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Abstract. A high precision shear deformable triangular element has been proposed for free vibra
analysis of composite trapezoidal plates. The element has twelve nodes at the three sides and four node
the element. Initially the element has fifty-five degrees of freedom, which has been reduced to forty-eig
eliminating the degrees of freedom of the internal nodes through static condensation. Plates having dif
side ratios (b/a), boundary conditions, thickness ratios (h/a=0.01, 0.1 and 0.2), number of layers and fibre
angle orientations have been analyzed by the proposed shear locking free element. Trapezoidal lamina
concentrated mass at the centre has also been analyzed. An efficient mass lumping scheme ha
recommended, where the effect of rotary inertia has been included. For validation of the present eleme
formulation few results of isotropic trapezoidal plate and square composite laminate have been compare
those obtained from open literatures. The numerical results for composite trapezoidal laminate have
given as new results.

key words: finite element; shear-locking free element; composite trapezoidal plate; rotary inertia; f
order shear deformation theory; lump mass.

1. Introduction

The finite element method (Zienkiewicz and Taylor 1988) is regarded as the most versatile a
tool specifically in structural analysis problems. The plate bending is one of the first problems 
finite element was applied in early sixties. The initial attempts were made with thin plates bas
Kirchhoff’s hypothesis where a number of difficulties were encountered. These are mostly conc
with the satisfaction of normal slope continuity along the element edges. Subsequently, the meth
been applied to thick plates based on Reissner-Mindlins hypothesis where the above problem h
avoided by considering the transverse displacement (w) and rotations of normal (θx and θy) as
independent displacement components. Amongst the thick plate elements developed so far, t
prominent elements are the isoparametric elements, which became very popular. Though
elements are quite elegant, they involve certain problems such as shear locking, stress extrap
spurious modes etc. Keeping these aspects in view some research workers have tried to de
element, which will be free from the above problems. The necessity has been geared up further 
wide use of fibre reinforced laminated composite which is weak in shear due to its low shear m
compared to elastic modulus. As an outcome of these facts, some elements have been prop
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Petrolito (1989), Yuan and Miller (1989), Sengupta (1991), Batoz and Katili (1992), Zhongnian (1
Wanji and Cheung (2000) and a few others.

Exact thin plate solutions for isotropic trapezoidal plates are available only for certain bou
conditions (Timoshenko and Woinowsky-Krieger 1959). For complex boundary conditions a num
method must therefore be used. Plates of arbitrary shaped subjected to static load was ana
Liew (1992) using the principle of minimum potential energy with admissible pb-2 Ritz functions. A
majority of the arbitrarily shaped plate problems in bending was solved numerically by finite ele
method (Gallaghar 1975 and Zienkiewicz 1971). Free flexural vibration of multi-layered symmetric
and unsymmetric composite laminates with symmetric trapezoidal planform of arbitrary combin
of edge conditions was investigated by Liew and Lim (1995). Lim et al. (1996) studied the free vibration o
general thin composite trapezoidal plates using Ritz extremum energy principle with kinema
oriented pb-2 shape function. Liew et al. (1999) analysed free flexural vibration of arbitrary quadrilate
unsymmetrically laminated plates subjected to arbitrary boundary conditions using Ritz procedures.

In the present work a high precision composite shear deformation element has been propos
element has the advantage that plates of any shapes can be modelled by this element, as
triangular geometry. In this element a fourth order complete polynomial has been used to e
transverse displacement w while the in-plane displacements (u and v) and the rotations of the norma
(θx and θy) have been expressed with complete cubic polynomials. Thus the interpolation functiow
is one order higher than those of θx and θ y, which has helped to make this element free from locking
shear and other relevant problems. 

2. Formulation

The formulation is based on Mindlin’s plate theory, which ensures the incorporation of shear defor
effects. The middle plane of the plate has been considered as the reference plane.

A typical element shown in Fig. 1 has sixteen nodes. The locations of the nodes 3, 7 and 11 a
midpoint of the corresponding sides while nodes 2, 4, 6, 8, 10 and 12 are located at a distance

Fig. 1 A typical element with nodes and degrees of freedom
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third of the length of the corresponding sides from their nearest end. The co-ordinates of the no
14, 15 and 16 are (1/2, 1/4, 1/4), (1/4, 1/2, 1/4), (1/4, 1/4, 1/2) and (1/3, 1/3, 1/3) respectively. The de
freedom at nodes 1 to 12, (except 3, 7 and 11) are u, v, w, θx and θy. It is only w at nodes 3, 7, 11, 13, 14
and 15. The centroidal node (16) has u, v, θx and θy as degrees of freedom.

The transverse displacement (w), in-plane displacements (u and v) and rotations of the normal (θx and
θy) have been taken as independent field variables, which are as follows

(1a)

(1b)

(1c)

(1d)

and  (1e)

where

,

,

,

,

,

,

,

and .

Now the above equations may be substituted appropriately at the different nodes with corresp
values of Li of the nodes, which will give the relationship between the unknown coefficients o
above polynomials in Eqs. (1a-1e) and the nodal degrees of freedom as

 or  (2)

where

u P2[ ] χ{ }=

v P2[ ] β{ }=

w P1[ ] γ{ }=

θx P2[ ] µ{ }=

θy P2[ ] λ{ }=

P2[ ] L1
3  L2

3  L3
3  L1

2L2  L2
2L1  L2

2L3  L3
2L2  L3

2L1  L1
2L3  L1L2L3[ ]=

P1[ ] L1
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3L1  L2

3L3  L3
3L2  L3

3L1  L1
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2L2
2  L2

2L3
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2L1
2[ ]=

L1
2L2L3  L1L2

2L3  L1L2L3
2 ]

χ{ } α1  α2  α3  α4  α5  α6  α7  α8  α9  α10[ ]T
=

β{ } α11  α12  α13  α14  α15  α16  α17  α18  α19  α20[ ]T
=

γ{ } α21  α22  α23  α24  α25  α26  α27  α28  α29  α30  α31  α32  α33  α34  α35[ ]T
=

µ{ } α36  α37  α38  α39  α40  α41  α42  α43  α44  α45[ ]T
=

λ{ } α46  α47  α48  α49  α50  α51  α52  α53  α54  α55[ ]T
=

δe{ } A[ ] α{ }= α{ } A[ ] 1– δe{ }=

α{ } α1   α2 ……α55{ }=

δe{ }T u1v1w1θx1θy1  u2v2w2θx2θy2  w3  u4v4w4θx4θy4  u5v5w5θx5θy5   [=
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and the matrix [A] having an order of 55×55 contains the coordinates of the different nodes.
As the rotations of the normal θx and  θy are independent field variables and they are not derivative

w, the effect of shear deformation can be easily incorporated as follows

(3)

where φx and φy are the average shear strain over the entire plate thickness and θx and θy are the
total rotations of the normal.

Now the generalized stress strain relationship of a plate may be written as

(4)

In the above equation, the generalized stress vector {σ} is 

(5)

and the generalized strain vector {ε} in terms of displacement fields is 

(6)

Now, the field variables as defined in Eqs. (1a-1e) may be substituted in the generalized strain
vector {ε} as expressed in Eq. (6), which leads to

(7)

where the matrix [C] having an order of 5×55 contains Li conform to Eqs. (1a-1c) and thei
derivatives with respect to x and y. Substituting Eq. (2) in Eq. (7), the generalized strain vector ε}
may be expressed as

u6v6w6θx6θy6  w7   u8v8w8θx8θy8  u9v9w9θx9θy9

 u10v10w10θx10θy10  w11  u12v12w12θx12θy12  w13  w14  w15  u16v16w16θx16θy16] 

φx

φy 
 
  θx ∂ w ∂x⁄–

θy ∂ w ∂y⁄– 
 
 

=

σ{ } D[ ] ε{ }=

σ{ }T Nx  Ny  Nxy  Mx  My  Mxy  Qx  Qy[ ]=

ε{ }

∂u ∂x⁄
∂v ∂y⁄

∂u ∂y⁄ ∂v ∂x⁄+

∂ θx ∂x⁄–

∂ θy ∂y⁄–

∂ θx ∂y⁄– ∂θy ∂x⁄–

θx– ∂w ∂x⁄+

θy– ∂w ∂y⁄+ 
 
 
 
 
 
 
 
 
 
 
 
 

=

ε{ } C[ ] α{ }=
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where   [B] = [C][A]−1.
The rigidity matrix [D] constitutes of the contributions of its individual orthotropic layers oriented

different directions. Using the material properties and fiber orientations of these layers, it can be
obtained following the usual steps available in any standard text on mechanics of fiber rein
laminated composites. The rigidity matrix can be expressed as

Once the matrices [B] and [D] are obtained, the element stiffness matrix [Ke] can be easily derived
with the help of Virtual work technique and it may be expressed as

(9)

In a similar manner, the consistent mass matrix of an element can be derived with the help
Eqs. (1) and (2) and it may be expressed as

(10)

where, 

,

,

,

              and 

.

ε{ } B[ ] δe{ }=

D[ ]

A11  A12  A16  B11  B12  B16   0     0

A12  A22  A26  B12  B22  B26   0     0

A16  A26  A66  B16  B26  B66   0     0

B11  B12  B16  D11  D12  D16  0     0

B12  B22  B26  D12  D22  D26  0     0

B16  B26  B66  D16  D26  D66  0     0

  0     0    0      0      0    0    A55  A54

  0     0    0      0      0    0    A45  A44

=

Ke[ ] B[ ]T D[ ] B[ ]dxdy
A
∫=

Me[ ] A[ ] T– ρh

Pu[ ]T Pu[ ] Pv[ ]T Pv[ ] Pw[ ]T Pw[ ] h2

12
------ Pθx[ ]T

Pθx[ ]+ + +

+
h2

12
------ Pθy[ ]T

Pθy[ ] 
 
 
 
 
 

A
∫ dxdy A[ ] 1–=

Pu[ ] P2[ ]:· 0[ ]:· 0[ ]:· 0[ ]:· 0[ ][ ]=

Pv[ ] 0[ ]:· P2[ ]:· 0[ ]:· 0[ ]:· 0[ ][ ]=

Pw[ ] 0[ ]:· 0[ ]:· P1[ ]:· 0[ ]:· 0[ ][ ]=

Pθ x[ ] 0[ ]:· 0[ ]:· 0[ ]:· P2[ ]:· 0[ ][ ]=

Pθ y[ ] 0[ ]:· 0[ ]:· 0[ ]:· 0[ ]:· P2[ ][ ]=
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The first three terms of the mass matrix in Eq. (10) are associated with movement of mass alou, v
and w directions respectively. The last two terms are associated with rotary inertia and
contribution becomes significant in the problem of thick plates. The integration in the above Eq
and (10) has been carried out numerically following Gauss quadrature technique.

Though the consistent mass matrix presented in Eq. (10) includes all the contributions inc
rotary inertia, it can not be used directly in the present analysis. In this consistent mass ma
degrees of freedom at the internal nodes (which contains significant amount of mass) can 
eliminated but it is desired to eliminate these quantities for the improvement of computational elegance
This problem has been overcome by using lumped mass matrix [Ml]. The present lump mass matrix ha
been formed with the help of consistent mass matrix presented in Eq. (10). In this context two di
mass lumping schemes have been recommended which are as follows.

In the first lumping scheme, the mass of an element me has been distributed at w of its external twelve
nodes where the ratio of distribution is dependent on the corresponding diagonal masses o
consistent mass matrix [Me] presented in Eq. (10). This lumping scheme has been defined as LS1
it is as follows

(i = 3, 8, 11, 14, 19, 24, 27, 30, 35, 40, 43, 46)

where  are the ith diagonal elements corresponding to w of the proposed lumped mass matrix,  
the ith diagonal element of the consistent mass matrix [Me] and me is the mass of the element. Th
concept is similar to that of Hinton et al. (1976).

In the second lumping scheme, the effect of in-plane as well as rotary inertia have been tak
account. In this lumping scheme the external nine nodes containing the degrees of freedom of u, v, w, θx

and θy have been considered. Similar technique has been followed to get it at the external no
follows

(i = 1, 6, 12, 17, 22, 28, 33, 38, 44)

(i = 2, 7, 13, 18, 23, 29, 34, 39, 45) 

(i = 3, 8, 14, 19, 24, 30, 35, 40, 46) 

  (i = 4, 9, 15, 20, 25, 31, 36, 41, 47) 

and (i = 5, 10, 16, 21, 26, 32, 37, 42, 48) 

where the use of factor (h2/12) can be justified with the expression of the consistent mass matr
presented in Eq. (10). This lumping scheme has been defined as LS9RI. In this way the lumpe
matrix (LS12 or LS9RI) obtained has zero masses at the internal nodes and it contains only d

mii
wl mii

mii∑
-------------me=

mii
wl mii

mii
ul mii

mii∑
-------------me=

mii
vl mii

mii∑
-------------me=

mii
wl mii

mii∑
-------------me=

mii
θxl h2

12
------

mii

mii∑
-------------me=

mii
θyl h2

12
------

mii

mii∑
-------------me=
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At this stage, the order of element stiffness matrix [Ke] and lumped mass matrix [Ml] are fifty-five.

This has been reduced to forty-eight by eliminating degrees of freedom of the internal nodes (w13, w14,
w15, u16, v16, θx16  and θy16) through static condensation.

The stiffness corresponding to the degrees of freedom at the inclined edges has been transfor
obtained by pre and post multiplication by an element transformation matrix [T] of order 48×48 which
is as follows.

In the above transformation matrix,

[I1] = 1 and [I2] = 

In the above expression [λ1], [λ2], [λ4] and [l5] are the transformation matrix corresponding to th
nodes 1, 2, 4 and 5 situated on the inclined edges and θ is the angle of inclined edges with vertical

The stiffness matrix and mass matrix having an order of forty eight in their final form has 

T[ ]

λ1[ ]

λ2[ ]

I1[ ]

λ4[ ]

λ5[ ]

I2[ ]

I1[ ]

I2[ ]

I2[ ]

I2[ ]

I1[ ]

I2[ ]

=

λ1[ ] λ2[ ] λ4[ ] λ5[ ]

cosθ   sinθ–     0       0          0

sinθ     cosθ     0      0          0

   0         0        1      0          0

   0         0        0   cosθ    sinθ–

   0         0        0    sinθ      cosθ  

= = = =

1   0   0   0   0

0   1   0   0   0

0   0   1   0   0

0   0   0   1   0

0   0   0   0   1
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evaluated for all the elements and they have been assembled together to form the overall stiffnK]
and mass matrix [M] respectively. The storage of [K ] and [M] has been done in single array followin
skyline storage technique with proper care for the different degrees of freedom at the different nod
Once [K ] and [M] are obtained, the equation of motion of the plate may be expressed as 

[K] = ω 2[M] (11)

After incorporating the boundary conditions in the above equation it has been solved by simulta
iterative technique of Corr and Jennings (1976) to get frequency ω for first few modes.

3. Numerical examples

In order to demonstrate the accuracy and applicability of the present element, formulation a
different mass lumping (LS12 and LS9RI) schemes, few examples of isotropic trapezoidal pla
square composite laminate have been presented and compared with published results. To the b
author’s knowledge as there is no suitable published results for laminated composite trapezoida
the solutions obtained for composite trapezoidal plate by the proposed element have been pres
new results. Unless otherwise mentioned the following material property and boundary condition
been used for composite plate:

E1 = 40 E2, G12 = G13 = 0.6E2, G23 = 0.5 E2, ν12 = 0.25 and ν12 = ν21

Simply supported: ut = w = θ t = 0
Clamped: ut = un = w = θt = θn = 0
The degrees of freedom at the inclined boundary edges have been transformed into local axis sys

Fig. 2 A trapezoidal plate with mesh size: (4 + 2) × 4
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Table 1 First two non-dimensional frequency parameter [(ωa2/2π)(ρh/D)1/2] of a simply-supported trapezoidal plate

b/a Sources

For h/a = 0.01 For h/a = 0.1 For h/a = 0.2

Mode No. Mode No. Mode No.

1 2 1 2 1 2

4/5 LS12* (5+3)×5# 3.511 8.227 3.279 7.476 2.952 6.277
LS12 (7+3)×7 3.510 8.224 3.278 7.478 2.952 6.288
LS12 (8+2)×8 3.510 8.223 3.278 7.479 2.953 6.291
LS9RI**  (5+3)×5 3.512 8.227 3.258 7.382 2.893 6.102
LS9RI (7+3)×7 3.511 8.224 3.257 7.382 2.893 6.105
LS9RI (8+2)×8 3.510 8.224 3.257 7.382 2.894 6.107
Liew and Lam (1991) 3.520 8.240
% change*** 0.000 0.000 0.645 1.314 2.039 3.013

3/5 LS12 (6+2)×6 4.070 8.882 3.785 7.985 3.378 6.645
LS12 (6+3)×6 4.068 8.877 3.783 7.986 3.378 6.653
LS12 (7+3)×7 4.067 8.875 3.782 7.987 3.378 6.657
LS9RI (6+2)×6 4.073 8.886 3.758 7.881 3.306 6.450
LS9RI (6+3)×6 4.068 8.878 3.755 7.877 3.304 6.452
LS9RI (7+3)×7 4.067 8.876 3.755 7.877 3.307 6.452
Liew and Lam (1991) 4.080 8.910
% change 0.000 0.000 0.719 1.396 2.147 3.177

2/5 LS12 (7+1)×7 4.900 10.15 4.540 8.993 4.002 7.363
LS12 (8+1)×8 4.899 10.15 4.541 8.995 4.003 7.370
LS12 (9+1)×9 4.898 10.15 4.541 8.996 4.003 7.374
LS9RI (7+1)×7 4.911 10.18 4.511 8.879 3.914 7.150
LS9RI (8+1)×8 4.903 10.17 4.511 8.881 3.915 7.155
LS9RI (9+1)×9 4.900 10.17 4.511 8.882 3.915 7.157
Liew and Lam (1991) 4.900 10.24
% change 0.040 000.197 0.665 1.283 2.248 3.032

1/5 LS12 (7+1)×7 5.992 12.64 5.529 11.06 4.792 8.809
LS12 (8+1)×8 5.992 12.64 5.530 11.07 4.793 8.817
LS12 (9+1)×9 5.992 12.64 5.530 11.07 4.794 8.823
LS9RI (7+1)×7 5.991 12.63 5.474 10.87 4.665 8.481
LS9RI (8+1)×8 5.992 12.63 5.474 10.88 4.666 8.484
LS9RI (9+1)×9 5.992 12.63 5.475 10.88 4.667 8.486
Liew and Lam (1991) 6.010 12.68
% change 0.00 00.08 1.004 1.746 2.72 3.97

*Present solutions considering lumping scheme LS12.
**Present solutions considering lumping scheme LS9RI.
#Mesh divisions.
*** Percentage change of results due to lumping scheme LS9RI with respect to LS12



222 S. Haldar and M. C. Manna
Table 2 Non-dimensional fundamental frequency parameter [(ω a2)(ρ / E2 h)1/2] of a square laminate with different
boundary conditions and ply orientations

Boundary 
conditions

h/a Sources
For
0/90

For 0/90/0/90/0/
90/0/90/0/90

For
45/-45

For
0/90/0/90

SSSS 0.01 LS12 (4×8) 11.304 18.613 15.018 17.278
LS9RI (4×8) 11.299 18.608 15.015 17.277
Reddy (1989) 11.300 18.610 14.863 17.278
% change 10.044 10.027 10.02 10.006

0.1 LS12 (4×8) 10.578 15.830 13.228 14.987
LS9RI (4×8) 10.487 15.777 13.105 14.923
Reddy (1989) 10.568 15.770 13.044 14.846
% change 10.868 10.336 10.939 10.429

0.2 LS12 (4×8) 19.0252 11.679
LS9RI (4×8) 18.8594 11.636
Reddy & Khdeir (1989) 18.833 11.644
% change 11.871 10.369

CCSS 0.1 LS12 (4×8) 15.266 20.493
LS9RI (4×8) 15.165 20.455
Reddy & Khdeir (1989) 15.152 20.471
% change 10.666 10.1858

0.2 LS12 (4×8) 11.032 12.930
LS9RI (4×8) 10.908 12.904
Reddy & Khdeir (1989) 10.897 12.928
% change 11.137 10.201

SSFC 0.1 LS12 (4×8) 17.7896 11.882
LS9RI (4×8) 17.7340 11.839
Reddy & Khdeir (1989) 17.741 11.862
% change 10.719 10.3632

0.2 LS12 (4×8) 16.7486 18.9447
LS9RI (4×8) 16.6438 18.9044
Reddy & Khdeir (1989) 16.638 18.919
% change 11.577 10.4526

CFFF 0.01 LS12 (4×8) 12.6049
LS9RI (4×8) 12.6038
Reddy & Khdeir (1989) 12.6103
% change 10.042

0.1 LS12 (4×8) 12.5357
LS9RI (4×8) 12.5287
Reddy & Khdeir (1989) 12.5334
% change 10.277
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3.1. Isotropic trapezoidal plate

A simply supported isotropic trapezoidal plate as shown in Fig. 2 has been analyzed. The stu
been done for three different thickness ratios (h /a= 0.01, 0.1 and 0.2). Utilizing symmetry in the
structure, the analysis has been carried out by modeling half of the plate with different mesh divisions
as shown in Fig. 2. The mesh division has been defined as (m + n) × m, where m is the number of
divisions of the triangular part in both the directions and n is the number of divisions for the rectangular
portion along x direction. Both the lumping schemes (LS12 and LS9RI) have been used. The firs
natural frequencies obtained have been presented with the analytical solution of Liew and Lam
in Table 1. Liew and Lam (1991) used a computationally efficient Rayleigh-Ritz approach for an
of the problem. In this example only w is restrained.

Table 3 First two non-dimensional frequency parameter [(ω a2)(ρ /E2h)1/2] of a simply supported four layer
symmetric (0/90/90/0) trapezoidal composite laminate 

b/a Sources

For h/a = 0.01 For h/a = 0.1 For h/a = 0.2

Mode No. Mode No. Mode No.

1 2 1 2 1 2

4/5 LS12 (6+1)×2 22.783 38.658 17.435 28.752 12.030 19.791
LS12 (7+1)×2 22.782 38.657 17.439 28.770 12.038 19.828
LS12 (8+1)×2 22.782 38.656 17.442 28.780 12.045 19.856
LS9RI (6+1)×2 22.784 38.671 17.387 28.598 11.971 19.729
LS9RI (7+1)×2 22.783 38.669 17.389 28.609 11.977 19.778
LS9RI (8+1)×2 22.783 38.668 17.391 28.617 11.970 19.796

3/5 LS12 (6+1)×2 28.464 43.310 20.399 31.444 13.543 20.998
LS12 (7+1)×2 28.443 43.291 20.403 31.460 13.552 21.032
LS12 (8+1)×2 28.440 43.289 20.407 31.473 13.559 21.058
LS9RI (6+1)×2 28.482 43.332 20.343 31.278 13.480 20.924
LS9RI (7+1)×2 28.455 43.312 20.346 31.289 13.487 20.948
LS9RI (8+1)×2 28.448 43.299 20.349 31.298 13.492 20.966

2/5 LS12 (8+1)×1 35.442 57.629 23.924 36.470 15.471 23.131
LS12 (9+1)×1 35.412 57.629 23.932 36.501 15.480 23.162
LS12 (10+1)×1 35.317 57.629 23.939 36.525 15.487 23.186
LS9RI (8+1)×1 35.376 57.483 23.895 36.412 15.425 23.093
LS9RI (9+1)×1 35.322 57.425 23.902 36.435 15.434 23.123
LS9RI (10+1)×1 35.287 57.387 23.907 36.453 15.441 23.146

1/5 LS12 (8+1)×1 43.241 76.025 27.597 44.417 17.617 26.899
LS12 (9+1)×1 43.122 76.025 27.606 44.454 17.626 26.931
LS12 (10+1)×1 43.045 75.811 27.613 44.481 17.632 26.955
LS9RI (8+1)×1 43.130 75.923 27.489 44.233 17.523 26.793
LS9RI (9+1)×1 43.052 75.839 27.496 44.261 17.532 26.826
LS9RI (10+1)×1 42.999 75.783 27.502 44.282 17.539 26.850
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3.2. Laminated square plate

In this example a square laminate having different boundary conditions, ply-angle orientations and
thickness ratios has been analyzed. The fundamental frequency obtained by the proposed elem
been presented in Table 2 with the analytical solutions of Reddy (1989) and Reddy and Khdeir 

 In the above two examples, the results obtained by the present element have close agreemen
published analytical solutions. From the Tables it is seen that the rotary inertia has significant eff
thick plate. Therefore, LS9RI is recommended for both thick and thin plates and LS12 is recomm
for thin plates. 

3.3. Symmetric and anti-symmetric cross-ply trapezoidal plate

A simply supported symmetric cross ply (00/900/900/00) trapezoidal laminate (Fig. 2) has bee

Table 4 First and second non-dimensional frequency parameter [(ωa2)(ρ /E2h)1/2] of a clamped trapezoidal composit
laminate

b/a h/a Sources

For 0/90 For 0/90/0 For 0/90/90/0

Mode No. Mode No. Mode No.

1 2 1 2 1 2

4/5 0.01 LS12 (8+2)×8 27.094 51.409 49.176 58.320 49.180 65.114
LS9RI (8+2)×8 27.086 51.384 49.169 58.302 49.172 65.094

0.1 LS12 (8+2)×8 20.609 34.188 23.574 31.691 24.732 36.189
LS9RI (8+2)×8 20.517 33.952 23.540 31.518 24.723 36.127

0.2 LS12 (8+2)×8 13.675 21.126 13.803 19.880 14.459 21.454
LS9RI (8+2)×8 13.675 21.126 13.803 19.880 14.459 21.454

3/5 0.01 LS12 (8+2)×8 31.853 55.211 57.248 72.398 58.632 78.028
LS9RI (8+2)×8 31.852 55.202 57.247 72.394 58.632 78.026

0.1 LS12 (8+2)×8 23.198 36.269 26.421 34.620 27.532 38.699
LS9RI (8+2)×8 23.101 36.013 26.384 34.432 27.525 38.625

0.2 LS12 (8+2)×8 14.993 22.230 15.180 21.126 15.764 22.588
LS9RI (8+2)×8 14.960 22.072 15.145 20.949 15.763 22.534

2/5 0.01 LS12 (9+1)×9 38.903 64.338 65.477 89.118 68.728 98.302
LS9RI (9+1)×9 38.903 64.336 65.477 89.117 68.728 98.302

0.1 LS12 (9+1)×9 26.689 40.102 29.629 39.252 30.955 42.852
LS9RI (9+1)×9 26.640 49.940 29.627 39.152 30.955 42.850

0.2 LS12 (9+1)×9 16.730 24.096 16.894 23.161 17.451 24.462
LS9RI (9+1)×9 16.730 24.018 16.890 23.041 17.451 24.460

1/5 0.01 LS12 (9+1)×9 47.269 82.257 73.652 106.67 79.019 121.07
LS9RI (9+1)×9 47.269 82.255 73.652 106.67 79.019 121.07

0.1 LS12 (9+1)×9 30.764 46.893 32.991 45.759 34.768 49.561
LS9RI (9+1)×9 30.623 46.555 32.900 45.560 34.739 49.439

0.2 LS12 (9+1)×9 18.807 27.488 18.849 26.542 19.462 27.815
LS9RI (9+1)×9 18.759 27.305 18.789 26.292 19.456 27.759
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analyzed with different b/a and thickness ratios (h/a). Similar to the previous example, the half of th
plate has been analyzed and two mass lumping schemes have been used. The first two non-dim
frequencies obtained by the present element have been given in Table 3. Results have been p
with different mesh divisions to show the convergence of the element. In this analysis all degr
freedom have been restrained except θn.

A clamped trapezoidal laminate with thickness ratio h/a = 0.01, 0.1 and 0.2 has been analyzed and 
first two non-dimensional frequencies has been presented in Table 4. The analysis has been pe
considering ply orientations 00/900, 00/900/00 and 00/900/900/00.

3.4. Anti-symmetric angle ply trapezoidal laminate

First a simply supported two and ten layer (450/-450/450/-450-----) trapezoidal laminate has bee
analyzed with different b/a and h/a ratios. The analysis has been performed considering both the 
lumping schemes and the results have been presented in Table 5.

Next an anti-symmetric two layer trapezoidal laminate with different ply angles (300/-300, 450/-450

and 600/-600) has been analyzed. The two inclined edges of the laminate are simply supported an
two parallel edges are clamped. The first two non-dimensional frequencies obtained by the pr
element have been given in Table 6.

Table 5 First and second non-dimensional frequency parameter [(ωa2)(ρ /E2h)1/2] of a simply supported two
and ten layer (45/-45/45/-45---) trapezoidal composite laminate

b/a N.N Sources

For h/a = 0.01 For h/a = 0.1 For h/a = 0.2

Mode No. Mode No. Mode No.

1 2 1 2 1 2

4/5 2 LS12 (8+2)×8 18.032 41.369 15.384 30.811 11.742 20.413
LS9RI (8+2)×8 18.031 41.369 15.276 30.496 11.632 19.882

10 LS12 (8+2)×8 28.826 62.147 21.147 37.554 13.812 22.130
LS9RI (8+2)×8 28.826 62.146 21.125 37.553 13.812 20.893

3/5 2 LS12 (8+2)×8 22.072 45.506 17.442 33.100 12.967 21.629
LS9RI (8+2)×8 22.071 45.503 17.302 32.666 12.826 21.233

10 LS12 (8+2)×8 34.369 68.891 23.412 40.037 15.003 23.340
LS9RI (8+2)×8 34.367 68.887 23.384 40.029 15.000 23.330

2/5 2 LS12 (9+1)×9 27.732 54.395 20.113 37.017 14.507 23.565
LS9RI (9+1)×9 27.731 54.390 19.945 36.717 14.347 23.385

10 LS12 (9+1)×9 42.501 80.412 26.348 43.769 16.553 25.125
LS9RI (9+1)×9 42.500 80.400 26.346 43.762 16.550 25.120

1/5 2 LS12 (9+1)×9 34.446 69.050 23.241 42.948 16.426 26.703
LS9RI (9+1)×9 34.451 69.087 22.972 42.538 16.188 26.416

10 LS12 (9+1)×9 52.705 99.358 30.080 49.751 18.594 28.288
LS9RI (9+1)×9 52.729 99.420 30.014 49.717 18.573 28.270

N.N represent number of layer.
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3.5. Isotropic and laminated composite plate with concentrated mass at the centre

Vibration of an isotropic rectangular plate, 0.71 m long, 0.42 m wide and 2.0 mm thick hav
concentrated mass at the centre with self mass has been studied. The plate is simply support
two opposite smaller sides and clamped along the other two longer sides. The present res
different values of concentrated mass have been presented in Table 7 with those obtained 
solution of Boay (1995). The material properties of the plate are:

E = 70.0 Gpa, ν = 0.3 and ρ = 1770 kg/m3

A simply supported two layer cross ply square laminate having concentrated mass at the

Table 6 First and second non-dimensional frequency parameter [(ωa2)(ρ /E2h)1/2] of a two layer angle ply
trapezoidal composite laminate with two inclined edges are simply supported and other two edg
clamped

b/a h/a Sources

30/-30 45/-45 60/-60

Mode No. Mode No. Mode No.

1 2 1 2 1 2

4/5 0.01 LS12 (8+2)×8 23.247 44.520 26.136 51.543 27.058 61.83
LS9RI (8+2)×8 23.245 44.515 26.134 51.540 27.056 61.828

0.1 LS12 (8+2)×8 17.856 31.103 19.050 34.376 18.811 36.56
LS9RI (8+2)×8 17.780 30.904 18.983 34.142 18.723 36.343

0.2 LS12 (8+2)×8 12.643 20.175 12.902 21.429 12.401 21.93
LS9RI (8+2)×8 12.580 20.039 12.855 21.356 12.317 21.845

3/5 0.01 LS12 (8+2)×8 26.714 49.746 29.819 56.068 29.633 64.59
LS9RI (8+2)×8 26.713 49.742 29.817 56.064 29.632 64.589

0.1 LS12 (8+2)×8 19.791 33.547 20.832 36.462 20.092 37.87
LS9RI (8+2)×8 19.684 33.345 20.761 36.213 19.992 37.610

0.2 LS12 (8+2)×8 13.852 21.426 13.961 22.526 13.275 22.78
LS9RI (8+2)×8 13.766 21.292 13.904 22.452 13.174 22.672

2/5 0.01 LS12 (9+1)×9 32.279 57.502 35.280 64.290 34.159 69.78
LS9RI (9+1)×9 32.278 57.500 35.281 64.293 34.158 69.780

0.1 LS12 (9+1)×9 22.580 37.103 23.207 39.776 22.039 40.15
LS9RI (9+1)×9 22.468 36.946 23.157 39.653 21.966 39.950

0.2 LS12 (9+1)×9 15.513 23.316 15.387 24.242 14.550 24.17
LS9RI (9+1)×9 15.435 23.236 15.335 24.163 14.453 24.123

1/5 0.01 LS12 (9+1)×9 40.173 69.798 42.478 77.445 41.272 79.81
LS9RI (9+1)×9 40.172 69.795 42.477 77.444 41.275 79.821

0.1 LS12 (9+1)×9 26.362 42.852 26.352 45.105 24.886 44.64
LS9RI (9+1)×9 26.166 42.469 26.190 44.843 24.719 44.300

0.2 LS12 (9+1)×9 17.616 26.514 17.280 27.247 16.354 26.97
LS9RI (9+1)×9 17.497 26.304 17.156 27.172 16.180 26.812
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with self mass has been analyzed considering two different mass lumping schemes. The a
has been done considering different mass ratio M/ρha2, where M is the concentrated mass and ρ is
mass density, h is thickness and a is length of the square laminate respectively. The first two n
dimensional frequencies have been presented in Table 7 with those of Dey. Dey one of t
researchers has analyzed the problem using a seven node triangular element with 16×1
divisions.

The above two examples have been presented only to validate the proposed element, formula
the mass lumping schemes. There is excellent agreement between the results.

Finally a simply supported two layer cross ply (00/900) trapezoidal laminate having concentrate
mass at the centre with the self mass has been analyzed and presented in Table 8. In this exa
following material properties are used:

E1 = 25 E2, G12 = G13 = 0.5E2, G23 = 0.2 E2, v12 = 0.25 and v12 = v21

4. Conclusions

A high precision shear deformable triangular element has been proposed and applied to free v
analysis of laminated trapezoidal plate. First order shear deformation theory has been incorpo
the element formulation. The performance of the element has been tested through convergenc

Table 7 Fundamental frequency parameter ω /2π and (ωa2)(ρ/E2h)1/2 for isotropic and two layer (0/90) cross
ply square laminate respectively having a concentrated mass (M) at the centre

For isotropic plate

M (kg)
Present analysis

Boay (1995)
LS12 (3×4) LS12 (4×6) LS12 (5×6)

0.5 38.78 38.73 38.72 38.83
1.0 29.52 29.49 29.48 29.54
1.48 24.92 24.89 24.87 24.96
1.98 21.84 21.80 21.79 21.88
3.0 17.99 17.94 17.93 18.03

For two layer cross ply laminate

M/ρha2 Sources h/a = 0.01 h/a = 0.1 h/a = 0.2
0.5 LS12 (4×8) 5.4672 4.6163 3.3231

LS9RI (4×8) 5.4669 4.6078 3.3165
Dey 5.4700 4.6170 3.3235

1.0 LS12 (4×8) 4.1952 3.4384 2.4108
LS9RI (4×8) 4.1951 3.4351 2.4085
Dey 4.1960 3.4391 2.4112

2.0 LS12 (4×8) 3.1052 2.4965 1.7258
LS9RI (4×8) 3.1052 2.4953 1.7250
Dey 3.1053 2.4969 1.7260
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well as comparison of the present results with the available published results. Any numerical p
such as shear locking has not been encountered for thin plate. Two different mass lumping s
have been recommended. In one of the mass lumping schemes rotary inertia has been included
seen that rotary inertia has significant effect for thick plate. The potential of the element and the c
of the present lumping schemes have been clearly reflected by the order of accuracy of the resu
the problems. In this investigation, a number of new results have been presented.

Table 8 First two non-dimensional frequency parameter [(ωa2)(ρ/E2h)1/2] of a simply supported two layer (0/
90) trapezoidal laminate having a concentrated mass (M) at the centre

b/a
M/

ρha2 Sources

For h/a =0.01 For h/a =0.1 For h/a =0.2

Mode No. Mode No. Mode No.

1 2 1 2 1 2

4/5 0 LS12 (8+2)×8 11.23900 27.668 10.06100 22.242 8.2670 15.603
LS9RI (8+2)×8 11.23900 27.667 9.9788 21.992 8.1383 13.934

0.5 LS12 (8+2)×8 6.3118 27.636 5.1457 18.162 3.6509 11.288
LS9RI (8+2)×8 6.3118 27.636 5.1354 18.067 3.6429 11.154

1.0 LS12 (8+2)×8 4.8372 27.625 3.8286 16.324 2.6486 11.027
LS9RI (8+2)×8 4.8372 27.625 3.8245 16.229 2.6457 10.888

2.0 LS12 (8+2)×8 3.3774 27.616 2.7780 16.917 1.8960 10.904
LS9RI (8+2)×8 3.3774 27.616 2.7765 16.817 1.8949 10.762

3/5 0 LS12 (8+2)×8 14.46200 29.963 11.800 23.472 9.3726 16.380
LS9RI (8+2)×8 14.46100 29.963 11.696 23.187 9.2264 16.179

0.5 LS12 (8+2)×8 8.0009 29.655 5.8602 19.567 3.9752 12.280
LS9RI (8+2)×8 8.0010 29.654 5.8491 19.440 3.9679 12.123

1.0 LS12 (8+2)×8 6.1044 29.570 4.3324 18.812 2.8720 12.047
LS9RI (8+2)×8 6.1044 29.570 4.3282 18.682 2.8694 11.886

2.0 LS12 (8+2)×8 4.5011 29.509 3.1324 18.442 2.0517 11.937
LS9RI (8+2)×8 4.5011 29.509 3.1308 18.309 2.0508 11.774

2/5 0 LS12 (9+1)×9 19.82700 36.326 14.470 26.210 10.935 17.861
LS9RI (9+1)×9 19.82700 36.325 14.357 25.940 10.791 17.700

0.5 LS12 (9+1)×9 10.93700 32.506 7.2893 21.935 4.8665 14.215
LS9RI (9+1)×9 10.93700 32.503 7.2770 21.762 4.8584 14.057

1.0 LS12 (9+1)×9 8.2989 31.976 5.3982 21.372 3.5361 13.977
LS9RI (9+1)×9 8.2989 31.974 5.3934 21.203 3.5332 13.814

2.0 LS12 (9+1)×9 6.0958 31.722 3.9068 21.080 2.5337 13.861
LS9RI (9+1)×9 6.0958 31.720 3.9050 21.913 2.5327 13.697

1/5 0 LS12 (9+1)×9 26.10900 50.149 17.771 32.110 12.800 20.796
LS9RI (9+1)×9 26.10700 50.141 17.582 31.700 12.610 20.578

0.5 LS12 (9+1)×9 15.12700 36.607 8.8739 23.207 5.5594 15.204
LS9RI (9+1)×9 15.12600 36.604 8.8597 22.958 5.5530 14.987

1.0 LS12 (9+1)×9 11.42700 35.626 6.5131 22.731 4.0161 15.033
LS9RI (9+1)×9 11.42800 35.628 6.5080 22.478 4.0139 14.811

2.0 LS12 (9+1)×9 8.3623 35.131 4.6899 22.502 2.8692 14.952
LS9RI (9+1)×9 8.3624 35.133 4.6881 22.248 2.8684 14.729
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