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1. Introduction 

 

Composite materials are widely used in various 

industries because of their unique properties and high 

strength to weight ratios (Deretic-Stojanovic and Kostic 

2017, Serier et al. 2016). Composites show quasi-brittle 

behavior and the occurrence of fracture is unavoidable in 

them because of several induced cracks during 

manufacturing process (Merzoug et al. 2017). Thus, it is 

necessary to estimate damage and predict fracture in 

composites utilizing fracture mechanics theories to prevent 

catastrophic failure (Al-Fasih et al. 2018). In other words, 

developing fracture mechanics theories in composite 

materials play a significant role in design and analysis of 

composite materials for their engineering applications 

(Cetisli and Kaman 2014). Stress intensity factors and 

fracture toughness are the most important parameters in 

fracture mechanics of composites (Golewski 2017a, 

Sadowski and Golewski 2018, Faal et al. 2015). Sih et al. 

(1965) have obtained elastic stress distribution around crack 

tip and tried to consider stress intensity factor for 

anisotropic materials as a material parameter. Fracture 

toughness describes the resistance of a material against the 

propagation of cracks induced by experienced loadings 

(Golewski 2017b). Existence of notch or crack initiation 

and propagation accounts for accelerating the occurrence of 

fracture in orthotropic materials. Since most of the 
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structures experience mixed mode in-plane loadings of 

mode I/II during their missions, developing a proper 

fracture criterion for predicting their fracture instance and 

load bearing capacity is of great importance (Fakoor and 

Khansari 2016, Lazzarin et al. 2014). In addition, fracture 

of composite materials in mode III loading is investigated in 

several references (Golewski 2017b, Aliha et al. 2015, 

Ehart et al. 1998). Wu (1967) presented a fracture criterion 

based on experimental observations on Balsa wood and 

glass fiber reinforced composites. One of the main 

shortcomings of this study can be found in practical 

problems for determining empirical constants. Hunt and 

Croager (1982) tried to obtain fracture toughness for pure 

mode II loadings utilizing results of finite element (FE) 

analysis, since no direct comparison was available between 

pure mode II in isotropic and orthotropic materials. They 

also developed a new criterion in terms of stress intensity 

factors for mixed mode I/II loading by curve fitting through 

experimental data on Baltic Red wood in presence of the 

cracks placed in RL plane. Mall et al. (1983) studied mixed 

mode fracture on eastern red spruce wood specimens in 

presence of center and edge cracks. Considering different 

direction for cracks and studying TL cracks, they found out 

that mode I and mode II can be correlated using fracture 

toughness. In their study, it was intended to investigate 

mixed mode on wood specimens and also presenting a 

proper fracture criterion based on experimental data. Chow 

and Woo (1979) concluded that a similar relationship 

presented by Wu can be applied to other types of wood. 

This relationship is very similar to maximum tensile stress 

employed for isotropic materials. Jernkvist (2001a) 
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introduced a mixed mode fracture criterion for induced 

cracks in longitudinal and transverse directions of 

composites by extending frequently used failure criteria of 

isotropic materials to orthotropic ones. His criterion was 

developed based on LEFM concepts and validated utilizing 

experimental observations on Norway spruce wood. He 

concluded that presented energy criteria for homogenous 

materials cannot be applied to orthotropic materials. He also 

extended Maximum Principal Stress (MPS) criterion for 

orthotropic materials. His analysis on both longitudinal and 

transverse cracks showed that MPS mixed mode criterion 

can be applied to both crack types (Jernkvist 2001b). He 

concluded that cracks always propagate along wood fiber 

direction. However his presented criterion is not valid for 

the specific region where 
 𝐾𝐼𝐼  

𝐾𝐼
> 3  and this can be 

considered as a drawback in Jernkvist’s presented model. 

As another shortcoming, this criterion neglects dissipated 

energy at the tip of the crack arisen from accumulation of 

micro-cracks. Moreover, due to linear nature of analysis, it 

can be considered as a conservative criterion and does not 

fit to experimental data appropriately. Van der Put (2007) 

presented a novel criterion using orthotropic-isotropic 

transformation. He has presented a similar form of Wu's 

criterion for elliptical flat cracks. He obtained real fracture 

energy and established a correlation between stress intensity 

factors and energy reduction rate. Non-local stress has been 

considered for fracture investigation of laminated composite 

materials (Li et al. 2012). Also, Romanowicz and Seweryn 

(2008) presented a fracture criterion for orthotropic 

materials relying on Non-local stress distribution. This 

criterion was developed for different crack orientation with 

respect to fiber direction and constructed based on growing 

micro-cracks in an elastic solid material. Presented criterion 

is in need of a damage factor which has not been 

characterized properly. This criterion has been extensively 

criticized in Anaraki and Fakoor (2010a). Anaraki and 

Fakoor (2010b) proposed a fracture criterion for orthotropic 

materials like wood subjected to mixed mode I / II loading. 

This criterion takes into account the influence of crack tip 

Fracture Process Zone (FPZ). Fakoor (2017) developed a 

generalized criterion for investigation of fracture in 

orthotropic materials subjected to mixed mode loading I/II 

and for any desired crack angle with respect to orthotropic 

axis. Dissipated energy in fracture process zone has been 

computed using damage properties while random 

distribution of micro-cracks are assumed for elastic 

material. Fakoor and Rafiee (2013) have presented a 

criterion for predicting crack initiation and propagation in 

specimens subjected to mixed mode loading I/II. The 

presented criterion was constructed on the basis of 

Maximum Shear Stress distribution around the crack tip. 

Anaraki and Fakoor proposed a mixed mode I/II fracture 

criterion based on strength properties of composite 

materials (Anaraki and Fakoor 2011). Some studies have 

been also conducted for predicting direction of crack 

propagation in orthotropic materials. Buczek and 

Herakovich (1985) have presented a criterion in desired 

planes around crack tip on the basis of tangential stress to 

tensile strength ratio in anisotroic materials. Gregory and 

Herkovich (1986) investigated the influence of anisotropic 

behavior and biaxial loading to identify effective 

parameters in crack propagation properly. They have 

employed anisotropic elasticity and FE method and 

presented three criteria as tangential stress, polynomial 

tensor and strain energy density for studying crack tip stress 

field and predicting crack propagation direction. Saouma et 

al. (1987) have presented a MTS-based criterion applicable 

to orthotropic materials. Critical stress intensity factor along 

𝜃 -direction was obtained in term of 𝐾𝐼𝐶
1  and 𝐾𝐼𝐶

2  

representing stress intensity factors along elastic axis 1 and 

2, respectively. Nobil and Carloni (2005) have analyzed 

crack in orthotropic plane subjected to biaxial loading. They 

were intending to investigate the influence of two 

parameters of orthotropic ratio and biaxial loadings on 

crack propagation in order to obtain crack propagation 

direction and geometrical location of fracture. They have 

employed minimum strain energy density and maximum 

tangential stress theories and extended them to orthotropic 

materials. Investigating the effects of biaxial loading on 

crack propagation, Lim (2012) has used normal stress ratio 

to predict crack propagation direction. 

As it could be found from the above literature, no 

generalized fracture criterion has been suggested for 

orthotropic materials subjected to mixed mode loadings I/II 

in conjunction with real nature of fracture mechanism. 

Therefore, the main goal of this research is to develop a 

novel concept for predicting crack propagation in 

orthotropic materials relying on this fact that fracture of 

orthotropic materials taken place along fiber and in an 

isotropic medium. Thus, developed material modeling is 

called "Equivalent Reinforced Isotropic Material". For this 

purpose, the well-known Maximum Tangential Stress 

(MTS) criterion which is basically developed for isotropic 

materials is extended to orthotropic materials. Experimental 

observations on orthotropic specimens imply on this fact 

that a crack always propagate along fibers and in isotropic 

matrix. Thus, assuming that cracks are placed in isotropic 

medium and modeling fibers as reinforcements, MTS 

criterion is extended to orthotropic materials. A good 

agreement observed between theoretical prediction and 

experimental observations proved the efficiency of the 

developed criterion. 
 

 

2. Extracting mixed mode fracture criterion for an 
equivalent isotropic material 
 

As shown in Fig. 1 regardless of crack-fiber angle, 

cracks always propagate in an isotropic medium and along 

fiber direction in orthotropic materials (Farid and Fakoor, 

2019). This inspires that fracture in orthotropic materials 

follows the fracture mechanism in isotropic materials. So 

the most important and also comprehensive fracture 

criterion i.e., Maximum Tangential Stress (MTS) can be 

extended for investigation of fracture in orthotropic 

materials. 

In orthotropic materials, fibers play the role of 

reinforcements embedded in an isotropic matrix. Therefore, 

as it is also evident from Fig. 2, it can be understood that for 

located cracks along fibers, isotropic matrix experiences 

fracture phenomena and fibers does not directly affect the 
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Fig. 2 Crack distribution path and tangential stress 

around the crack tip of considered RVE in 

reinforced isotropic material 

 

 

crack propagation. It is assumed that main role of fiber is to 

reduce the stress distribution around crack tip and thus MTS 

will be employed considering this fact. 

 

2.1 Reinforced Isotropic Model (RIM) and 
Stress Reduction Factors (SRF) 

 

Representative Volume Element (RVE) of a reinforced 

isotropic material is presented in Fig. 2 Now, Airy stress 

function can be written for orthotropic material shown in 

Fig. 2 Far from reinforcement, this stress function will 

satisfy all equilibrium and compatibility equations. When 

reinforcements interact with matrix, this strategy is not 

valid, because equilibrium conditions and strength criterion 

 

 

will not be satisfied for matrix. In this case, Airy stress 

function has to be written for isotropic matrix material. For 

a cracked single layer of composite materials in plane-stress 

conditions, equilibrium equations are written as below in 

absence of external loadings 

 
𝜕𝜍𝑥
𝜍𝑥

+
𝜕𝜏𝑥𝑦
𝜍𝑦

= 0 ,
𝜕𝜏𝑥𝑦
𝜍𝑥

+
𝜕𝜍𝑦
𝜍𝑦

= 0 (1) 

 

Constitutive equation is written as below 

 

 

𝜀𝑥
𝜀𝑦𝑦
𝜀𝑥𝑦

 =  

𝐶11 𝐶12 𝐶16

𝐶21 𝐶22 𝐶26

𝐶61 𝐶62 𝐶66

  

𝜍𝑥
𝜍𝑦𝑦
𝜍𝑥𝑦

  (2) 

 

Due to symmetric configuration of compliance matrix, 

six independent coefficients are required to be 

characterized. Compatibility equation is formed as it 

follows 

𝜕𝜀𝑥
2

𝜕𝑦2
+
𝜕𝜀𝑦

2

𝜕𝑥2
=

𝜕𝛾𝑥𝑦
2

𝜕𝑥𝜕𝑦
 (3) 

 

For flat crack problems, 2-D solutions can be applied 

 

𝜀𝑥 = 𝐶11𝜍𝑥 + 𝐶12𝜍𝑦  ;     𝜀𝑦 = 𝐶12𝜍𝑥 + 𝐶22𝜍𝑦  ; 

𝛾𝑥𝑦 = 𝐶66𝜏𝑥𝑦  
(4) 

 

Which can be rearranged in below format 

 

𝜀𝑥 = 𝜍𝑥 𝐸𝑥 − 𝜈21𝜍𝑦 𝐸𝑦  ; 

𝜀𝑦 = −𝜈21𝜍𝑥 𝐸𝑥 + 𝜍𝑦 𝐸𝑦  ; 

𝛾𝑥𝑦 = 𝜏𝑥𝑦 𝐺𝑥𝑦  

(5) 

 

  
 

  

Fig. 1 Propagation of cracks along fiber direction and in isotropic medium between fibers (Farid and Fakoor 2019) 
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Therefore, Airy stress function satisfying equilibrium 

equations is expressed as 
 

𝜍𝑥 =
𝜕2𝑈

𝜕𝑥2
;         𝜍𝑦 =

𝜕2𝑈

𝜕𝑦2
;       𝜏𝑥𝑦 = −

𝜕2𝑈

𝜕𝑥𝜕𝑦
 (6) 

 

Substituting Airy stress functions into Eq. (4) and 

considering compatibility Eq. (3), we have 

 

𝐶22

𝜕4𝑈

𝜕𝑥4
+  𝐶66 + 2𝐶12 

𝜕4𝑈

𝜕𝑥2𝜕𝑦2
+ 𝐶11

𝜕4𝑈

𝜕𝑦4
= 0 (7) 

 

Orthotropic materials are reinforced materials wherein 

fibers are embedded in matrix and initial crack is available 

in the matrix. Thus, fracture is predicted on the basis of 

matrix strength and Airy stress function is required to be 

solved for induced stress components in matrix. Comparing 

high stiffness of fiber and low stiffness of matrix, there is 

only one stiffness factor in principal direction which is n 

times greater. For material with tensile and shear 

reinforcements, Airy stress function can be modified as 

below (Van der Put 2007) 
 

𝜍𝑥
𝑛1

=
𝜕2𝑈

𝜕𝑥2
;      𝜍𝑦 =

𝜕2𝑈

𝜕𝑦2
;       

𝜏𝑥𝑦
𝑛6

= −
𝜕2𝑈

𝜕𝑥𝜕𝑦
 (8) 

 

In which 𝑛1 and 𝑛6 are Stress Reduction Factors 

(SRF). In fact, reduced stress attributed to the role of 

reinforcements is analyzed instead of analyzing stress in the 

crack tip of an orthotropic material. Namely, induced stress 

components in the matrix of an orthotropic material are a 

 

 

reduced stress with the degree of 𝑛𝑖(𝑖 = 1,6)  in 

comparison with overall stress keeping the same 

compatibility conditions. Substituting these stress functions 

into compatibility equation, we obtain (Van der Put 2007) 

 

𝐶22

𝜕4𝑈

𝜕𝑥4
+  𝑛6𝐶66 +  1 + 𝑛1 𝐶12 

𝜕4𝑈

𝜕𝑥2𝜕𝑦2
 

+𝑛1𝐶11

𝜕4𝑈

𝜕𝑦4
= 0 

(9) 

 

𝑛1 and 𝑛6  should also conforms with below 

configurations to be able to apply stress function of U to 

isotropic materials as well 

 

𝑛1 =
𝐶22

𝐶11
=
𝐸𝑥
𝐸𝑦

; 

𝑛6 =  2 −
𝐶12

𝐶22
−
𝐶12

𝐶11
 .
𝐶22

𝐶66
=  2 + 𝜈𝑦𝑥 + 𝜈𝑥𝑦  

𝐺𝑥𝑦
𝐸𝑦

 

(10) 

 

The hypothesis of Reinforced Isotropic Model (RIM) 

and definition of Stress Reduction Factors (SRF’s) can be 

verified by Finite Element Method (FEM). Based on 

aforementioned definition, SRF’s could be extracted by 

comparison of crack tip stress distribution in an orthotropic 

solid (composition of matrix and fibers) and an isotropic 

solid which is made of matrix material. Norway spruce 

wood as a natural orthotropic material has been considered 

for verification of RIM. FE model of orthotropic material, 

related isotropic solid and stress distribution around the 

crack tip are shown in Fig. 3. 

  

(a) Geometry, loading and boundary conditions (b) Mesh quality 

 

  

(c) Stress distribution around the crack tip of orthotropic material 

 

(d) Stress distribution around the crack tip of equivalent 

isotropic material 

Fig. 3 FE model of cracked solids 
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Table 2 Results of RIM and FEM 

SRF FEM approach RIM approach 

𝑛1 
𝜍𝑥
𝑜𝑟𝑡 𝑕𝑜

𝜍𝑥
𝑖𝑠𝑜

= 13.89 
𝐸𝑥
𝐸𝑦

= 14.61 

𝑛6 
𝜍𝑥𝑦
𝑜𝑟𝑡 𝑕𝑜

𝜍𝑥𝑦
𝑖𝑠𝑜

= 1.61  2 + 𝜈21 + 𝜈12 
𝐺𝑥𝑦
𝐸𝑦

= 1.73 

 

 

 

FE model for Norway spruce wood consist of 10,252 

second-order elements and 31,215 nodes is employed to 

guarantee convergence of the mesh. Crack tip elements are 

selected as 8-node element and SR8 in order to be able to 

define quarter point singularity. Also, SR8 second-order 

element with 8-node is used for other regions. The 

constructed FE model is presented in Figs. 3(a) and (b). The 

crack tip region was meshed with the singular quarter point 

elements with 321 nodes and 92 elements. Crack tip 

elements are fine enough to satisfy crack tip singularity. 

Elastic, strength and fracture properties of the utilized 

materials are in listed in Table 1. 

𝑛1 is defined as the ratio of tensile stress in orthotropic 

material to isotropic material in 𝑥 direction (perpendicular 

to loading direction) and 𝑛6 is the ratio of the shear stress 

in orthotropic material to isotropic material as follows 

 

𝑛1 =
𝜍𝑥
𝑜𝑟𝑡 𝑕𝑜

𝜍𝑥
𝑖𝑠𝑜

;      𝑛6 =
𝜍𝑥𝑦
𝑜𝑟𝑡 𝑕𝑜

𝜍𝑥𝑦
𝑖𝑠𝑜

 (11) 

 

The results of SRF’s based on theoretical approach (Eq. 

10) and finite element method are compared in Table 2. 

Therefore, the hypothesis of Reinforced Isotropic Model 

(RIM) could be acceptable for orthotropic materials. 

 

2.2 Tangential stress at crack tip of reinforced 
isotropic material 

 

Now, maximum tensile stress around the crack tip is 

taken into account in accordance with Fig. 2. Erdogan and 

Sih (1963) have presented MTS as the most important and 

comprehensive fracture criterion for isotropic materials as 

follows 

 

𝜍𝜃𝜃 = 𝜍𝑥𝑥 sin2 𝜃 + 𝜍𝑦𝑦 cos2 𝜃 − 𝜏𝑥𝑦 sin 2𝜃  (12) 

 

In the above equation, 𝜍𝑖𝑗  is the crack tip stress 

distribution which can be expressed as below 

 

 

 

𝜍𝑥𝑥 =
𝐾𝐼

 2π𝑟
cos

𝜃

2
 1 − sin

𝜃

2
sin

3𝜃

2
 

+
𝐾𝐼𝐼

 2π𝑟
sin

𝜃

2
 2 + cos

𝜃

2
cos

3𝜃

2
  

𝜍𝑦𝑦 =
𝐾𝐼

 2π𝑟
cos

𝜃

2
 1 + sin

𝜃

2
sin

3𝜃

2
 

+
𝐾𝐼𝐼

 2π𝑟
sin

𝜃

2
cos

𝜃

2
cos

3𝜃

2
 

𝜏𝑦𝑦 =
𝐾𝐼

 2π𝑟
sin

𝜃

2
cos

𝜃

2
cos

3𝜃

2

+
𝐾𝐼𝐼

 2π𝑟
cos

𝜃

2
 1 − sin

𝜃

2
sin

3𝜃

2
  

(13) 

 

Due to aforementioned reasons, it is necessary to 

consider the effects of fibers as the reinforcements in 

isotropic matrix for the extension of MTS criterion to 

orthotropic materials. The effects of fibers can be expressed 

by 𝑛1,  𝑛6 which are normal and shear stress reduction 

factors in isotropic matrix, respectively. In other words, new 

conditions should be considered for matrix reduced stress 

distribution as below 
 

𝜍𝑥𝑥 →
𝜍𝑥
𝑛1

;      𝜏𝑥𝑦 →
𝜏𝑥𝑦
𝑛6

 (14) 

 

Subsequently, sets of Eq. (13) expressing stress 

distribution at crack tip of an isotropic material are 

modified or a reinforced isotropic matrix with fibers as 

below 
 

𝜍𝑥𝑥 =
𝐾𝐼

𝑛1 2π𝑟
cos

𝜃

2
 1 − sin

𝜃

2
sin

3𝜃

2
 

+
𝐾𝐼𝐼

𝑛1 2π𝑟
sin

𝜃

2
 2 + cos

𝜃

2
cos

3𝜃

2
  

𝜍𝑦𝑦 =
𝐾𝐼

 2π𝑟
cos

𝜃

2
 1 + sin

𝜃

2
sin

3𝜃

2
 

+
𝐾𝐼𝐼

 2π𝑟
sin

𝜃

2
cos

𝜃

2
cos

3𝜃

2
 

𝜏𝑦𝑦 =
𝐾𝐼

𝑛6 2π𝑟
sin

𝜃

2
cos

𝜃

2
cos

3𝜃

2

+
𝐾𝐼𝐼

𝑛6 2π𝑟
cos

𝜃

2
 1 − sin

𝜃

2
sin

3𝜃

2
  

(15) 

 

Substituting Eq. (15) into Eq. (12), extended maximum 

tangential stress is obtained for an equivalent reinforced 

isotropic material with fiber as follows 

Table 1 Elastic (𝐺𝑃𝑎), strength (𝑀𝑃𝑎) and fracture properties (𝑀𝑃𝑎 𝑚) of the employed woods 

Species 𝑬𝒚 𝑬𝒙 𝑮𝒙𝒚 𝝂𝒙𝒚 𝑻𝑴 𝑻𝒎 𝑲𝑰𝑪
𝑹𝑳 𝑲𝑰𝑰𝑪

𝑹𝑳  𝑲𝑰𝑪
𝑻𝑳 𝑲𝑰𝑰𝑪

𝑻𝑳  

Norway spruce (Picea abies) 

(Romanowicz and Seweryn 2008) 
0.81 11.84 0.63 0.38 63 5.1 0.58 1.52 - - 

Scots pine (Pinus sylvestris) (Jernkvist 2001b) 1.10 16.3 1.74 0.47 52 3.76 0.49 1.32 0.44 2.05 

Red spruce (Picea rubens) (Mall et al. 1983) 098 12.7 0.80 0.37 84.8 2.4 0.42 1.665 0.42 2.19 
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𝜍𝜃𝜃 =
𝐾𝐼

𝑛1𝑛6 2π𝑟
 
𝑛6

4
 2 cos

𝜃

2
− cos

3𝜃

2
− cos

5𝜃

2
   

−
𝑛6

16
 3 cos

𝜃

2
− cos

3𝜃

2
− 3 cos

5𝜃

2
+ cos

9𝜃

2
  

+
𝑛1𝑛6

4
 2 cos

𝜃

2
+ cos

3𝜃

2
+ cos

5𝜃

2
  

+
𝑛1𝑛6

16
 cos

𝜃

2
− cos

3𝜃

2
− cos

5𝜃

2
− cos

9𝜃

2
  

−  𝑛1

8
 cos

𝜃

2
− cos

3𝜃

2
+ cos

5𝜃

2
− cos

9𝜃

2
   

+
𝐾𝐼𝐼

𝑛1𝑛6 2π𝑟
 −

𝑛6

2
 2 sin

𝜃

2
− sin

3𝜃

2
− sin

5𝜃

2
   

+
𝑛6

16
 3 sin

𝜃

2
− sin

3𝜃

2
− 3 sin

5𝜃

2
+ sin

9𝜃

2
  

+
𝑛1𝑛6

4
 − sin

𝜃

2
+ sin

3𝜃

2
+ sin

5𝜃

2
+ sin

9𝜃

2
  

+
𝑛1

8
 sin

𝜃

2
+ sin

3𝜃

2
+ sin

5𝜃

2
− sin

9𝜃

2
  

 −
𝑛1

2
 sin

3𝜃

2
+ sin

5𝜃

2
   

(16) 

 

2.3 Predicting crack propagation direction 
 

It is assumed that crack propagates in an isotropic 

medium when tangential stress at angle 𝜽𝟎  reaches its 

critical value of 𝜍𝜃𝜃 . Thus, fracture occurs in isotropic field 

when below conditions are satisfied 

 

 

 
𝜃 = 𝜃0

𝜍𝜃𝜃 = 𝜍𝜃𝜃𝑐
  (17) 

 

For pure mode I loading (i.e., 𝐾𝐼𝐼 = 0) we have 

 

𝜍𝜃𝜃𝑐 =
𝐾𝐼𝑐

 2π𝑟
 (18) 

 

Thus, substituting Eq. (18) into Eq. (16), a relationship 

between stress intensity factors and critical stress intensity 

factor is established as below 

 
𝐾𝐼

𝑛1𝑛6𝐾𝐼𝑐 2π𝑟
 
𝑛6

4
 2 cos

𝜃

2
− cos

3𝜃

2
− cos

5𝜃

2
   

−
𝑛6

16
 3 cos

𝜃

2
− cos

3𝜃

2
− 3 cos

5𝜃

2
+ cos

9𝜃

2
  

+
𝑛1𝑛6

4
 2 cos

𝜃

2
+ cos

3𝜃

2
+ cos

5𝜃

2
  

+
𝑛1𝑛6

16
 cos

𝜃

2
− cos

3𝜃

2
− cos

5𝜃

2
− cos

9𝜃

2
  

 −
𝑛1

8
 cos

𝜃

2
− cos

3𝜃

2
+ cos

5𝜃

2
− cos

9𝜃

2
   

+
𝐾𝐼𝐼

𝑛1𝑛6𝐾𝐼𝐼𝑐 2π𝑟
 

 −
𝑛6

2
 2 sin

𝜃

2
− sin

3𝜃

2
− sin

5𝜃

2
   

+
𝑛6

16
 3 sin

𝜃

2
− sin

3𝜃

2
− 3 sin

5𝜃

2
+ sin

9𝜃

2
  

(19) 

 

 

Table 3 Theoretical proposed mixed mode fracture criteria for orthotropic materials 

Author Based on Criterion formulation 

Jernkvist (2001a, b) 
Minimum strain energy 

release rate 
𝐾𝐼

2 + 𝛽1𝐾𝐼𝐼
2 = 𝐾𝐼𝐶

2 ,      𝛽1 =  
𝐾𝐼𝐶
𝐾𝐼𝐼𝐶

 
2

 

Jernkvist (2001a, b) 
Maximum strain 

energy density 
𝐾𝐼

2 + 1
𝛽1
 𝐾𝐼𝐼

2 = 𝐾𝐼𝐶
2 ,      1 𝛽1

 =  
𝐾𝐼𝐶
𝐾𝐼𝐼𝐶

 
2

 

Jernkvist (2001a, b) Maximum principal stress 

1

𝛽3 +  𝛽4

 𝛽3𝐾𝐼 +  𝛽4𝐾𝐼
2 + 𝐾𝐼𝐼

2 = 𝐾𝐼𝑐  

𝛽3 +  𝛽4 =
𝐾𝐼𝐼𝐶
𝐾𝐼𝐶

 

Romanowicz and Seweryn 

(2008) 
Nonlocal stress 𝐾𝐼

2 + 𝜌𝑐𝐾𝐼𝐼
2 = 𝐾𝐼𝐶

2 ,      𝜌𝑐 =
𝐶𝑅𝐿
𝐶𝑅

=  
𝐾𝐼𝐶
𝐾𝐼𝐼𝐶

 
2

 

Anaraki and Fakoor (2010b) 
Reinforced micro 

crack model 

𝐾𝐼
2 + 𝜌𝑐𝐾𝐼𝐼

2 = 𝐾𝐼𝑐  

𝜌𝑐 =
(5 − 𝜈)(𝜉 𝜆 + 𝜈𝐿𝑅𝜆)2

(10 − 3𝜈)(1 + 0.5𝜈𝐿𝑅(1 + 𝜆))2
 

Anaraki and Fakoor (2010a) 
Maximum strain energy 

released rate 𝐾𝐼
2 + 𝜌𝐾𝐼𝐼

2 − 𝐾𝐼𝑐 = 0, 𝜌 = ( 𝐶11
 𝐶22

  )𝑑𝑎𝑚𝑎𝑔𝑒  

Fakoor and Rafiee (2013) Maximum shear stress 𝐾𝐼
2 + 𝜌𝐾𝐼𝐼

2 − 𝐾𝐼𝑐 = 0     , 𝜌 =  
𝐾𝐼𝐶
𝐾𝐼𝐼𝐶

 
2

 

Anaraki and Fakoor (2011) Strength based criterion 𝐾𝐼
2 + 𝜌𝑐𝐾𝐼𝐼

2 − 𝐾𝐼𝑐 = 0 ,     𝜌𝑐 = 2  
𝑇𝑚
𝑇𝑀

+  
𝑇𝑚
𝑇𝑀
 

2
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Table 4 Empirical fracture criteria for orthotropic material 

Investigator Criterion formulation 

Tsai and Wu (1971)  
𝐾𝐼
𝐾𝐼𝐶

 + (
𝐾𝐼𝐶
𝐾𝐼𝐼𝐶

)2 = 1 

Sih et al. (1975) 𝑆 = 𝛽11𝐾𝐼
2 + 𝛽12𝐾𝐼𝐾𝐼𝐼 + 𝛽22𝐾𝐼𝐼

2  

Williams and 

Birch (1976) 

𝐾𝐼
𝐾𝐼𝐶

= 1 

Leicester (1974) 𝐾𝐼 + (
𝐾𝐼𝐶
𝐾𝐼𝐼𝐶

)𝐾𝐼𝐼 − 𝐾𝐼𝐶 = 0 

Hunt and Croager 

(1982) 
𝐾𝐼 +  (1.005)

𝐾𝐼𝐶
𝐾𝐼𝐼𝐶

3.4 𝐾𝐼𝐼
3.4 − 1 = 0 

Mall et al. (1982) 𝐾𝐼 +  
𝐾𝐼𝐶
𝐾𝐼𝐼𝐶

2  𝐾𝐼𝐼
2 − 1 = 0 

 

 

 

+
𝑛1𝑛6

4
  – sin

𝜃

2
+ sin

3𝜃

2
+ sin

5𝜃

2
+ sin

9𝜃

2
  

+
𝑛1

8
 sin

𝜃

2
+ sin

3𝜃

2
+ sin

5𝜃

2
− sin

9𝜃

2
  

 –
𝑛1

2
 sin

3𝜃

2
+ sin

5𝜃

2
  = 1 

(19) 

 

Above equation could be considered as Extended 

Maximum Tensile Stress (EMTS) criterion which is 

obtained by extending MTS to orthotropic materials 

wherein orthotropic material is treated as an Equivalent 

Reinforced Isotropic Material (ERIM). Following we will 

confirm that the results of the proposed criterion are in 

accordance with the nature of fracture of orthotropic 

materials. 
 

 

 

 

 

(a) Norway spruce wood (Jernkvist 2001b) 

 

 

(b) Scot Pine wood (Romanowicz and Seweryn 2008) 

 

 

(c) Red Spruce wood (Jernkvist 2001b) 

Fig. 4 Fracture limit curves for mixed mode loading in comparison with experimental data (𝐾𝐼 , 𝐾𝐼𝐼(𝑀𝑝𝑎 𝑚) 
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3. Investigation of available mixed-mode fracture 

criteria for orthotropic materials 
 

In this section a review has been performed on available 

mixed mode I/II fracture criteria to introduce the drawbacks 

and limitations. These presented criteria can be divided it to 

two general kinds; named here as theoretical and empirical. 

General forms of presented theoretical mixed-mode fracture 

criteria for orthotropic materials are collected from 

literature and presented in Table 3. Also there are some 

empirical fracture criteria which are based on cure fitting on 

experimental data for orthotropic materials that summarized 

in Table 4. 

Fracture limit curves for different types of composite 

materials consisting Norway spruce, Scots Pine and Red 

spruce woods are presented in Fig. 4 and compared with 

experimental data. It can be interpreted from Fig. 4 that 

energy-based criteria (i.e., extended SER and SED) are too 

conservative, especially for mode II-dominated loading 

conditions. Also employing Non-local stress criterion needs 

pure mode II fracture toughness data which is not available 

in the literature due to test difficulties. 

Fig. 5 presents fracture limit curves for empirical criteria 

(see Table 4) in comparison with experimental fracture data 

for Balsa wood (Wu 1967). 

 

 

 

 

4. Investigation of results of extended maximum 
tensile stress criterion 
 
In Fig. 6, fracture limit curve obtained through EMTS 

criterion for Norway spruce wood is presented. As it can be 

seen from Fig. 6 developed EMTS criterion predicts results 

in a good agreement with experimental data. The 

compatibility of trend of proposed fracture limit curve with 

real fracture mechanism is discussed in this section. 

In contrast to available fracture criteria for orthotropic 

material under mixed mode loadings, as it is evident from 

Fig. 6 that fracture limit curve exceeds 𝐾𝐼𝑐  at a specific 

point highlighted by  𝐾𝐼𝑐  
𝑜𝑟𝑡𝑕𝑜
𝑚𝑎𝑥

. This means that the 

investigated specimen can tolerate more loading than 

critical load associated with pure mode I loading. In fact, 

load bearing capacity of orthotropic materials subjected to 

mixed mode loading I/II is higher than that of pure mode I 

loading. This fact has not been reported by other available 

mixed mode fracture criteria. Also another fact which 

confirms the superiority of the EMTS criterion is also 

shown in Fig. 6. Good agreement between experimental 

data and theoretically estimation for pure mode II fracture 

toughness (𝐾𝐼𝐼𝑐 ) is evident in this Fig. This coincidence has 

not been reported by other available criteria. Fig. 6 

 

Fig. 5 Comparing empirical fracture limits curves for mixed mode loading 

 

Fig. 6 Fracture limit curve utilizing EMTS in comparison with experimental data (𝐾𝐼 , 𝐾𝐼𝐼(𝑀𝑝𝑎 𝑚) (Jernkvist 

2001b) and Concept of maximum orthotropic fracture toughness in mode I (  𝐾𝐼𝑐  
𝑜𝑟𝑡𝑕𝑜
𝑚𝑎𝑥

) 
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(a) Pure mode I loading (b) Mixed mode loading 

Fig. 8 Orthotropic plate under 

 

 

presented the results of EMTS for Norway spruce wood 

with introduced material properties in Table 1. As it is 

shown in Fig. 6, developed EMTS is not only able to 

predict aforementioned toughening behavior but also it can 

estimated 𝐾𝐼𝐼𝑐 . 
 

 

5. New fracture mechanics property for 

orthotropic materials ( 𝑲𝑰𝒄 
𝒐𝒓𝒕𝒉𝒐
𝒎𝒂𝒙

) 

 

Experimental observations reported in published data 

(Hunt and Croager 1982, Jernkvist 2001a, b) for orthotropic 

materials under mixed mode I/II loadings, show that some 

experimental data cannot be captured at all by any proposed 

fracture criteria as it has been presented in Fig 7. This 

specific region has been perfectly addressed by developed 

EMTS criterion. This region implies on this fact that a 

cracked orthotropic material shows more strength in mixed 

mode loading in comparison with pure mode I. A new 

material property named here as maximum orthotropic 

fracture toughness in mode I (  𝐾𝐼𝑐  
𝑜𝑟𝑡𝑕𝑜
𝑚𝑎𝑥

) can be defined for 

orthotropic materials accordingly. As it could be found from 

Fig. 7, for highlighted experimental data 𝐾𝐼𝑐 > 𝐾𝐼𝑐 . 

This toughening mechanism can be interpreted from 

physical point of view as shown in Fig. 8. In orthotropic 

 

 

materials with cracks along fiber, crack propagation occurs 

in isotropic matrix. According to Fig. 8 (a), in pure mode I 

the load vector is perpendicular to fibers and therefore 

fibers do not contribute in preventing crack propagation at 

this specific case. But, when shear loading is also applied in 

to the specimen (see Fig. 8 (b)), mixed mode loading is 

pertinent to investigated case. In this case, fibers will be 

activated and contribute in load bearing so the applied stress 

at crack tip will be reduces and prevent crack propagation 

practically. Developed EMTS criterion takes into account 

this phenomenon using 𝑛1, 𝑛6 coefficients. In other words, 

the investigated specimen can accommodate more loadings 

in comparison with pure mode I loading and thus skewness 

to the right hand is observed in both experimental data and 

theoretical fracture limit curve estimated by ESTM model. 

As a matter of fact,  𝐾𝐼𝑐  
𝑜𝑟𝑡𝑕𝑜
𝑚𝑎𝑥

 represents maximum 

load bearing capacity of orthotropic materials that can be 

captured in mode I axis (see Fig. 6) and can be introduces 

as a new developed material property. A portion of loading 

in mode I and II which presents  𝐾𝐼𝑐  
𝑜𝑟𝑡𝑕𝑜
𝑚𝑎𝑥

 can be 

considered as an angle between fiber and crack direction. 

This concept is schematically shown in Fig. 9. As it is 

depicted in Fig. 9, 𝜔 angle can be defined in a manner that 

contribution of shear loading 𝜏 and tensile loading 𝜍 

result in  𝐾𝐼𝑐  
𝑜𝑟𝑡𝑕𝑜
𝑚𝑎𝑥

 The 𝜔  is hereafter referred as 

 

 

 

Fig. 9 Force Components on crack edges 

  

(a) Scots pine wood (b) Norway spruce wood 

Fig. 7 Experimental data exceed from available fracture limit curves (𝐾𝐼 , 𝐾𝐼𝐼(𝑀𝑝𝑎 𝑚) (Jernkvist 2001b) 
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optimum angle between fiber and crack. This specific angle 

represents maximum load bearing capacity in notched 

orthotropic materials. 

 

 

6. Optimum angle between fiber and crack for 
maximum load bearing capacity 
 

In order to extend the concept of optimum angle 

between fiber and crack for the purpose of maximizing load 

bearing capacity, converting tensile-shear loading to pure 

normal loading conditions with suitable fiber orientation is 

needed. This concept is shown in Fig. 10. For determination 

of equivalent fiber-crack angle in which tensile-shear 

loading of point A in Fig. 11 could be reflected, contribution 

of both tensile and shear loadings needs to be computed. 

Stress intensity factors are calculated employing 

analytical formulations. The relation between stress concen-

tration factors and the angle between fiber and crack are 

mentioned in different references as below equations 

(Jernkvist 2001a) 
 

 
𝐾𝐼 = 𝜍 𝜋𝑎𝑓𝐼 𝜑 

𝐾𝐼𝐼 = 𝜍 𝜋𝑎𝑓𝐼𝐼 𝜑 
  (20) 

 

where 

 

 

𝑓𝐼 𝜑 = 3.028 − 3.22 × 10−3𝜑

+3.73 × 10−4𝜑2 − 9.14 × 10−6𝜑3

𝑓𝐼 𝜑 = sin 2𝜑  0.644 + 4.89 × 10−3𝜑 

  (21) 

 

 

 

Fig. 10 Conversion of tensile-shear loading to pure 

tensile loading with fiber orientation 

 

 

Recalling from Fig. 11, 𝜃,𝑜𝑝𝑡  can be calculated using 

above equations when stress intensity factors are obtained 
 

𝐾𝐼,𝑜𝑝𝑡 = 0.63799 ,    𝐾𝐼𝐼,𝑜𝑝𝑡 = 0.241935 (22) 
 

Finally, for Norway Spruce we have this 
 

𝜃,𝑜𝑝𝑡 = 53.28° (23) 
 

Similarity for other woods we obtain 
 

 
𝑆𝑐𝑜𝑡𝑠 𝑃𝑖𝑛𝑒 → 𝜃,𝑜𝑝𝑡 = 53.29°

𝑅𝑒𝑑 𝑆𝑝𝑟𝑢𝑠𝑒 → 𝜃,𝑜𝑝𝑡 = 45.43°
  (24) 

 

The results demonstrate that optimum angle between 

crack and fiber direction is about 50°. In other words, if it 

is intended to create a notch in an orthotropic specimen, it 

should be located at 𝜃,𝑜𝑝𝑡 direction with respect to fiber 

direction. This optimum angle was obtained between 

40°− 50° in Fakoor et al. (2015). Moreover, this optimum 

angle implies on more resistance against crack propagation. 
 

 

7. Conclusions 
 

In this research, a novel mixed mode I/II fracture 

criterion named as Extended Maximum Tensile Stress 

(EMTS) is presented for orthotropic materials. This 

criterion is developed based on extension of MTS which is 

widely used for isotropic materials. A new concept of 

Equivalent Reinforced Isotropic Material (ERIM) is 

developed to extend available MTS criterion in to 

orthotropic materials. ERIM model is based on several 

experimental observations in which regardless of crack 

inclination with respect to fibers, cracks always propagate 

in isotropic medium and along the fiber direction. In this 

model, stress components are reduced by defined stress 

reduction factors. The proposed material model was 

approved by finite element analysis. According to obtained 

fracture limit curves, a new material property was defined 

for cracked orthotropic specimens which called here as 

mode I maximum orthotropic fracture toughness. A 

comparison between experimental data and theoretical 

estimation proves the proficiency of developed criterion for 

predicting fracture behavior of orthotropic materials. 

 

 

Fig. 11 Determining tensile and shear loading contributions at maximum load bearing capacity (𝐾𝐼 , 𝐾𝐼𝐼(𝑀𝑝𝑎 𝑚) 
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Nomeclature 
 

𝒂 Crack length 

𝑪𝒊𝒋 Components of compliance matrix 

𝑬 Young’s moduli of the matrix 

𝑬𝒊 = 𝒙, 𝒚, 𝒛 Young’s moduli in the i direction 

𝑮 Strain energy release rate 

𝑮𝒊𝒋 = 𝒙, 𝒚, 𝒛 Shear modulus 

𝑲𝑰, 𝑲𝑰𝑰 Modes I and II stress intensity factor 

𝑲𝑰𝑪, 𝑲𝑰𝑰𝑪 Modes I and II fracture toughness 

𝑳, 𝑹, 𝑻 Axes of orthotropy in wood 

𝑻𝑴 
Tensile strength of the orthotropic material in 

fiber direction 

𝑻𝒎 
Tensile strength of the orthotropic material 

perpendicular to fiber direction 

𝒏𝐢, 𝒊 = 𝟏, 𝟔 Normal and shear reinforcement effects 

𝑼 Airy stress functions 

𝜺𝒊𝒋, 𝜸𝒊𝒋 The normal and shear Strains 

𝝂𝒊𝒋 Poisson’s ratio 

𝝆 Orthotropic damage factor 

𝝈𝒊𝒋, 𝝉𝒊𝒋 The normal and shear stress around the crack tip 

𝝈𝜽𝜽 Maximum tangential stress 

𝜽𝟎 Crack growth angle 

𝝎 Crack-fiber angle 
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