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Abstract. The concept of performance based seismic design has been gradually accepted b
earthquake engineering profession recently, in which the cost-effectiveness criterion is one of the 
important principles and more attention is paid to the structural performance at the inelastic stage. Since
are many uncertainties in seismic design, reliability analysis is a major task in performance based se
design. However, structural reliability analysis may be very costly and time consuming because the limit
function is usually a highly nonlinear implicit function with respect to the basic design variables, espec
for the complex large-scale structures for dynamic and nonlinear analysis. Understanding statistical prop
of the structural inelastic deformation, which is the aim of the present paper, is helpful to develop an eff
approximate approach of reliability analysis. The present paper studies the statistical properties o
maximum elastoplastic story drift of steel frames subjected to earthquake load. The randomness of earth
load, dead load, live load, steel elastic modulus, yield strength and structural member dimension
considered. Possible probability distributions for the maximum story are evaluated using K-S test. The r
show that the choice of the probability distribution for the maximum elastoplastic story drift of steel frame
related to the mean value of the maximum elastoplastic story drift. When the mean drift is small (less
0.3%), an extreme value type I distribution is the best choice. However, for large drifts (more than 0.35%
extreme value type II distribution is best.

Key words: steel frames; elastoplastic analysis; seismic design; probability distribution; K-S test.

1. Introduction

The concept of performance based seismic design was proposed in the early 1990s in the U
has been gradually accepted by the earthquake engineering profession recently (ATC 1996, BR
FEMA 1996, SEAOC 1995). Compared with the current seismic design codes, performance
seismic design takes cost-effectiveness criterion as its important principle, and pays more atte
the structural performance in the inelastic stage. A popular measure of performance is the ma
story drift. In general, there are many uncertainties in structural design, including the uncertain
external loads, structural capacity, analysis models and structural performance, and uncertainty
more serious under earthquake hazard environment. Engineers must deal with these kinds of uncert
the structural design process, and the theory and methodology of structural reliability is a useful
help the designers realize such a purpose. Therefore, the reliability analysis of the structural perfo
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usually measured by inelastic deformation, is a major procedure in performance based seismic
(Cheng and Li 2000, Collins 1998).

The structural reliability theories and applications have undergone a lot of developments duri
last few decades (Melchers 1999), and a number of design codes in many countries have 
reliability criteria usually with the partial safety format (Ellingwood 1994, Mrazik and Krizma 1997).
However, structural reliability analysis is potentially very challenging because the limit state funct
usually a highly nonlinear implicit function with respect to the basic design variables, especially f
complex large-scale structures and the mathematical method used for nonlinear analysis. Thus de
an efficient approximate approach of reliability analysis with the accepted accuracy is an important task
and challenge to the researchers and engineers, and research to determine the probability distribution of
structural deformation, which is the main purpose of the present paper, is helpful to develop s
approximate method.

2. Statistical properties of concerned random variables

The randomness of earthquake load, dead load, live load, steel elastic modulus, steel yield s
and structural member dimensions is considered in the present paper. According to Chinese 
design code (GBJ 2001), the dynamic earthquake load (a stochastic process) is treated as the equivalen
static earthquake load (a random variable), which follows an extreme value type I distribution
given seismic intensity (Gao and Bao 1985). Based on Chinese Uniform Standards for Building St
Design (GBJ 1984), dead load and live load follow normal distribution and extreme value t
distribution, respectively. The structural member dimensions and steel elastic modulus have 
distributions, and the steel yield strength has a log-normal distribution (Li et al. 1990).

The probability distribution and statistical parameters of the concerned random variables are
summarized in Table 1, in which the standard value means the design value of the random varia
the coefficient of variation is the ratio of the standard deviation to the mean.

According to the data in Table 1, the cumulative distribution functions (CDFs) of live load
earthquake load, which have extreme value type I distribution, can be stated as

(1)

(2)

FI L– L( )
L 0.423Lk–

0.084Lk

----------------------------– 
 exp–exp=

FI V– V( )
V 0.917Vk–

0.248Vk

-----------------------------– 
 exp–exp=

Table 1 Probability distribution and statistical parameters of the random variables

Probability distribution
Ratio of mean to
 standard value

Coefficient 
of variation

Earthquake load Extreme I 1.06 0.30
Dead load Normal 1.06 0.070
Live load Extreme I 0.471 0.229
Area of steel member Normal 1.00 0.05
Steel elastic modulus Normal 1.08 0.08
Steel yield strength Log-normal 1.21 0.15
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where Lk and Vk are the standard values of live load and earthquake load, respectively

3. Generation of random variables

The inverse transform method is a general technique to generate random variables from a 
distribution whose CDF can be inverted (Kennedy and Gentle 1980, Gao 1995). First, gene
uniformly distributed number R within [0,1] (James 1990), then set it equal to the CDF of the rand
variable 

F(x) = R   or   x = F −1(R) (3)

where F(x) is the CDF of the random variable x, R is the uniformly distributed random numbe
within [0,1].

The random variables (such as earthquake load and live load) that have the extreme value
distribution are generated by the inverse transform method, by which the simple equations 
deduced from Eqs. (1) and (2) as follows

(4)

(5)

It should be pointed out that although the inverse transform method can also be used to g
normally distributed random variables, it is not an efficient way. The CDF of the normal ran
variable can not be inverted directly with the explicit equation, because the CDF contains an in
that must be calculated by some simulation methods. Therefore, some approximate methods 
generate the standard normal random variables with high efficiency were developed (Kenne
Gentle 1980, Payne 1977, Atkinson and Pearce 1976, Kinderman and Ramage 1976), such a
limit theorem approximation, Box-Muller transformation, Marsaglia’s Polar method, rectangle-we
tail method, Kinderman-Ramage procedure, Forsythe’s method and modifications.

Use of the central limit theorem on the uniformly distributed random numbers can provide a s
and efficient method for closely approximating normal random variables, which can be sta
(Kennedy and Gentle 1980, Gao 1995, Xu 1992).

(6)

where xs is the standard normal random variable, Ri is the uniform random variables within [0,1]
Because the uniform distribution is a well-behaved distribution, the approximation is fairly good
even for small n. Choosing n = 12 leads to the simple form that is often used:

(7)

The central limit theorem approximation is used in the present paper to generate normal r
variables (such as structural member dimension, steel elastic modulus and dead load) as follo

L 0.423Lk 0.084Lk Ln Ln R( )–( )–=

V 0.917Vk 0.248Vk Ln Ln R( )–( )–=

xs
n
12
------ Ri n 2⁄–

i 1=

n

∑
 
 
 

=

xs Ri
i 1=

12

∑ 6–
 
 
 

=
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where x is the normally distributed random variable, µ and σ  are the mean and standard deviation
The log-normally distributed random variable sequence (such as steel yield strength) can be ge

based on the relation to normal random variables. That is, the normally distributed random variax is
generated by Eq. (8) first, then the log-normally distributed random variable y can be obtained by the
following relation

y = exp(x) (9)

4. Test of goodness-of-fit

In the present paper, we try to find the probability distribution of the maximum elastoplastic 
drift of steel frames subjected to earthquake load, which belongs to the nonparametric prob
testing hypotheses, called test of goodness-of-fit (DeGroot 1986, Kendall and Stuart 1979, W
Wang 1996). The test of goodness-of-fit is to test the simple null hypothesis that the unk
distribution function F(x) is actually a particular continuous distribution function F0(x) against the
general alternative that the actual distribution function is not F0(x). The major steps of test of goodnes
of-fit are as follows: 

(1) Suppose the hypothesis of test of distribution function,

(10) 

(2) Generate a random sample (the sample size is n) and calculate the sample distribution functio
Fn* (x); 

(3) Define a proper statistic, which can evaluate the difference between the distributions of the 
and the hypothesis; Calculate the value of this statistic based on the observed values of the gerated
sample;

(4) For a given level of significance, judge whether the null hypothesis H0 is true or rejected.
The χ2 test and the Kolmogorov-Smirnov test (K-S test) are two well-known methods of te

goodness-of-fit to a particular continuous distribution. In the χ2 test of goodness-of-fit, the entire rea
line or any particular interval that has the probability 1 must be partitioned into a finite numbek of
disjoint subintervals first, say, (−�, a1), [a1, a2),..., [ak-1, +�), then the following statistic is calculated

(11)

where Ni denotes the number of trials that fall within the ith subinterval, and  pi
0 is

the corresponding probability calculated based on the hypothesized distribution. The diffe
between the actual number of trials Ni and the expected number npi

0 will tend to be smaller when
H0 is true than when H0 is not true.

x µ σ Ri
i 1=

12

∑ 6–
 
 
 

+=

H0:F x( ) F0 x( )=

χ2 Ni npi
0–( )

2

npi
0

--------------------------
i 1=

k

∑=

N
k
i 1= i∑ n  ;=
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It should be pointed out that a particular feature of the χ2 test of goodness-of-fit is that the procedu
is designed to test the null hypothesis  that pi = pi

0 ( pi denotes the probability of the trials within the ith

subinterval) for i=1,…,k. That is, the hypothesis in the χ2 test of goodness-of-fit is actually the
following hypothesis.

(12)

and not the original hypothesis Eq. (10). In some cases, the hypothesis  is true, howev
hypothesis H0 may not be true. Furthermore, the way in which the subintervals are chosen
affect the final solution of test of goodness-of-fit (DeGroot 1986, Kendall and Stuart 1979, Wu
Wang 1996). 

The K-S test overcomes the shortcomings of the χ2 test discussed above to some extent by using 
following statistic at each trial of the sample.

    (13)

where  is the sample distribution.
For a given level of significance a, check the upper quantile values of the distribution of the K-S st

Dn,α ( ) shown in Table 2. If , then the null hypothesis H0 is true; else
the null hypothesis H0 is rejected. The K-S test was used in the study of probability distribution
external loads (GBJ 1984), structural deformation capacity (Gao 1990) and elastic deformation
frames (Li and Cheng 2002), etc. In the present paper, the K-S test is also employed.

In addition to the above probabilistic-statistical tests, it is also possible to use the tests of the geo
contiguousness, such as through the use of the quadrate deviations sum of the hypothesized dis
from the obtained sample distribution, by means of the graphical assessment of the contiguousne
the hypothesized distribution and the experimental one.

5. Probability distribution of the maximum elastoplastic story drift of steel frames

The procedure to study the probability distributions of the maximum story drift of steel frames in the
present paper is as follows

(1) Select the steel frames for sampling, which are designed according to the Chinese seismi
design code (GBJ 2001). Obtain the main initial design data (standard values) of the
frames (such as steel elastic modulus, yield strength and structural member dimension
live load and dead load.

(2) Calculate the standard value of the total earthquake force using the response spectra 

H0′

H0′ :F ai( ) F ai 1–( )– F0 ai( ) F0 ai 1–( )    i 1 …k,=–=

H0′

Dn sup
x R∈

= Fn
* x( ) F0 x( )–{ } max

i
max Fn

* xi( ) F0 xi( )– Fn
* xi 1+( ) F0 xi( )–,[ ]{ }=

Fn
* x( )

P Dn Dn α,≤{ } 1 a–= Dn Dn α,≤

Table 2 Upper quantile values of the distribution of the K-S static Dn,α

a Dn,α Dn,α (n = 500)

0.20 1.07 / .479E-01

0.10 1.22 / .546E-01

0.05 1.36 / .608E-01

0.01 1.63 / .729E-01

n

n

n

n
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provided in Chinese seismic design code (GBJ 2001), based on the initial data (standa
ues) of steel frames, live load and dead load.

(3) According the probability distributions and statistical parameters in Table 1 and the standard
obtained in step 1 and 2 of the concerned random variables, generate the trials (the numbern) of
the sample frames with the central limit theorem approximation and the inverse transform m
Each trial contains a set of observed values, which are earthquake load, dead load, live loa
elastic modulus, steel yield strength and structural member areas.

(4) Perform the seismic analysis to each trial of the random variables, which is actually a
inelastic analysis process herein, and obtain the observed values for the random sampl
maximum story drift. In this step, the APDL (ANSYS Parametric Design Language) is 
to perform the seismic analysis of all the trials with ANSYS program within a batch
(ANSYS Inc. 2000a, 2000b).

(5) Study the probability distribution of the maximum story drift with the K-S test.
The flowchart of the procedure is shown in Fig. 1.

Three types of steel frame samples are considered to study the probability distribution of the
maximum inelastic story drift of steel frames, which are two-bay eight-story frame, three-bay fif
story frame and four-bay twenty-two-story frame, as shown in Fig. 2. The standard values of the
data of steel frames and live load, dead load and seismic parameters are shown in Tables 3 and 4, 
which the standard value of live load and dead load are evaluated approximately according
Chinese uniform standards (GBJ 1984), the values of the seismic intensity, the parameters for site
where the structures are located are taken based on the Chinese seismic design code (GBJ 20
standard values of the elastic modulus and the yield strength of steel frames are .206E+06 N / m2 and
225 N / mm2, respectively. The column section of steel frames is square or H shape, and the
section is I shape.

Fig. 1 Flowchart of the K-S test of maximum story drift
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To provide additional insight into how much the earthquake uncertainty determines the problem
combinations of random variables are studied. In Case 1 (combination 1), only the randomn
earthquake load is considered. In Case 2 (combination 2) the randomness of all the varia
considered. The probability distributions of the maximum story drift obtained from the elastic
inelastic analysis are compared. Generally in the seismic analysis, when the structure is giv
magnitude of the earthquake load is the dominant factor that determines the structure perfo
whether in elastic stage or inelastic stage. Thus, for all the 500 trials of the steel frames, the sto

Fig. 2 Steel frames (two-bay eight-story, three-bay fifteen-story, four-bay twenty-two-story)

Table 3 Standard values of the steel frames

Standard 
story

Column section
(middle and side)/mm

Beam section
/ mm

Story height
/ m

 Frame span
/ m

2-bay
8-story

1~8
H 350×350×23×15
H 350×350×21×13

I 600×200
×16×12

3.3×8 5.0, 5.0

3-bay
15-story

1~7

8~15

� 380×380×25
� 380×380×22
� 380×380×20
� 380×380×17

I 600×200
×19×12

3.3×15 6.0, 5.0, 6.0

4-bay
22-story 

1~8

9~15

16~22

� 450×450×28 
� 450×450×25
� 450×450×25
� 450×450×22
� 450×450×22
� 450×450×18

I 650×200
×22×12

3.3×22 7.5, 6.0, 6.0, 7.5

Table 4 Standard values of the live, dead loads and seismic parameters

Story dead 
load /kN

Story live
 Load /kN

Seismic 
intensity

Site type

2-bay 8-story 300 150 8 Type 2 group 2
3-bay 15-story 450 200 8 Type 2 group 2
4-bay 22-story 600 260 8 Type 3 group 2
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obtained by the seismic analysis keep elastic for some trials and inelastic for the other trials. In o
study the effect of different number of the trials with inelastic performance on the proba
distribution of the maximum story drift, a factor (the value of 1.5, 1.8 and 2.0 are taken here
introduced to magnify the observed value of the earthquake load for each trial. In the elastostic
analysis, the ideal elastoplastic relation between stress and strain is assumed.

The statistical parameters of the random variables of 8-story frame obtained by the initial standard
values and by the generated trials are listed in Table 5. Some of the results are shown in Tables 6

Table 5 Statistical parameters of 8-story steel frame

Random variables
Obtained by initial data by generated trials

Standard value Mean Coefficient of 
variation

Mean Coefficient of 
variation

Middle column area mm2 .207E+05 .207E+05 0.050 .206E+05 0.050

Side column area mm2 .187E+05 .187E+05 0.050 .187E+05 0.050

Beam area mm2 .132E+05 .132E+05 0.050 .132E+05 0.051
Elastic modulus N / mm2 .206E+06 .223E+06 0.080 .222E+06 0.081
Dead load N .300E+06 .318E+06 0.070 .318E+06 0.072
Live load N .150E+05 .707E+05 0.229 .709E+05 0.220
Yield strength N / mm2 .225E+03 .272E+03 0.150 .274E+03 0.149
Earthquake load Case-1 N .260E+06 .276E+06 0.300 .276E+06 0.301
Earthquake load Case-2 N .260E+06 .276E+06 0.300 .263E+06 0.305

Table 6 Dn values of the maximum story drift of 8-story steel frame

Extreme type I Extreme type II Normal Log-normal

Case-1

Elastic .176E-01 .956E-01 .800E-01 .272E-01
Elastoplastic (1.5) .839E-01 .539E-01 .130E+00 .825E-01
Elastoplastic (1.8) .116E+00 .354E-01 .158E+00 .109E+00
Elastoplastic (2.0) .139E+00 .422E-01 .156E+00 .130E+00

Case-2

Elastic .199E-01 .101E+00 .853E-01 .292E-01
Elastoplastic (1.5) .300E-01 .941E-01 .913E-01 .373E-01
Elastoplastic (1.8) .117E+00 .466E-01 .147E+00 .111E+00
Elastoplastic (2.0) .144E+00 .562E-01 .157E+00 .137E+00

Table 7 Dn values of the maximum story drift of 15-story steel frame

Extreme type I Extreme type II Normal Log-normal

Case-1

Elastic .175E-01 .957E-01 .798E-01 .270E-01
Elastoplastic (1.5) .393E-01 .819E-01 .913E-01 .458E-01
Elastoplastic (1.8) .813E-01 .539E-01 .125E+00 .810E-01
Elastoplastic (2.0) .133E+00 .608E-01 .168E+00 .127E+00

Case-2

Elastic .217E-01 .107E+00 .777E-01 .236E-01
Elastoplastic (1.5) .204E-01 .106E+00 .777E-01 .234E-01
Elastoplastic (1.8) .422E-01 .853E-01 .969E-01 .457E-01
Elastoplastic (2.0) .110E+00 .700E-01 .134E+00 .104E+00
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and Figs. 3 and 4, in which Elastoplastic (1.5) denotes the elastoplastic analysis with the magni
factor 1.5 to the observed value of earthquake load. Tables 6~8 are Dn values of the K-S test for
different probability distribution hypotheses and Tables 9~11 are statistical parameters of the maximum
story drift, in which the standard value of story drift is calculated by the seismic analysis usin
initial standard values of steel frames and external loads. Fig. 3 shows the curves of the pro
density functions of maximum story drift based on the histogram and the hypothesized distri
functions of extreme value type I and type II distributions, normal and log-normal distributions. F

Table 8  Dn values of the maximum story drift of 22-story steel frame

Extreme type I Extreme type II Normal Log-normal

Case-1

Elastic .175E-01 .957E-01 .797E-01 .270E-01
Elastoplastic (1.0) .290E-01 .883E-01 .874E-01 .375E-01
Elastoplastic (1.2) .631E-01 .670E-01 .112E+00 .657E-01
Elastoplastic (1.5) .114E+00 .467E-01 .149E+00 .109E+00

Case-2

Elastic .281E-01 .956E-01 .856E-01 .320E-01
Elastoplastic (1.0) .275E-01 .949E-01 .858E-01 .320E-01
Elastoplastic (1.2) .300E-01 .851E-01 .861E-01 .369E-01
Elastoplastic (1.5) .990E-01 .470E-01 .134E+00 .935E-01

Table 9 Statistical parameters of maximum story drift of 8-story steel frame

Standard value Mean
Ratio of mean to 
standard value

Coefficient of 
variation

Case-1

Elastic .211E-02 .224E-02 1.06 0.300
Elastoplastic (1.5) .316E-02 .344E-02 1.09 0.389
Elastoplastic (1.8) .379E-02 .419E-02 1.10 0.438
Elastoplastic (2.0) .422E-02 .468E-02 1.11 0.473

Case-2

Elastic .211E-02 .200E-02 0.947 0.315
Elastoplastic (1.5) .316E-02 .301E-02 0.952 0.328
Elastoplastic (1.8) .379E-02 .371E-02 0.979 0.445
Elastoplastic (2.0) .422E-02 .413E-02 0.978 0.483

Table 10 Statistical parameters of maximum story drift of 15-story steel frame

Standard value Mean
Ratio of mean to 
standard value

Coefficient of 
variation

Case-1

Elastic .184E-02 .195E-02 1.06 0.301
Elastoplastic (1.5) .276E-02 .295E-02 1.07 0.331
Elastoplastic (1.8) .331E-02 .357E-02 1.08 0.381
Elastoplastic (2.0) .368E-02 .400E-02 1.09 0.451

Case-2

Elastic .184E-02 .176E-02 0.958 0.314
Elastoplastic (1.5) .276E-02 .264E-02 0.958 0.316
Elastoplastic (1.8) .331E-02 .320E-02 0.967 0.351
Elastoplastic (2.0) .368E-02 .359E-02 0.975 0.435
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shows the linear relation between the mean and coefficient of variation of the elastoplastic ma
story drift by regression.

It should be noted that in elastoplastic analyses (particularly for the trials with the large magnifi
factor to the earthquake load), the following two situations may occur in several trials in the calcu
process: (1) the analysis process does not convergence due to large story drift; (2) the maximu
drift exceeds 2.5%. In fact, the structure could collapse in the above two situations which a
allowed in practical design according to the design code (GBJ 2001). Therefore, the trials w
above two situations (only few trials in the whole trials) are eliminated in the process of statistic
analysis of observed value for the of maximum story drift, which is the reason that the mean
maximum elastoplastic story drift seems small to some extent.

The following observations can be obtained from the above results:
(1) Probability distribution of maximum story drift (see Tables 6~8 and Fig. 3). In elastic ana

of steel frame samples, the maximum story drift has extreme value distribution type I o
normal distribution, in which the extreme value type I distribution fits better. In elastoplastic
analysis, the choice of probability distribution of the maximum elastoplastic story drift of 
frames is related to the mean of the maximum elastoplastic story drift. It follows ext
value type I distribution when the mean value is small, less than 0.3% (that is, there ar
tively few samples in elastoplastic stage). This is similar to the probability distribu
obtained by elastic analysis. It has extreme value type II distribution when the mean is 
say, more than 0.35%. By the way, the maximum story drift among all stories of the tria
the steel frames always occurs in two particular stories, with very slight difference bet
the drift values of these two stories. For example, for 8-story steel frame, the maximum
drift always occurs in the 2nd or 3rd story (few cases of the 3rd story); for 15-story fram
3rd or 4th story and for 22-story frame, the 4th or 5th story.

(2) Coefficient of variation of maximum story drift (see Tables 9~11). In elastic analysis of 
frame samples, for Case-1 (only the randomness of earthquake load is treated), the coe
of variation of maximum story drift is 0.30, the same as that of earthquake load; for C
(the randomness of all variables is treated), the coefficient of variation of maximum story
is 0.31, a little larger than that of earthquake load, which shows that the coefficient of var
tion of maximum story drift is mainly determined by that of earthquake load. In other wo
the uncertainty of earthquake load is the dominant factor to the uncertainty of stru
responses, which has also been observed by others (Wen 2001a 2001b, Song and Elli

Table 11 Statistical parameters of maximum story drift of 22-story steel frame

Standard value Mean
Ratio of mean to 
standard value

Coefficient of 
variation

Case-1

Elastic .254E-02 .270E-02 1.06 0.301
Elastoplastic (1.0) .254E-02 .271E-02 1.07 0.319
Elastoplastic (1.2) .305E-02 .328E-02 1.08 0.360

Elastoplastic (1.5) .381E-02 .411E-02 1.08 0.422

Case-2

Elastic .254E-02 .243E-02 0.959 0.311
Elastoplastic (1.0) .254E-02 .244E-02 0.959 0.313
Elastoplastic (1.2) .305E-02 .294E-02 0.964 0.329
Elastoplastic (1.5) .381E-02 .374E-02 0.983 0.418



Statistical properties of the maximum elastoplastic story drift of steel frames subjected to earthquake load195
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tory
1999, Li and Cheng 2002). In elastoplastic analysis, the coefficient of variation of maxi
story drift is related to the mean, in other words, the number of trials of steel frame sa
in elastoplastic stage will affect the value of the coefficient of variation of maximum s

Fig. 3 Different probability density functions of maximum story drift of 8-story steel frame
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drift. When the mean of the maximum story drift becomes large, the coefficient of vari
also becomes large. The approximate relation between the mean and the coefficient of varia
the maximum story drift can be obtained by linear regression as follows y = 82.5x + 0.0941
(Case-1) and y = 111x + 0,0159 (Case-2) (x denotes the mean value and y the coefficient of
variation of maximum story drift). The data are shown in Tables 9~11 of the results o
elastoplastic analysis, with three couples of data for each frame type of Case-1 and C
respectively.

(3) Ratio of mean to standard value of the maximum story drift (see Tables 9~11). In estic
analysis, the ratio of mean to standard value of the maximum story drift for Case-1 is 
1.06, the same as that of earthquake load; the ratio for Case-2 is about 0.947~0.959 du
effect of randomness of other variables besides earthquake load. In elastoplastic analy
standard value of steel frame is generally in elastic stage, some trials of steel frame s
are in elastoplastic stage and others keep in elastic stage, thus, the ratio of mean to s
value of the maximum story drift has little difference from that of elastic analysis, which a
1.07~1.11 for Case-1 and 0.952~0.983 for Case-2.

6. Conclusions

The present paper studies the statistical properties of the maximum elastoplastic story drift o
frames considering the randomness of earthquake load, dead load, live load, steel elastic modu
yield strength and structural member dimensions. The results show that the probability distribution o
the maximum elastoplastic story drift of steel frames is related to the mean. An extreme value
distribution is best when the mean is small, and an extreme value type II distribution is best wh
mean value is relatively large.

This solution is helpful to develop an efficient approximate approach of reliability analysis wit
limit state function in terms of the maximum story drift. For example, in general structural relia
analysis, the limit state function can be written as f (X, P) = up - u (X, P) in which up is the allowable
story drift, u (X, P) is the maximum story drift, which is the high nonlinear and implicit function w
respect to the basic random variables X (random variables related to structural properties) andP

Fig. 4 Relation between mean and coefficient of variation of maximum story drift



Statistical properties of the maximum elastoplastic story drift of steel frames subjected to earthquake load197

n each

 in the

lity
 be

t paper
of the
ility
ic, thus,
s in the

5410)
m, No.

ariables

nges”,

s

nghua
(random variables related to external loads), and needs time-consuming FEM reanalysis i
iteration step of reliability analysis. If we obtained the probability distribution and statistical parameters
of the maximum story drift of steel frames by only several FEM analysis based on the solution
present paper, then the limit state function simplifies into the following explicit equationf (up,
us) = up − us, in which us is the random variable of the maximum story drift with the known probabi
distribution and statistical parameters, and thus any available algorithm of reliability analysis can
employed to solve such a simple problem.

It should be pointed out that the solution obtained based on 500 samples in the presen
sometimes may not guarantee the good approximation of the tails of probability distribution 
maximum story drift, which is very important for small probability cases in structural reliab
analysis. And the predictions of seismic story drift are based on static analyses and not dynam
the uncertainty associated with using equivalent static force analysis is not reflected in the result
present paper. These problems will be studied further in the future.

Acknowledgements

The support of the National Natural Science Foundation of China (No. 50008003 and No. 5989
and The National High Technology Research and Development Program of China (863 Progra
2001AA602015) is appreciated.

References

ANSYS Inc. (2000a), ANSYS 5.7 document: Structural Analysis Guide.
ANSYS Inc. (2000b), ANSYS 5.7 document: Programmer’s Guide.
Applied Technology Council (1996), Seismic Evaluation and Retrofit of Existing Concrete Buildings, ATC 40.
Atkison, A.C., and Pearce M.C. (1976), “The Computer generation of Beta, Gamma, and normal random v

(with discussion)”, JRSS (A) 139, 431-461.
Building Research Institute (2000). Performance-based Engineering for Structural Design of Buildings, BRI

Research Paper No. 143.
Cheng, G.D., and Li, G. (2000), “Some key problems on performance based seismic design”, Journal of Building

Structures, 21(1), 5-11.
Collins, K.R. (1998), “Reliability-based design in the context of performance-based design”, Proc. of Structural

Engineers World Congress (SEWC'98), T178-2.
DeGroot, M.H. (1986), Probability and Statistics (second edition), Addison-Wesley Publishing Company.
Ellingwood, B.R. (1994), “Probability-based codified design: past accomplishments and future challe

Structural Safety, 13(2), 159-176.
Federal Emergency Management Agency (1996), NEHRP Guidelines for the Seismic Rehabilitation of Building,

FEMA 273.
Gao, H.X. (1995), Statistical Computing, Peking University Press, Beijing.
Gao, X.W. (1990), “Aseismic reliability analysis of reinforced concrete frame structure”, PhD Thesis, Tsi

University, China.
Gao, X.W., and Bao, A.B. (1985), “Probabilistic model and its statistical parameters for seismic load ”, Earthquake

Eng. & Eng. Vibration, 5(1), 13-22.
GBJ (1984), Uniform Standards for Building Structure Design, China Building Industry Press, Beijing.
GBJ (2001), Code for Seismic Design of Buildings (GBJ50011-2001), China Building Industry Press, Beijing.
James, F.A. (1990), “Review of pseudorandom number generators”, Computer Physics Communication, 60, 329-344.



198 Gang Li

ship

ctions:

s

Kendall S.M., and Stuart, A. (1979), The Advanced Theory of Statistics, Volume 2-Interface and Relation
(forth edition), Charles Griffin & Company Limited, London.

Kennedy,W.J., Gentle J.E. (1980), Statistical Computing, Marcel Dekker Inc.
Kinderman, A.J., and Ramage, J.C. (1976), “Computer generation of normal random variables”, JASA 71, 893-896.
Li G., Cheng G.D. (2002), “Probability distribution of story drift of seismic RC frames”, Journal Dalian of

University of Technology, 42(3), 153-157
Li, J.H. et al (1990), Probability Limit State Design for Building Structures, China Building Industry Press,

Beijing.
Melchers, R.E. (1999), Structural Reliability Analysis and Prediction (second edition), John Wiley & Sons.
Mrazik, A., and Krizma, M(1997), “Probability-based design standards of structures”, Structural Safety, 19(2),

219-234.
Payne, W.H. (1977), “Normal random numbers: using machine analysis to choose the best algorithm”, TOMS 3,

346-358.
Song, J.L., Ellingwood B.R. (1999), “Seismic reliability of space moment steel frames with welded conne

I and II”, Journal of Structural Engineering, ASCE, 125(4), 357-384.
Structural Engineers Association of California (1995), Performance Based Seismic Engineering of Building,

SEAOC Vision 2000.
Wen, Y.K. (2001a), “Reliability and performance based design”, Structural Safety, 23, 407-428.
Wen, Y.K. (2001b), Minimum lifecycle cost design under multiple hazards, Reliability Engineering & System

Safety, 73, 223-231.
Wu, X.Z., and Wang, Z.J., (1996), Methodology of Nonparametric Statistics, Higher Education Press, China.
Xu, S.L. (1992), Fortran Programs for Commonly Used Algorithms, Tsinghua University Press, Beijing.

CC


	Statistical properties of the maximum elastoplastic story drift of steel frames subjected to eart...
	Gang Li†

	1. Introduction
	2. Statistical properties of concerned random variables
	3. Generation of random variables
	4. Test of goodness-of-fit
	5. Probability distribution of the maximum elastoplastic story drift of steel frames
	6. Conclusions
	Acknowledgements
	References



