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1. Introduction 

 
Application of numerical methods has been used in 

many researches recently in different field of civil 
engineering (Hamidian et al. 2011, 2012, Aghakhani et al. 
2015, Mohammadhassani et al. 2015, Toghroli 2015, 
Toghroli et al. 2014, 2016, 2018, Mansouri et al. 2016, Safa 
et al. 2016, Khorami et al. 2017a, b, Khorramian et al. 
2017, Mansouri et al. 2017, Heydari and Shariati 2018, 
Chahnasir et al. 2018, Sedghi et al. 2018, Shariat et al. 
2018, Zandi et al. 2018). 

Genetic Algorithm as one of these methods and by way 
of a powerful tool is a method for solving both constrained 
and unconstrained optimization problems based on natural 
selection to drive biological evolution, also to modify a 
population of individual solution. GA is also used to find 
the optimum cost and variables of a space frame subjected 
to different load cases. 

The optimum dimensions of the beams have been 
unified through the solution procedure of GAs, so that the 
optimum results would be applicable for the whole span 
length, thereafter, a sub-optimum procedure has occurred to 
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choose the nearest sub-optimum dimensions to the optimum 
ones including the lowest cost to the designed section 
subjected to many design constraints (Shah et al. 2016, 
Andalib et al. 2018, Bazzaz et al. 2018, Hosseinpour et al. 
2018, Nasrollahi et al. 2018, Paknahad et al. 2018, Zandi et 
al. 2018). The difference in the cross-sectional areas 
between the optimum and the suboptimum solution has 
been added or subtracted from the reinforcement ratio after 
transforming it into an equivalent area. Then, the 
suboptimum solution has been selected from a 
predetermined database containing all the available cross 
sections resisting on the applied loads. Also, the effect of 
materials’ price has revealed the efficiency of GAs with a 
highly constrained problem (Toghroli et al. 2014, 2016, 
Fanaie et al. 2015, Shariati et al. 2016, Khorramian et al. 
2017). 

GAs has already used in many studies to find an 
optimum solution for many structural members (concrete of 
steel), used by Perera and Varona (2009) to find an 
optimum solution in designing FRP as strength reinforced 
concrete beams subjected to many design constraints such 
as (1) moment capacity, (2) maximum plate width and (3) 
peeling off fiber at shear cracks (by limiting the acting of 
shear force to the shear resistance for members without 
shear reinforcement). 

Two different databases (flexural and shear) have been 
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used to represent FRP plates and sheets with standard sizes 
and properties, because it has dealt with discrete design 
variables and the market size supplied by the 
manufacturers. The constraints have been incorporated in 
the optimization problem through the inclusion of a penalty 
in the objective function used to solve two examples such as 
(1) flexural strengthening essentiality while the shear 
strengthening is used to avoid concrete cover rip – off, (2) 
both flexural and shear strengthening have been required in 
the design. 

In 2010, GAs is used for weight minimization of steel 
trusses by MATLAB (Hultman 2010). Constraints regarding 
material strength and buckling stability are taken from 
“Eurocode 3: Design of steel structures” and implemented 
in the algorithm. A simultaneous optimization has been 
carried out for size, shape, and topology by providing basic 
and arbitrary positioned nodes. It is found that the reduced 
method for topology optimization has offered a relief to the 
number of possible solutions and should generally be 
considered in the range of 6-64 nodes. 

In 2011, GAs has been applied to achieve the optimum 
cost design of reinforced concrete beams and restressed 
concrete beams (Alqedra et al. 2011). The results have 
shown 27.9 % and 16.7 % savings cost for the 4m and 8m 
Span of RC beam. On the other hand, the saving cost for PC 
beams are about 29.8 % and 17.8 % for the 10m and 20m. 
Also, it has proved that the cost of the whole section has 
been increased by the compressive strength increment. 

GAs has also been used by Augusto et al. (2012) to find 
the optimum cost of pre-cast concrete floors. The objective 
function is to account the cost of materials consumption, 
labour, manufacture, indirect costs, storage, transport, 
assembly, taxes and profits. In this study, two new genetic 
operators have been proposed. The first one as Transgenic 
automatically has modified the number of strands to keep 
the number of first layer larger than the second layer, 
because it has resisted on a smaller bending moment. The 
second one as Twins has been implemented to check if the 
individuals from elitism are the same or not, so that one of 
the twins is placed to crossover and the next one in the rank 
is taken to the elitism. 

In 2017, GA has been used to perform optimum design 
for cantilever retaining walls of different heights 

 
 

(Hasanipanah et al. 2017, Mahdiyar et al. 2017, Armaghani 
et al. 2018). The conventional design method has been used 
to compare the results showing the efficiency of GA over 
the conventional design method. 

Another GA has been developed by MATLAB for 
optimum design of reinforced concrete slabs (Sahab et al. 
2005). Two types of reinforced concrete slabs, simply 
supported one-way slab and cantilever slab, have been 
designed. Cost reduction of 18.92% and 6.78% are 
observed for reinforced cantilever and one-way slab, 
according to literature. 

In the present study, an appropriate objective function 
has been explained, and then the design constraints and the 
design procedure curbs have been demonstrated in order to 
get the optimum design of frames after clarifying the 
optimized usage of method. Finally, few space frame 
examples have been solved to check the efficiency of the 
design procedure with specific views to widen the horizon 
of related works. 

 
 

2. Optimum design for space frame 
 

MATLAB by using GA has been developed to find the 
optimum cost design of continuous beams and columns 
with all its loading conditions (axially, uniaxial and biaxial 
loaded), also to find the optimum cost of plan and space 
frames and conduct the effect of the material- price on the 
optimum design variables. 

The program is to check whether the designed columns 
are axial, uniaxial or biaxial loaded, introducing a new 
parameter (eall) that separate each of those solutions based 
on its value. 

 

2.1 Objective function 
 

Besides the material costs, the cost function of the space 
frame has included the cost of the formwork. In this study, 
according to the market, the ratio r representing the cost of 
steel Cs to the cost of concrete Cc is about 75, and the ratio 
rf representing the cost of formwork Cf to the cost of 
concrete Cc is about 0.4. The cost function for this case is as 
Eqs. (1) to (4). 

 
 

 

Fig. 1 Space frame design variables 
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The program has combined the cost function of 
continuous beams with any cost function of the three types 
of loaded columns depending on eall value in order to get 
the cost function of the whole space frame. 

The design variables optimized by using this program 
(Fig. 1) have included the design variables of the 
continuous beam and the columns for any load case. 

 
2.2 Design constraints 
 
The design constraints for the space frame have 

contained the design constraints of both continuous beam 
constraints (beams cross-sectional dimensions and 
reinforcement ratio at three sections along the beam span 
length) and column constraints (column cross-sectional 
dimensions and the reinforcement ratio at each face of the 
cross-section), subsequently, a constraint has been 
introduced as the control dimensions of the designed 
members. This constraint has limited the dimensions of the 
beams within the dimensions of the column, unless leads to 
a problem in finding the minimum cost of the beams 
combined with the minimum cost of columns, which has 
not necessarily produced a minimum cost of the frame. If 
the mentioned procedure is adopted to find the minimum 
cost design of a space frame, some problems would be 
occurred to make the designed frame with inapplicable 
dimensions. 

Solving this problem has adopted a trading process 
between the optimum designed beam and the optimum 
designed column till the finding of a new optimum designed 
dimension for both beam and column. The new dimensions 
have provided a minimum cost for the whole structure and 
mightily altered from a minimum combining cost of the 
optimum beam cost and the optimum column cost, like to 
the pareto optimal principle of increasing one cost against 
decreasing the other one to find a compromised solution for 
the both (Fig. 2). 

 
- Continuous beams 
 

Ct = Cc × bbeam × { (d + t) + r × ρbeam × d } 

+ Cf × { (2 × (d + d-)) + bbeam } 
(1)

 
 

- Axially loaded columns 
 

Ct = Cc × bcolumn × h × { 1 + (r × ρcolumn ) } 

+ Cf × { 2 × (bcolumn + h) } 
(2)

 
- Uniaxially loaded columns 
 

Ct = Cc × bcolumn × h × { 1 + (r ×(ρten+ ρcom)) } 

+ Cf × { 2 × (bcolumn + h) } 
(3)

 
- Biaxially loaded columns 
 

Ct = Cc × bcolumn × h × {1 + (r × (ρten,x + ρcom,x 

+ ρten,y + ρcom,y))} + Cf × {2 × (bcolumn + h)} 
(4)

 
The structure, supposedly designed optimally, has been 

analyzed linearly at the beginning with the assumed 
dimensions and applied loads through STAAD Pro. 2006, in 
order to get the data required for the optimum design such 
as the moments, shear and torsion related to the beam, and 
axial loads with moments in different directions like 
columns. The eccentricity of the loads on columns e is 
calculated in two directions (X and Y), then the value e is 
compared to the parameter eall separating the solutions of 
the differently loaded columns. The value of this parameter 
is (0.1 × h), if the value of e is less than eall in any direction, 
neglecting the effect of the moment in that direction and 
designing uniaxially of the column. 

 If the value e in the other direction is less than eall, then 
the moment's effect in that direction has been discarded, 
therefore, the column has been designed axially, unless the 
column has been designed biaxially. 

When the optimum frame cost is found, the optimum 
dimensions of the frame members are used to analyze the 
structure to ensure that the designed sections of the beams 
and columns are capable in resisting on the applied loads 
within the code limits fulfilling the purpose. 

 
2.2.1 Design constraints for beams 
A reinforced concrete beam should have a structural 

capacity greater than the factored applied loading based on 
ACI Code facing some restrictions on (1) the beam’s cross- 

 
 

 

Fig. 2 Compromising the solution of the space frame 
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sectional geometry, (2) the position and (3) quantity of steel 
reinforcement for all kinds of loading. 

So far, dimensions have been highly used as design 
variables, then the reinforcement ratio has been calculated 
depending on these variables and topology optimized. 
However, this study has used the reinforcement ratio as a 
design variable beside the dimensions (offering a minimum 
cost) and also included the effect of shear and torsion on 
these optimum dimensions beside other constraints 
(Mohammadhassani et al. 2015, Mansouri et al. 2016, Safa 
et al. 2016, Toghroli et al. 2016, Mansouri et al. 2017, 
Chahnasir et al. 2018). These constraints have been used in 
order to specify the main variables to have them resist on 
the applied loads (in many ways), and also stay within the 
limits of the used code in order to make the optimal solution 
more realistic and applicable. 

The first constraint Eq. (5) has been used to make the 
three variables ρ, b and d (reinforcement ratio, beam width 
and beam effective depth) of the section carrying the 
smallest values resisting on the applied moment of the 
section. 

Eqs. (6) and (7) have represented the constraints 
prevented the reinforcement ratio to exceed the maximum 
value or below the minimum value which is defined based 
on ACI Code. 

Considering the effects of cracking and reinforcement 
on member, Eq. (8) is used to guarantee the optimum 
section has no depth less than the one (depth) controlling 
the elastic deflection, ACI code (9.5.2.2), Building Code 
Requirements 2011, and stiffness (Adeli and Sarma 2006). 

In order to make the dimensions more realistic, Eqs. (9) 
and (10) are used to keep the ratio of the optimum depth to 
the optimum width as 1.5 and 2.5 (specified by the 
designer). 

Dimensions of the optimum width in the range of 200 
mm and 500 mm and the optimum depth in the range of 300 
mm and 1250 mm have been used through the Eqs. (11) and 
(12), (specified by designer). 

To reduce unsightly cracking and prevent the crushing 
of surface concrete due to the inclined compressive stresses 
caused by shear and torsion, Eq. (13) has been used to limit 
the optimum dimensions within this condition. No more 
specifications could be achieved for the case of limiting the 
reinforcing steel for shear and torsion, because it has 
depended on the section dimensions before found optimally. 
Also, if the steel area has been used as a constraint, the 
solution direction would reinforce the section with 
minimum reinforcement or without reinforcement. 
Therefore, this solution wouldn’t be a general optimum but 
an optimum design for a special case approved before 
starting the solution. 

Accordingly, in terms of shear and torsion, the right 
decision for enormously optimizing of the section is the 
limiting of the cross section dimensions through the code 
specifications and leaving the reinforced area of steel to be 
defined and optimized through the bar selection procedure 
by the designer. 

Finally, Eqs. (14) and (15) have been used for the 
reinforcement topology through the section, considering the 
minimum spacing between the chosen bars (Adeli and 
Sarma 2006). 
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2.2.2 Design constraints for columns 
In this study, following the core idea of the load contour 

method is the transforming of biaxial problem into an 
equivalent uniaxial one through Eq. (26) introduced as a 
new design constraint, so the problem has been solved 
uniaxially with Mnx considering (ex = 0) and uniaxially with 
Mny considering (ey = 0). After that, the new constraint has 
transformed the effect of the solved procedure into a biaxial 
bending problem for both Mnx and Mny (Wight, James K. 
and MacGregor, James G,). 

296



 
Optimum cost design of frames using genetic algorithms 

The first two constraints have been used to confined the 
applied force with the balanced force of the section, also the 
applied moment has been limited to the balanced moment 
of the section means (e is less or equal to balanced 
moment). 

Also, the plastic centroid in these equations (x- and y-) is 
found in two directions (X and Y) without any interaction 
of the bars’ positioning (explained earlier). Regarding the 
slender column constraint, two directions have been 
considered by replacing the height with the width in other 
direction. 

The reinforcement ratio constraint has four parameters 
(two reinforcement ratios for each direction – for tension 
and compression face) as shown in Eqs. (31) and (32). 
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In the last two equations, the reinforcement ratio in one 

direction has been excluded if the column would be 
designed uniaxially or represented the whole ratio of the 
section by one value if the column would be designed 
axially. Considering the cross section dimensions, minimum 
and maximum dimensions are specified as the following 
four equations for both width and height without limiting 
them by any ratio between them. 
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After finding the optimum design variables, the same 

steps in finding the suboptimal solution used for the beam 
section have been applied for the suboptimal column 
section. 

 
2.2.3 Design of plane frame 
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This example has checked the validity of the written 

 
 

 
 

program concerning the multi-objective optimization. Due 
to the limitations between the adjacent members (explained 

earlier), combining the optimum beam and column together 

 

 

 
 

have not always provided the optimum design of a plane 
frame.A single bay one story plane frame with 3.5 m height 

 

Fig. 3 The difference of design variables of plane frame with / without member interaction 

Table 1 The optimum design results of the frame for the two cases (with / without members’ interaction) 

Member Variables Without member interaction With member interaction 

Column 

b – optimum 275.6 mm 275.6 mm 

h – optimum 551.1 mm 551.1 mm 

ρ tension - optimum 0.0025 0.0014 

ρ compression – optimum 0.0075 0.0086 

Cost value 0.9271Cc 0.9271Cc 

Iteration number 6 2 

b – suboptimum 275 mm 275 mm 

h – suboptimum 550 mm 550 mm 

ρ tension – rounded 0.0027 0.0015 

ρ compression – rounded 0.0078 0.009 

As tension 452 mm2 226 mm2 

Tension bar no. 4   12 2 φ 12 

As compression 1232 mm2 1473 mm2 

Compression bar no. 2 φ 28 3 φ 25 

Beam 

b – optimum rounded 300 mm 275 mm 

h – optimum rounded 500 mm 550 mm 

ρ1 – rounded 0.005 0.0044 

ρ2 – rounded 0.0105 0.0092 

ρ3 – rounded 0.0167 0.0144 

Cost value 0.7759Cc 0.7949Cc 

As1 optimum rounded 741 mm2 603 mm2 

Bar no. - 1 2 φ 20 + 1 φ 12 3 φ 16 

As2 optimum rounded 1388 mm2 1232 mm2 

Bar no. – 2 2 φ 22 + 2 φ 20 2 φ 28 

As3 optimum rounded 2214 mm2 2099 mm2 

Bar no. – 3 2 φ 28 + 2 φ 25 2 φ 32 + 1 φ 25 

Stirrups – zone 1 2700(0–1.2379 m) 2400(0-1.1915m) 

Stirrups – zone 2 262.25(1.2379-1.4) 240(1.1915-1.35m) 

Stirrups – zone 3 0.0 (1.4 - 2.0) 0.0 (1.35 m - 2 m) 

Total cost value 1.7030 1.7219 
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and 4.0 m span length has been designed optimally with r = 
75, rf = 0.4, when the properties of material are f′c = 30 MPa 
and fy = 400 MPa. The beam is under three critical moments 
as M1 = 100 kN.m, M2 = 200 kN.m and M3 = 300 kN.m. 
Also, a maximum shear Vu is about 500 kN without torsion, 
when the column is under Pn = 2000 kN and Mn = 300 
kN.m. The formwork has attained a significant role in 
finding the optimum frame design cost, and when the long 
column constraint is used with kb = 1. The frame is 
designed twice, accordingly, at first time, a separate 
solution has been adopted without any interaction between 
the members, while at the second time, and this interaction 
has been used as a new constraint in the design procedure. 
Comparing the results has shown the effect of optimally 
designing of the frame as one unit is not separated. The 
differences between two cases in optimally designing the 
frame have been depicted in Table 1. Considering the 
limitation of the designed beams’ width occurred by the 
designed column’s width, the cost of the frame has been 
increased about (2%) compared to the separate optimum 
solution, subsequently, this ratio has certainly been raised 
on more limitations such as the presence of torsion. 

The major differences of two cases in terms of cost is 
that the column optimum design has not been affected by 
the member limitations, whilst the difference in the total 
cost is related to the beam optimum design, because of the 
shear effect on the cross-sectional dimensions (Fig. 3). 
Therefore, in case of any torsion applied to the section, the 
difference would be greater than this, mightily due to the 

 
 

more effects of torsion on the cross-sectional dimensions of 
the beam. 

 
 

3. Space Frame 
 
3.1 One story two bays 
 
One story two bays frame designed by Gas has been 

represented in Fig. 4. The frame has been loaded with a 
uniformly distributed floor load of 12 kN / m2 in addition to 
its self-weight with a uniform line load of 20 kN / m on the 
beams named B1, B2, B4 and B6. Also, a concentrated load 
of 200 kN has been applied to the same beams, adding that 
the material properties were f′c = 28 MPa and fy = 400 MPa.  
At first, the frame is analyzed linearly with STAAD Pro. 
2006. In the following, to get the moments, shear and 
torsion have been applied to each member section needed in 
the optimum design with GAs. All the column sections are 
assumed to be 400 × 400 mm with a height of 3.5 m, while 
the beam sections are 300 × 600 mm at the beginning of the 
analysis. 

The initial dimensions used in the frame analysis have 
been replaced by the dimensions of GAs led to the whole 
frame’s re-analyzing through the new optimum dimensions 
with the same applied load to check the capacity of the 
optimum designed section of the members against the 
applied loads, respectively, the process has been repeated 
till the no change in the design variables of optimum section. 

 
 

 

Fig. 4 One story two bays of space frame example 
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The constraints used in this example have contained the 
long column constraint with kb = 0.6 and the plastic 
centroid adjustment. 

The cost values of the members in the frame are shown 
in Fig. 5, accordingly, half of the space frame has been 
designed by GAs to simplify the solution. Following the 
figure shows that the members with the lower cost have 
shown more stability in the final optimum designed section 
within an earlier iteration of the analysis steps. While the 
sections with the higher cost are wobbled through the 

 
 

 
 

 
 

numbers of analysis iterations, they still stay within narrow 
limits. 

By focusing on the design variables controlling the cost 
value of column C1 have been represented in Figs. 5-6. 
Indeed, the design variables causing this variation are the 
reinforcement ratios in x-direction due to the large moment 
in this direction. So, the resistance of the column to the 
applied loads is distributed between these columns through 
the analysis iterations by providing the best applicable 
optimum design to the space frame and handling the applied 

 
 

 
 

 
 

 

Fig. 5 Variation of the optimum sections cost value with the analysis iteration number 

 

Fig. 6 The variation of design variables of column C1 with the analysis iteration number 

Table 2 Suboptimum results for beams for analysis iteration - 7 (1 story–2 bays) 

Design variables 
Beam B1 

Suboptimum 
results 

Beam B2 
Suboptimum 

results 

Beam B3 
Suboptimum 

results 

Beams B4 and B6 
Suboptimum 

results 

Beams B5 and B7
Suboptimum 

results 

Width (mm) 225 225 225 300 200 

Height (mm) 425 450 350 475 300 

Steel reinf. - 1 2 φ 35 ‘2 φ 35’’2 φ 12’ 3 φ 12 2 φ 32+1 φ 25 2 φ 22 

Steel reinf. - 2 2 φ 35 ‘2 φ 35’’2 φ 12’ 3 φ 16 3 φ 35 2 φ 12 

Steel reinf. - 3 2 φ 35 ‘2 φ 35’’2 φ 12’ 3 φ 12 2 φ 35+2 φ 32 2 φ 12 

Torsion level-3 2 φ 10 2 φ 10 2 φ 10 2 φ 10 2 φ 10 

Torsion level-2 2 φ 10 2 φ 10 2 φ 10 2 φ 10 2 φ 10 

Stirrups(0-1.9) 1200 1500 197 1300 175 

Stirrups(1.9-2.3) 197 197 197 263 175 

Stirrups(2.3-mid) 0.0 0.0 0.0 0.0 0.0 
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Table 3 Suboptimum results for columns for analysis 
iteration - 7 (1 story–2 bays) 

Design 
variables 

Columns 
C1 and C4 

Suboptimum 
results 

Columns 
C2 and C5 

Suboptimum 
results 

Columns 
C3 and C6 

Suboptimum 
results 

Width (mm) 400 450 300 

Height (mm) 450 500 300 

Tens.rein. 
(y) 

‘4 φ 35’ 
‘3 φ 25’ 

5 φ 35 ρ = 0.0025 

Comp.rein. 
(y) 

2 φ 25 + 2 φ 22 3 φ 16 ρ = 0.0025 

Tens.rein. 
(x) 

‘4 φ 35’ 
’2 φ 20 + 2 φ 12’ 

3 φ 35 
+ 2 φ 32 

ρ = 0.0025 

Comp.rein. 
(x) 

2 φ 22 + 1 φ 20 3 φ 12 ρ = 0.0025 
 

 
 

loads together. 
The cost value and constraints history of column C1 are 

shown in Figs. 7 and 8. Accordingly, the optimum solution 
has been found after the 9th iteration with almost zero 
constraints violation. Regarding other members of the 
frame, there would be few constant optimum design 
variables through analysis iterations Table 2-3. 

 
 

 
 

3.2 Three stories two bays 
 

The three stories space frame (Fig. 9) have been loaded 
with a floor load of 12 kN / m2 on all the stories, also all the 
beams have been loaded with a line load of 15 kN / m 
except the ones of the roof, loaded with a line load of 8 kN / 
m, besides the frame’s self-weight. The concrete 
compressive strength is f′c = 28 MPa, and the yield stress is 
fy = 400 MPa. At first, all the column sections are assumed 
with dimensions of 400 × 400 mm with a height of 4 m, and 
all the beam sections are assumed with dimensions of 300 × 
500 mm, changed according to the optimum design results 
by GAs, in the following, a reanalysis with the new 
optimum designed section is carried out until the optimum 
sections are converged. 

The cost of the frame has included the cost of the 
formwork with the cost of the materials. Also, another 
design constraint has been introduced according to ACI – 
Code (10.3.6): Design axial strength φPn of compression 
members would not be taken greater than φPn, max, computed 
by the following equation for non - prestressed members 
with tie reinforcement. 

 

φPn,max = 0.8φ {0.85 fc
' (Ag – As) + fyAs} (38)

 

The frame has been reanalyzed three times, and the final 
results of the optimum design are shown in Tables 4 and 5, 
the history of columns C1 and C4 through generations is 
shown in Fig. 10. 

 
 

 

Fig. 7 Cost function scaling through iterations for column C1 for all analysis iterations 

 

Fig. 8 Maximum constraints violation through iterations for column C1 for all 
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Fig. 9 Multi-story two bays of space frame example 
 
 

 
 

4. Conclusions 
 

The results of the study have revealed that there is no 
need to any reanalysis (linear or non-linear) to check the 
capacity of the designed section, as long as the design 
constraints of the applied algorithm are sufficient and 
capable to attain reliable results. Meanwhile, there would be 
no violations through the design procedure, unless using a 
penalty function to bring the solution to the closest 
optimum would be recommended. By increasing the applied 
torsion on beams, the optimum reinforcement ratio has not 
been decreased with some increment of steel price, also the 
optimum dimensions wouldn’t be increased by the steel 
price increment. This is because when a design variable has 
reached its limits, the other design variable has handled the 
applied torsion at that level, even if it would be more 
expensive to use the first design variable to resist the 
applied torsion. More design charts have been found for 
different moments’ values in order to cover as much as 
possible for the optimum design charts of beam sections, 
columns, different loading conditions and material 
properties. By limiting the width of the designed beams 
with the width of the designed column, the cost of the 
optimum frame has been increased about (2%) compared to 
the separate optimum solution. 

As any further study suggestion: more design 
constraints should be considered as more complex 
engineering problems (non-linear relations) to achieve more 
accurate results. Also, other artificial intelligence methods 

 

 

 

Fig. 10 Optimum design variables history through generations 

Table 4 Suboptimum results for columns of analysis iteration - 3 (3 story – 2 bays) 

Design 
variables 

Column 
C1 and C4 

Column 
C2 and C5 

Column 
C3 and C6

Column 
C7 and C10

Column 
C8 and C11

Column 
C9 and C12 

Column 
C13 and C15 

Column 
C14 and C16

Width (mm) 300 325 250 300 300 250 250 250 

Height (mm) 650 625 250 650 650 250 250 250 

Tens. rein. 
(y) 

2 φ 25 
+ 1 φ 20 

2 φ 35 

0.01 

2 φ 32 
+ 1 φ 25 

2 φ 25 
+ 1 φ 22 

0.0025 0.0025 0.0025 

Comp.rein. 
(y) 

3 φ 22 
2 φ 20 

+ 2 φ 12 
4 φ 12 

2 φ 22 
+ 1 φ 20 

0.0025 0.0025 0.0025 

Tens.rein.(x)     0.0025 0.0025 0.0025 

Comp.rein.(x)     0.0025 0.0025 0.0025 
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could be used like a neural network or pattern search, etc. 
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