18.23 19.11 1.03 0.98 

0.40 21.99 21.31 21.36 1.03 1.03 17.34 17.05 17.57 1.02 0.99 

0.50 19.80 19.32 19.17 1.02 1.03 15.86 15.76 15.96 1.01 0.99 

0.60 17.45 17.13 16.84 1.02 1.04 14.25 14.30 14.25 1.00 1.00 

0.70 14.86 14.67 14.30 1.01 1.04 12.49 12.46 12.39 1.00 1.01 

0.80 11.90 11.81 11.42 1.01 1.04 10.46 10.66 10.30 0.98 1.02 

0.90 8.21 8.19 7.86 1.00 1.05 7.93 8.10 7.73 0.98 1.03 
 

* PE: Present analytical model, AB: Abaqus numerical analysis, PM: Presented by Mohri et al. (2013) 
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Table 2 Section A and B under load case 2 

Load Case 2, q (kN/m) 

Section 
Load 

position 

Length 

(m) 

N/Ny = 0.2 N/Ny = 0.8 

PE AB PM PE/AB PE/PM PE AB PM PE/AB PE/PM 

Section A 

Top 

Flange 

4.00 17.86 17.75 17.97 1.01 0.99 9.35 9.32 9.25 1.00 1.01 

5.00 9.21 9.14 9.27 1.01 0.99 4.81 4.81 4.76 1.00 1.01 

6.00 5.38 5.33 5.41 1.01 0.99 2.80 2.80 2.77 1.00 1.01 

7.00 3.41 3.38 3.44 1.01 0.99 1.77 1.77 1.75 1.00 1.01 

8.00 2.30 2.28 2.32 1.01 0.99 1.19 1.20 1.18 1.00 1.01 

9.00 1.63 1.61 1.64 1.01 0.99 0.84 0.84 0.83 1.00 1.01 

10.00 1.19 1.18 1.20 1.01 0.99 0.61 0.62 0.61 0.99 1.01 

Shear 

Center 

4.00 21.20 21.05 21.38 1.01 0.99 10.22 10.20 10.11 1.00 1.01 

5.00 10.60 10.51 10.69 1.01 0.99 5.17 5.17 5.12 1.00 1.01 

6.00 6.05 6.00 6.11 1.01 0.99 2.98 2.98 2.94 1.00 1.01 

7.00 3.78 3.75 3.81 1.01 0.99 1.87 1.87 1.85 1.00 1.01 

8.00 2.52 2.50 2.54 1.01 0.99 1.25 1.25 1.23 1.00 1.01 

9.00 1.76 1.75 1.78 1.01 0.99 0.88 0.88 0.86 0.99 1.01 

10.00 1.28 1.27 1.29 1.01 0.99 0.64 0.64 0.63 0.99 1.01 

Bottom 

Flange 

4.00 25.16 24.92 25.43 1.01 0.99 11.17 11.15 11.04 1.00 1.01 

5.00 12.20 12.08 12.33 1.01 0.99 5.56 5.55 5.50 1.00 1.01 

6.00 6.82 6.75 6.89 1.01 0.99 3.16 3.16 3.13 1.00 1.01 

7.00 4.19 4.15 4.23 1.01 0.99 1.97 1.97 1.94 1.00 1.01 

8.00 2.76 2.73 2.79 1.01 0.99 1.31 1.31 1.29 1.00 1.01 

9.00 1.91 1.90 1.93 1.01 0.99 0.91 0.92 0.90 0.99 1.01 

10.00 1.38 1.37 1.39 1.01 0.99 0.66 0.67 0.65 0.99 1.01 

Section B 

Top 

Flange 

4.00 15.23 15.36 16.90 0.99 0.90 9.36 9.74 9.74 0.96 0.96 

5.00 7.59 7.63 8.26 1.00 0.92 4.53 4.68 4.66 0.97 0.97 

6.00 4.32 4.33 4.63 1.00 0.93 2.51 2.59 2.57 0.97 0.98 

7.00 2.68 2.69 2.85 1.00 0.94 1.54 1.58 1.56 0.97 0.98 

8.00 1.78 1.78 1.88 1.00 0.95 1.01 1.03 1.02 0.97 0.99 

9.00 1.24 1.25 1.30 1.00 0.95 0.69 0.71 0.70 0.97 0.99 

10.00 0.90 0.90 0.94 100 0.96 0.50 0.52 0.50 0.97 0.99 

Shear 

Center 

4.00 15.86 16.00 17.58 0.99 0.90 9.56 9.94 9.94 0.96 0.96 

5.00 7.84 7.88 8.53 0.99 0.92 4.60 4.76 4.74 0.97 0.97 

6.00 4.43 4.45 4.76 1.00 0.93 2.55 2.63 2.61 0.97 0.98 

7.00 2.75 2.75 2.92 1.00 0.94 1.55 1.60 1.58 0.97 0.98 

8.00 1.82 1.82 1.92 1.00 0.95 1.02 1.05 1.03 0.97 0.99 

9.00 1.26 1.27 1.33 1.00 0.95 0.70 0.72 0.71 0.97 0.99 

10.00 0.92 0.92 0.96 1.00 0.96 0.50 0.52 0.51 0.97 0.99 

Bottom 

Flange 

4.00 20.43 20.63 22.50 0.99 0.91 10.88 11.28 11.27 0.96 0.97 

5.00 9.64 9.70 10.45 0.99 0.92 5.11 5.27 5.25 0.97 0.97 

6.00 5.28 5.30 5.65 1.00 0.93 2.78 2.86 2.84 0.97 0.98 

7.00 3.19 3.20 3.39 1.00 0.94 1.68 1.72 1.70 0.97 0.98 

8.00 2.07 2.08 2.19 1.00 0.95 1.09 1.12 1.10 0.97 0.99 

9.00 1.42 1.43 1.49 1.00 0.95 0.74 0.77 0.75 0.97 0.99 

10.00 1.02 1.02 1.06 0.99 0.96 0.53 0.55 0.53 0.97 0.99 
 

* PE: Present analytical model, AB: Abaqus numerical analysis, PM: Presented by Mohri et al. (2013) 
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includes the investigation of the effect of the slenderness on 

LTB behavior of beam-columns. LTB loads of section A and 

section B subjected to uniformly distributed load is obtained 

by the present analytical model for different slendernesses 

varied from L = 4000 mm to L = 10000 mm, in presence of 

a constant axial load of N/Ny = 0.2 and N/Ny = 0.8. 

Analytical results and ABAQUS solutions are summarized 

in Table 4 for section A and section B. 

It is observed from Table 4 that LTB loads of section A 

and section B with different slendernesses subjected to 

uniformly distributed load calculated by using present 

closed-form equation are in excellent accordance with both 

ABAQUS results and the results obtained by the analytical 

model presented by Mohri et al. (2013). It can be suggested 

that the proposed equation can be safely used to calculate 

the elastic critical LTB loads of beam-column members 

with the mono-symmetric cross-section in presence of an 

axial load. 

 

 

4. Conclusions 
 

This paper presents a unique compact closed-form 

equation based on Ritz Method in order to describe the LTB 

behavior of beam-columns with mono-symmetric section 

subjected to constant axial force and various transverse load 

cases. The effect of axial loads, slenderness and load 

positions on LTB loads of beam-columns are investigated 

by using the proposed equation. ABAQUS finite element 

software was utilized to validate LTB loads obtained by the 

presented equation. It can be concluded that the results 

obtained by the presented equation are in good accordance 

with ABAQUS results. It is concluded that the proposed 

equation can be safely used in the design of mono-

symmetric beam-column members. 
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