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1. Introduction 

 

Composite structures are widely used in various 

industries, especially in the aerospace industry, due to their 

high specific strength and stiffness ratio. However, buckling 

and instability occur in the thin-walled cylindrical shells if 

the axial compressive load exceeds the design load. In the 

construction of aerospace structures the use of cylindrical 

shell-type components with cutout sections are unavoidable. 

Different shapes of cutouts are used in order to make doors 

or windows, decrease the structure weight or cross various 

mechanisms. Cutouts due to making high stress 

concentration affect the buckling behavior of the structure. 

Therefore, the design of thin-walled composite cylindrical 

shells with cutouts is of great important for engineers. The 

NASA empirical guideline (NASA-SP 8007) (Peterson et 

al. 1968) is mostly used for the buckling analysis and 

design of cylindrical structures. This guideline was first 

presented in 1968 and was then modified by Arbocz and 

Starnes (2002). According to this guideline, the changes in 

the knock-down factor (KDF or ρ: the ratio of the actual 

buckling load to the theoretical buckling load) are plotted, 

as seen in Fig. 1, versus the ratio of the cylinder radius to 

the thickness (R/t). Fig. 1 has been obtained from the 

buckling tests of metallic cylinders. The buckling load 

predicted for composite cylindrical shells from this diagram 
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is conservative due to the increased precision of fabrication 

and loading using advanced construction and testing 

devices. Also, geometric parameters significantly affect the 

buckling load, but the NASA-SP 8007 diagram only 

considers the influence of cylinder thickness and radius. In 

other words, it is independent of cylinder length. Wagner et 

al. (2017a, b) proposed a robust design criterion for axially 

loaded cylindrical shells in order to improve NASA-SP 

8007 with the aid of the single boundary perturbation 

approach. They concluded that the KDF values of short 

thin-walled shells (i.e., L/R≈1-2, R/t > 200) and long thick-

walled shells (i.e., L/R > 3, R/t < 250) are significantly 

higher and lower, respectively than the values reported in 

NASA SP-8007. In addition to geometric effects, the impact 

of cutouts on the buckling load and KDF is not investigated 

comprehensively. 

In addition to cutouts, a bundle of superficial distortions 

is created on thin shells known as geometric imperfections 

during the manufacturing process. In the finite element 

simulation, cutouts are physically modeled on the geometry, 

but superficial distortions are applied to the shell using one 

of the imperfection methods. There are several methods for 

modeling geometric imperfections in thin-walled composite 

cylinders: linear buckling mode shape imperfection, 

reduced energy method, single perturbation load approach 

(SPLA) and  geometric dimple imperfection. Yamad et al. 

(2001) first used the linear buckling mode shape method for 

composite cylinders. They extracted linear buckling modes 

from the buckling solution of a cylinder. Then, knowing 

that one of these modes appears at the onset of buckling, it 

can be assumed that the fraction of one of these modes is 

effective on the cylinder. Thus, by applying a fraction of 
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Fig. 1 Experimental data for an isotropic cylindrical shell 

under axial compressive load (modified by Arbocz 

and Starnes 2002) 
 

 

a mode on the cylinder, the geometric imperfection can be 

modeled. Sosa et al. (2006) presented the reduced energy 

method. In this method, the linear buckling mode is first 

extracted, then the linear buckling mode is applied as the 

initial displacement to the cylinder and the critical buckling 

load is obtained by using the theory of strain energy. In 

SPLA, presented by Hühne et al. (2005, 2008), the effect of 

single load on the model surface is used to consider the 

worst geometric imperfection. The single perturbation load 

produces a fovea acting as an imperfection and increasing 

with the single load, which ends in buckling due to the 

reduction of the structural endurance. As a result, the 

structural sensitivity is eliminated from the single 

perturbation load and the load at that point can be 

considered as the buckling load of structure. Hühne et al. 

(2005, 2008) derived this concept from a study conducted 

by Esslinger (1969) who carried out some experiments 

using high speed cameras and realized that there was a local 

distortion before the occurrence of instability at a point. The 

geometric dimple imperfection method was proposed by 

Wullschleger and Meyer-Piening (2002). In this method, a 

dimple with one half-wave sinusoid in the circumferential 

direction and one in the axial direction is applied on the 

cylinder body before applying the axial load, and then the 

axial load increases until buckling occurs. Aktas and 

Balcioglu (2014) studied the effect of different parameters 

such as plate thickness, diameter of circular cutout, the 

distance between circular cutouts and rowing orientation 

angle on the buckling load of E-glass/vinylester pultruded 

composite beams with single and double circular cutouts. 

Khayat et al. (2016) investigated the buckling behavior of 

laminated composite cylindrical shells using semi-analytical 

finite strip method. Their results indicate that considering 

pressure stiffness causes buckling pressure reduction which 

in turn depends on various parameters such as geometry and 

lay-ups of the shell. 

The SPLA is a new method that has been used by some 

researchers over the last few years to determine the critical 

buckling load of cylindrical shells. The SPLA is a 

promising deterministic procedure based on the mechanical 

considerations to determine reasonable design loads 

regarding cylindrical shells in axial compression. The EU 

DESICOS project (Degenhardt 2011) presented a new 

guideline on the design of composite structure imperfection 

that reduces the weight of the structure and facilitates its 

design. Orifici and Bisagni (2013) investigated the SPLA 

for cylinders with small and large square cutouts. They 

showed that in cylinders with cutouts, the place of single 

perturbation load was effective on the buckling load. Castro 

et al. (2013) used SPLA to develop semi-analytic models. 

Arbelo et al. (2014) reported several studies that estimated 

the knock-down factor by using the SPLA. Priyadarsini et 

al. (2012) carried out numerical and experimental studies 

on the buckling of composite cylindrical shells under axial 

load with and without defects. Ismail et al. (2014) inspected 

the NASA’s empirical guideline to improve buckling in 

composite cylindrical shells using changes in the amplitude 

of imperfection. A good correlation between numerical and 

experimental data was found. Castro et al. (2014) studied 

the numerical solution of each geometric imperfection 

method and its effect on the composite cylindrical buckling 

and compared the results obtained from different methods. 

Ismail et al. (2015) investigated the response of cylindrical 

shells with different geometries and materials using both 

eigenvalue and perturbation load methods. Their goal was 

to develop a better approach for the design and evaluation 

of buckling. They concluded that the eigenvalue method 

was more conservative than the SPLA, and the SPLA 

showed better agreement with the experimental results. 

Wang et al. (2019a, b) obtained the KDF by using the SPLA 

and the worst multiple perturbation load approach 

(WMPLA) for cylindrical shell structures under axial 

compression. The WMPLA is performed to find the worst 

combination of dimple-shape geometric imperfections to 

predict the lower-bound buckling load. The results show 

that the SPLA-based methods produce higher KDFs than 

the test results and are sensitive to the distribution of 

measured imperfections. While the KDFs predicted by the 

WMPLA are very close to the experimental results. 

Kriegesmann et al. (2016) investigated two main issues 

that should be fully understood to have a better insight on 

the potentials and limits of SPLA applications. The first 

issue is related to the number of perturbation loads applied 

concurrently. It was shown that the lower bound obtained 

by multiple perturbation load approach decreases with 

increasing the number of perturbation loads. It implies that 

the single perturbation load does not lead to the worst 

imperfection case. The SPLA method applied to some 

cylinders showed that certain cylinders seemed to be less 

sensitive to local imperfections than others. Buckling load 

of these cylinders is smaller than the design load because 

other effects such as load eccentricity and thickness 

variations become predominant. 

Moniri-Bidgoli and Heidari-Rarani (2016) analytically 

and numerically analyzed the buckling behavior of metal-

composite cylindrical shells under axial compressive load. 

They showed that metal layers are effective means of 

improving the buckling load of such structures. Taheri-

Behrooz et al. (Taheri-Behrooz et al. 2017, Taheri-Behrooz 

and Omidi 2018) applied the numerical based linear 

buckling mode shape imperfection method and modified it 

using a stochastic method to assess the effect of geometrical 

imperfections on the buckling of cylindrical shells with and 

without circular cutout. To verify the accuracy and 

difference between various numerical and analytical results 

against real-world cases, composite cylinders made of 
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glass/epoxy with the stacking sequence of [90/+23/-23/90] 

were tested. The experimental results were consistent with 

the nonlinear numerical results of cylinders without cutout. 

Khakimova et al. (2017) considered geometric imper-

fections including mid-surface imperfection, thickness 

imperfection and fiber volume fraction correction into the 

finite element model and compared the results of KDF with 

those of SPLA and NASA-SP 8007 method. Ma et al. 

(2018) tested a composite cylindrical shell with a central 

rectangular opening under axial compression and measured 

its critical buckling load. Also, a finite element model of the 

shell with Hashin failure criterion was established to 

analyze its buckling and post-buckling behaviors by 

nonlinear Newton-Raphson method. 

From the above review, it can be found that a 

considerable number of studies have only focused on the 

inspection of SPLA in composite cylindrical shells as well 

as comparing this method with other imperfection 

approaches in shell structures. However, there are still some 

issues regarding buckling of composite shells such as effect 

of different shapes and areas of cutouts as well as 

simultaneous effect of geometric imperfection (GI) and 

cutout on the critical buckling load and KDF that they need 

more investigations. Therefore, the buckling behavior of 

composite cylindrical shells without and with cutout, and 

consideration of GI is investigated in this study. SLPA is 

used for modeling GI in shells. Moreover, the effect of 

simultaneous perturbation load imperfection (PLI) and 

Cutout imperfection (CI), as two separate imperfections, 

and their distinct effect on KDF are investigated. 

 

 

 

 

Table 1 Geometric properties of composite cylindrical 

shells 

 Bisagni (2000) Eglitis et al. (2009) 

Material Carbon/epoxy Glass/epoxy 

Length, mm 520 560 

Radius, mm 350 150 

Thickness, mm 1.32 1.1 

L/R 1.45 3.73 

R/t 265 136 

Ply arrangement  0/45/−45/0 𝑠  04 𝑠 

tply, mm 0.33 0.275 

Cutout area, mm2 7850 7850 
 

 

 

 

Table 2 Mechanical properties of composite cylindrical 

shell 

 
E11, 

GPa 

E22, 

GPa 

G12, 

GPa 
ν12 

ρ, 

kg/m3 

Carbon/epoxy 

(Bisagni 2000) 
52 52 2.35 0.302 1320 

Glass/epoxy 

(Eglitis et al. 2009) 
18.2 18.6 4.56 0.16 - 

 

2. Finite element modeling 
 

2.1 Geometric and mechanical properties 
 

The geometric and mechanical properties of two 

composite cylindrical shells made of carbon roving tape 

wrapped/epoxy and E-glass fabric/polyester are extracted 

from Bisagni (2000) and Eglitis et al. (2009), respectively. 

Tables 1 and 2 show the related properties. 

 

2.2 Modeling 
 

In this section, the simulation process of buckling is 

described in the commercial finite element software, 

ABAQUS. A cylindrical shell is modeled according to Table 

1 and mechanical properties and composite layup are 

assigned to the model according to Table 2. The model is 

meshed by four-node shell element with reduced integration 

(S4R). The boundary conditions are applied on the both 

edges of the shell (see Fig. 2). All six degrees of freedom 

are fixed at one edge and the five degrees of freedom except 

for displacement along the cylinder’s length is constrained 

at another edge. First, a linear eigenvalue buckling analysis 

is performed on a glass/epoxy cylindrical shell to determine 

the appropriate element size and mesh refinement. Then, the 

size of elements is changed to reach an almost identical 

critical buckling load. Table 3 shows the results of the mesh 

refinement for a glass/epoxy cylinder without cutout. The 

suitable number of elements for carbon/epoxy and 

glass/epoxy cylindrical shells are obtained 7560 and 21056, 

respectively. 

For the cylindrical shell with cutout, the elements 

around the cutout should be smaller than other parts owing 

to the stress concentration. After the mesh sensitivity 

 

 

 

Fig. 2 Boundary conditions and location of applying single 

perturbation load 

 

 
Table 3 Mesh refinement analysis in glass/epoxy shell 

without cutout 

Element size, 

mm 
0.013 0.0095 0.0066 0.0054 0.005 

Number of 

elements 
3139 5841 12155 18200 21056 

Linear buckling 

load, kN 
75.1 68.5 64.8 63.7 63.4 
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(a) Without cutout (b) With cutout 

Fig. 3 Mesh density in finite element model of composite 

cylinders 

 

 

 

 

Fig. 4 Variation of buckling load according to SPL 

 

 

 

analysis, the number of elements around the cutout in 

carbon/epoxy and glass/epoxy cylindrical shells is selected 

960 and 1768, respectively. Thus, the total number of 

elements in cylindrical shell with and without cutout are 

12000 and 17840, respectively. Fig. 3 shows the mesh 

density in cylindrical shells without and with cutout. 

In this study, a linear analysis is first performed on all 

samples to obtain the local or global buckling load. In spite 

of high computational time of nonlinear buckling analysis 

rather than the linear buckling analysis, this method is 

preferred in structural design due to its accuracy. Therefore, 

an implicit nonlinear dynamic analysis is performed to 

obtain the load-end shortening curve. Nonlinear analysis is 

performed in two steps. In the first step, the single 

perturbation load is applied in the radial direction at the 

middle of the cylindrical shell (as shown in Fig. 2) while 

both edges of the cylinder are clamped. In the second step, 

the single perturbation load is kept constant and the axial 

displacement is applied to the shell’s edge until the 

specimen buckles. These two steps are repeated and the 

single perturbation load is increased at each stage. As 

shown schematically in Fig. 4, if the buckling load from the 

linear analysis is considered as N0, it will be constant 

without considering the single perturbation load (SPL). By 

increasing the SPL, the buckling load decreases 

continuously until it reaches to a constant load N1 for a 

given value of the perturbation load, i.e., P1. The load N1 is 

introduced as the design buckling load. The N1 (the 

corresponding buckling load for specific SPL, P1) to N0 

(linear buckling load) ratio is called the knock-down factor 

(KDF). The goals of the first and second steps are to 

determine the worst GI and applying displacement on shell 

until the occurrence of buckling, respectively. 

3. Results and discussion 
 

3.1 Cylindrical shell without cutout 
 

In order to demonstrate the potentials of SPLA, the 

finite element critical buckling load of the composite 

cylindrical shells without cutout are compared with the 

experimental data of Refs. (Bisagni 2000, Eglitis et al. 

2009), as in Table 4. Also, the buckling load of the linear 

eigenvalue solution and NASA-SP 8007 guideline are 

presented. 

Table 4 shows that linear eigenvalue solution and 

NASA-SP 8007 guideline respectively overestimates and 

underestimates the buckling load in comparison to 

experiments. In the case of eigenvalue solution, the 

overestimation can be attributed to ignoring the effect of 

imperfections on the structural model. The obtained 

buckling loads by SPLA are very close to the experimental 

ones. Thus, the finite element model is verified according to 

the Table 4 results. 

Fig. 5 shows buckling load and corresponding mode 

shapes of initial 12 modes for a cylinder with circular 

cutout. As shown in Fig. 5, first ten mode shapes are 

 

 

Table 4 Comparison of finite element and experimental 

critical buckling loads (kN) of composite 

cylindrical shells without cutout (values in 

parentheses show the percent of difference with 

respect to experiment) 

Materials Experiment 
NASA-SP 

8007 

Finite element 

results-present study 

SPLA 
Linear 

eigenvalue 

Carbon/ 

epoxy 

163.46 

(Bisagni 2000) 

105.1 

(-35.7 %) 

159.1 

(-2.7 %) 

248.1 

(51.8 %) 

Glass/ 

epoxy 

39.73 

(Eglitis et al. 2009) 

33.8 

(-14.9 %) 

40 

(0.67 %) 

63.4 

(59.58 %) 
 

 

 

 

Fig. 5 Twelve mode shapes of carbon/epoxy cylindrical 

shell with circular cutout using linear buckling 

analysis 

(b)(a) (b)(a)

   mode    mode    mode    mode

   mode    mode    mode    mode

   mode     mode     mode     mode

70.53 KN 74.65 KN 85.83 KN 93.09 KN

175.81 KN173.24 KN 175.34 KN 210.51 KN

229.79 KN 241.08 KN232.93 KN 242.23 KN
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Fig. 6 Effect of cutout on KDF of a composite cylindrical 

shell 
 

 

depicting local buckling in the cylinder while the mode 

shapes of 11 and 12 are associated with the cylinder global 

buckling.Fig. 6 shows the effect of CI on KDF of carbon/ 
 

 

 

 

epoxy cylindrical shells without and with circular cutout. It 

can be seen that the presence of cutout reduces the effect of 

increasing the single perturbation load on the KDF. 

Figs. 7(a) and (b) respectively show the effect of single 

perturbation load on the load-end shortening and KDF of 

carbon/epoxy cylindrical shell. According to this figure, the 

maximum reaction load in the load-end shortening curves 

and KDF decrease when SPL increases up to 60 N. 

Consequently, it means that the buckling resistance of 

cylindrical shells decreases as GI increases. But the reaction 

load and KDF remain approximately constant for SPL of 

60-100 N. Fig. 7(b) compares the KDF values of linear 

eigenvalue solution, NASA-SP 8007 and SPLA. The 

reaction load and KDF based on SPLA are 159.1 kN and 

0.663, respectively. As stated before, the NASA guideline 

gives a very conservative KDF. Also, the KDF of SPLA 

deviates from the linear eigenvalue solution by increasing 

PLI. In Fig. 7(b), the KDF increases from SPL 60 to 70 and 

and decreases from SPL 70 to 80. These fluctuations in 

nonlinear finite element analysis are normal and the overall 

trend of KDF change is important. 

Fig. 8 show the effect of perturbation load on the load- 
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Fig. 7 Effect of increasing single perturbation load on load-end shortening and KDF of carbon/epoxy cylindrical shell 

  

(a) (b) 

Fig. 8 Effect of increasing single perturbation load on the load-end shortening and KDF of glass/epoxy cylindrical shell 
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end shortening and KDF of glass/epoxy cylindrical shell. 

The similar behavior is observed as the carbon/epoxy 

cylindrical shell. In this case, the maximum reaction load 

and KDF are 40 kN and 0.596, respectively. In Fig. 8(b), in 

spite of decreasing trend in KDF using SPLA, there is a 

local minimum at SPL = 30. Small fluctuations in results of 

nonlinear finite element analyses are evident. In numerical 

methods unlike the analytical methods, very small 

fluctuations happen due to cumulative errors. 

Fig. 9 show the load-end shortening of the carbon/epoxy 

and glass/epoxy cylindrical shell with circular cutout. As 

the compressive load increases, the local-neighbouring 

dimples are developed as shown in points (a). By more 

increasing of the compressive load, the axial and 

circumferential buckling modes are developed and post-

buckling happens. Points (b) show this phenomenon. 
 

3.2 Cylindrical shell with cutout 
 

In the case of cylindrical shells with cutout, the cylinder 

loses its axisymmetric. Therefore, the single perturbation 

load should be applied to the critical areas surrounding the 

cutout as well as the regions far from it so that the lowest 

KDF obtains. Figs. 10(a) and (b) show the locations of 

applying perturbation load at the cutout edge and far field 

for circular and elliptic cutouts. For square cutouts as shown 

in Fig. 10(c), three locations, i.e., cutout edge, cutout corner 

and far field are considered for applying perturbation load. 

 

3.2.1 Effect of single perturbation load on the 
critical buckling load 

Fig. 11 shows the variations of KDF for a cylinder with 

different cutout shapes, materials and locations of 

perturbation load. From these results, it is found that the CI 

on the shell reduces the buckling resistance and thus the 

critical buckling load decreases. Moreover, the critical 

condition according to the location of the PLI happens 

when the perturbation load is applied far from the cutout. 

Due to the existence of cutout, the single perturbation load 

creates a GI in the cylinder. Accordingly, when these two 

imperfections are located far from each other, they make 

remarkable effect on the reduction of critical buckling 

 

 

 

(a) Cylinder with circular cutout 
 

 

(b) Cylinder with elliptic cutout 
 

 

(c) Cylinder with square cutout 

Fig. 10 Locations of single perturbation load in cylinders 

with cutout 
 

 

loads. 

Table 5 shows different numerical solutions for critical 

buckling load of composite shells with various cutouts. It 

can be seen that the local buckling is more conservative 

than other solutions for all three shapes of cutout due to the 

prediction of the first buckling mode that occurs locally 

Cutout edgeFar field

Cutout edgeFar Field

Cutout bottom Cutout cornerFar field

  

Fig. 9 Load-end shortening curves from nonlinear analysis with SPLA 
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around the cutouts. Moreover, the global buckling solution 

overestimates the buckling load in comparison to SPLA. 

Therefore, the linear buckling solution unrealistically 

predicts the critical buckling load. Also, the most reduction 

in the critical buckling load occurs in square cutout due to 

their sharp corners. These sharp corners result in stress 

concentration at these points and reduce the buckling 

resistance of cylindrical shells. In addition, owing to the 

 

 

larger area of circular cutouts, the circular cutout has less 

resistance against buckling than the elliptic cutout. 

 

3.2.2 Effect of cutout area on KDF 
In this section, the effect of square cutout area on KDF 

is studied. The areas are selected as 100, 400, 1600, 2500 

and 7850 mm2. As shown in Fig. 12, increasing the area of 

cutout reduces the effect of the single perturbation load, 

  

(a) Circular cutout – carbon/epoxy (b) Circular cutout - glass/epoxy 
 

  

(c) Square cutout - carbon/epoxy (d) Square cutout - glass/epoxy 
 

  

(e) Elliptic cutout - carbon/epoxy (f) Elliptic cutout - glass/epoxy 

Fig. 11 Changes in KDF for different cutout shapes and locations of single perturbation loads 
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which leads to an increase in KDF. Furthermore, those 

cutouts with an area larger than 1600 mm2 and 2500 mm2 

do not change KDF. By increasing the area of cutout, the 

effect of the cutout imperfection is more than the increasing 

of perturbation load imperfection. Hence, the effect of 

cutout on the buckling load is greater than the perturbation 

load. As a result, the KDF value, which is due to the 

perturbation load imperfection remains approximately 

constant. 

 

 

4. Conclusions 
 

In this study, the buckling behavior of carbon/epoxy and 

glass/epoxy composite cylindrical shells without and with 

cutouts is studied. The simultaneous effect of cutout and 

geometric imperfection is investigated on the prediction of 

critical buckling load. Three different shapes of cutout (i.e., 

circular, elliptic and square) are considered.  Geometric 

imperfection is modeled using SPLA. Comparison of 

critical buckling load of composite cylindrical shells 

without cutout calculated by linear eigenvalue analysis, 

NASA-SP 8007 guideline and SPLA with experiments 

show that SPLA is more accurate than others. The cutout in 

a shell acts as an imperfection and the results show that a 

CI, regardless of its shape, reduces the critical buckling 

load. Hence, the effect of the single perturbation load is 

eliminated from the buckling load. In cylinders with cutout, 

the most critical condition based on the location of the 

single perturbation load happens when the single perturba- 

 

 

 

tion load is far from the cutout. Since the cutout and the 

single perturbation load both act as imperfections, the most 

noticeable effect occurs when these two factors are far from 

each other. The greatest decrease in buckling load arises in 

square cutouts due to sharp corners. Moreover, the circular 

cutout has less resistance against buckling than the elliptic 

cutout due to the larger area of the circular cutout in the 

circumferential direction. As the area of cutout increases, 

the critical buckling load decreases due to increasing 

imperfection. This trend, however, stops at a certain amount 

of cutout area and the critical buckling load remains 

constant. 
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