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Abstract. The concept of performance based seismic design has been gradually accepted by the
earthquake engineering profession recently, in which the cost-effectiveness criterion is one of the most
important principles and more attention is paid to the structural performance at the inelastic stage. Since there
are many uncertainties in seismic design, reliability analysis is a major task in performance based seismic
design. However, structural reliability analysis may be very costly and time consuming because the limit state
function is usually a highly nonlinear implicit function with respect to the basic design variables, especially
for the complex large-scale structures for dynamic and nonlinear analysis. Understanding statistical properties
of the structural inelastic deformation, which is the aim of the present paper, is helpful to develop an efficient
approximate approach of reliability analysis. The present paper studies the statistical properties of the
maximum elastoplastic story drift of steel frames subjected to earthquake load. The randomness of earthquake
load, dead load, live load, steel elastic modulus, yield strength and structural member dimensions are
considered. Possible probability distributions for the maximum story are evaluated using K-S test. The results
show that the choice of the probability distribution for the maximum elastoplastic story drift of steel frames is
related to the mean value of the maximum elastoplastic story drift. When the mean drift is small (less than
0.3%), an extreme value type | distribution is the best choice. However, for large drifts (more than 0.35%), an
extreme value type Il distribution is best.
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1. Introduction

The concept of performance based seismic design was proposed in the early 1990s in the USA, an
has been gradually accepted by the earthquake engineering profession recently (ATC 1996, BRI 2000
FEMA 1996, SEAOC 1995). Compared with the current seismic design codes, performance based
seismic design takes cost-effectiveness criterion as its important principle, and pays more attention tc
the structural performance in the inelastic stage. A popular measure of performance is the maximum
story drift. In general, there are many uncertainties in structural design, including the uncertainties of
external loads, structural capacity, analysis models and structural performance, and uncertainty is evel
more serious under earthquake hazard environment. Engineers must deal with these kinds of uncertainties
the structural design process, and the theory and methodology of structural reliability is a useful tool to
help the designers realize such a purpose. Therefore, the reliability analysis of the structural performance
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usually measured by inelastic deformation, is a major procedure in performance based seismic desigr
(Cheng and Li 2000, Collins 1998).

The structural reliability theories and applications have undergone a lot of developments during the
last few decades (Melchers 1999), and a number of design codes in many countries have adopte
reliability criteria usually with the partial safety formatl{igwood 1994 Mrazik and Krizma 1997).
However, structural reliability analysis is potentially very challenging because the limit state function is
usually a highly nonlinear implicit function with respect to the basic design variables, especially for the
complex large-scale structures and the mathematical method used for nonlinear analysis. Thus developin
an efficient approximate approach of reliability analysis with the accaptedacy is an important task
and challenge to the researchers and engineers, and research to determine thty plisb#iution of
structural deformation, which is the main purpose of the present paper, is helpful to develop such an
approximate method.

2. Statistical properties of concerned random variables

The randomness of earthquake load, dead load, live load, steel elastic modulus, steel yield strengt!
and structural member dimensions is considered in the present paper. According to Chinese seismi
design code (GBJ 2001), the dynamic earthquake load (a stocgracess) ige¢ated as the equivalent
static earthquake load (a random variable), which follows an extreme value type | distribution for a
given seismic intensity (Gao and Bao 1985). Based on Chinese Uniform Standards for Building Structure
Design (GBJ 1984), dead load and live load follow normal distribution and extreme value type |
distribution, respectively. The structural member dimensions and steel elastic modulus have normal
distributions, and the steel yield strength has a log-normal distributicet @li 1990).

The probability distribution and statistical parameters of thecaxmed random variables are
summarized in Table 1, in which the standard value means the design value of the random variable, an
the coefficient of variation is the ratio of the standard deviation to the mean.

According to the data in Table 1, the cumulative distribution functions (CDFs) of live load and
earthquake load, which have extreme value typistiilbution, can be stated as

L-0.423%

Fiou(L) = exp[—exloE]]——o_o8 a, k%} (1)
V-0.91%,

Fiv(V) = exp[—exp%—aT&/kkEﬂ (2)

Table 1 Probability distribution and statistical parameters of the random variables

. L Ratio of mean to Coefficient

Probability distribution standard value of variation

Earthquake load Extreme | 1.06 0.30
Dead load Normal 1.06 0.070
Live load Extreme | 0.471 0.229
Area of steel member Normal 1.00 0.05
Steel elastic modulus Normal 1.08 0.08

Steel yield strength Log-normal 1.21 0.15
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wherel, andV, are the standard values of live load and earthquake load, respectively

3. Generation of random variables

The inverse transform method is a general technique to generate random variables from a specific
distribution whose CDF can be inverted (Kennedy and Gentle 1980, Gao 1995). First, generate a
uniformly distributed numbeR within [0,1] (James 1990), then set it equal to the CDF of the random
variable

FX)=R or x=F™(R (3)

where F(x) is the CDF of the random variable Ris the uniformly distributed random number
within [0,1].

The random variables (such as earthquake load and live load) that have the extreme value type
distribution are generated by the inverse transform method, by which the simple equations can be
deduced from Egs. (1) and (2) as follows

0.423, - 0.084L, Ln(-Ln(R)) (4)
0.91%V,—0.248/, Ln(-Ln(R)) (5)

L

\%

It should be pointed out that although the inverse transform method can also be used to generat:
normally distributed random variables, it is not an efficient way. The CDF of the normal random
variable can not be inverted directly with the explicit equation, because the CDF contains an integral
that must be calculated by some simulation methods. Therefore, some approximate methods that ca
generate the standard normal random variables with high efficiency were developed (Kennedy and
Gentle 1980, Payne 1977, Atkinson and Pearce 1976, Kinderman and Ramage 1976), such as centr
limit theorem approximation, Box-Muller transformation, Marsaglia’s Polar method, rectangle-wedge-
tail method, Kinderman-Ramage procedure, Forsythe’s method and modifications.

Use of the central limit theorem on the uniformly distributed random numbers can provide a simple
and efficient method for closely approximating normal random variables, which can be stated as
(Kennedy and Gentle 1980, Gao 1995, Xu 1992).

X —f%nR n 20 ©)
S 1251;i 0

where xs is the standard normal random varialifR s the uniform random variables within [0,1].
Because the uniform distribution is a well-behavestribution, the approximation is fairly good
even for smalh. Choosingn = 12 leads to the simple form that is often used:

DlZ

O
xs = 0y R —60 (7)
DR

The central limit theorem approximation is used in the present paper to generate normal random
variables (such as structural member dimension, steel elastic modulus and dead load) as follows



188 Gang Li

012 O
X = ,Ll+0[]z R —60 (8)
0= 0

wherex is the normally distributed random varialjleand o are the mean and standard deviation.

The log-normally distributed random variable sequence (such as steel yield strength) can be generate
based on the relation to normal random variables. That is, the normally distributed random x&riable
generated by Eqg. (8) first, then the log-normally distributed random vayialale be obtained by the
following relation

y = exp() (9)

4. Test of goodness-of-fit

In the present paper, we try to find the probability distribution of the maximum elastoplastic story
drift of steel frames subjected to earthquake load, which belongs to the nonparametric problem in
testing hypotheses, called test of goodness-of-fit (DeGroot 1986, Kendall and Stuart 1979, Wu and
Wang 1996). The test of goodness-of-fit is to test the simple null hypothesis that the unknown
distribution functionF(x) is actually a particular continuous distribution functig4fx) against the
general alternative that the actual distribution function is=pE). The major steps of test of goodness-
of-fit are as follows:

(1) Suppose the hypothesis of test of distribution function,
Ho:F(X) = Fy(X) (20)

(2) Generate a random sample (the sample sizgdsd calculate the sample distribution function
Fy (%);

(3) Define a proper statistic, which can evaluate the difference between the distributions of the sample
and the hypothesis; Calculate the value of this statistic based on the observed values efdtexigen
sample;

(4) For a given level of significance, judge whether the null hypoth&sis true or rejected.

The x? test and the Kolmogorov-Smirnov test (K-S test) are two well-known methods of test of
goodness-of-fit to a particular continuous distribution. Inythéest of goodness-of-fit, the entire real
line or any particular interval that has the probability 1 must be partitioned into a finite nkirober
disjoint subintervals first, say-¢°, ay), [a, &),..., [a.1, T °°), then the following statistic is calculated.

2 _ L (N=np)’

(11)
i=1 npio

X

where N; denotes the number of trials that fall within tifesubinterval, andy N = ; p? is

the corresponding probability calculated based on the hypothesized distribution. The difference
between the actual number of tridds and the expected numbep® will tend to be smaller when

H, is true than whel, is not true.
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It should be pointed out that a particular feature ofyftest of goodness-of-fit is that the procedure
is designed to test the null hypothedis thatp® (pi denotes the probability of the trials within e
subinterval) fori=1,...,k. That is, the hypothesis in th¢ test of goodness-of-fit is actually the
following hypothesis.

Hy :F(a)-F(ai_y) = Fo(a)—Fo(a_1) i=1 ..k (12)

and not the original hypothesis Eq. (10). In some cases, the hypothgsis is true, however, the
hypothesisH, may not be true. Furthermore, the way in which the subintervals are chosen may
affect the final solution of test of goodness-of-fit (DeGroot 1986, Kendall and Stuart 1979, Wu and
Wang 1996).

The K-S test overcomes the shortcomings ofythiest discussed above to some extent by using the
following statistic at each trial of the sample.

Dy = supf [Fu(x) ~Fo()[} = max{max{|F,(x) ~Fo(x)|. [Fa(xis ) ~Fote)1}  (13)

where F(x) is the sample distribution.

For a given level of significan@e check the upper quantile values of the distribution of the K-S static
Dna (P{D,< D, ,}=1-a) shown in Table 2. ID,<D, , , then the null hypothediss true; else
the null hypothesis$i, is rejected. The K-S test was used in the study of probability distributions of
external loads (GBJ 1984), structural deformation capacity (Gao 1990) and elastic deformation of RC
frames (Li and Cheng 2002), etc. In the present paper, the K-S test is also employed.

In addition to the above probabilistic-statistical tests, it is also possible to use the tests of the geometrica
contiguousness, such as through the use of the quadrate deviations sum of the hypothesized distributic
from the obtained sample distribution, tmgans of the graphical assessment of the contiguousness of
the hypothesized distribution and the experimental one.

5. Probability distribution of the maximum elastoplastic story drift of steel frames

The procedure to study the probability distributions of the maximum story drift ofrstewds in the
present paper is as follows
(1) Select the steel frames for galmg, which are designedccording to the Chinese seismic
design code (GBJ 2001). Obtain the main initial design data (standard values) of the steel
frames (such as steel elastic modulus, yield strength and structural member dimensions) anc
live load and dead load.
(2) Calculate the standard value of the total earthquake force using the response spectra metho

Table 2 Upper quantile values of the distribution of the K-S dixtic

a Dna Dpq (N = 500)
0.20 1.07 /n 479E-01
0.10 1.22 /n 546E-01
0.05 1.36 1/n .608E-01

0.01 1.63//n 729E-01
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provided in Chinese seismic design code (GBJ 2001), based on the initial data (standard val-
ues) of steel frames, live load and dead load.

(3) According the probability distributions and statistical parameters in Table 1 and the standard values
obtained in step 1 and 2 of the concerned random variables, generate the trials (the m)rober is
the sample frames with the central limit theorem approximation and the inverse transform method.
Each trial contains a set of observed values, which are earthquake load, dead load, live load, stee
elastic modulus, steel yield strength and structural member areas.

(4) Perform the seismic analysis to each trial of the random variables, which is actually a static
inelastic analysis process herein, and obtain the observed values for the random sample of the
maximum story drift. In this step, the APDL (ANSYS Parametric Design Language) is used
to perform the seismic analysis of all the trials with ANSYS program within a batch job
(ANSYS Inc. 2000a, 2000b).

(5) Study the probability distribution of the maximum story drift with the K-S test.

The flowchart of the procedure is shown in Fig. 1.

Obtain the standard values
of steel frames and live,
dead loads

'

Calculate the standard
values of earthquake load

G te trials of Central limit theorem
 — encrate ra’s o [ approximation

Generate uniformly

distributed number steel frame sample Inverse transform method
Seismic analysis for each | Generate trials of

trial with ANSYS

maximum story drift

Y

K-S test for the maximum
story drift

Fig. 1 Flowchart of the K-S test of maximum story drift

Three types of steel frame samples are considered to study the lisolmhgtribution of the
maximum inelastic story drift of steel frames, which are two-bay eight-story frame, three-bay fifteen-
story frame and four-bay twenty-two-story frame, as shown in Fig. 2. The standard values of the initial
data of steel frames atige load, dead load and seismia@@aeters are shown in Tables 3 and 4, in
which the standard value of live load and dead load are evaluated approximately according to the
Chinese uniform standards (GBJ 1984), the values of the seismic intensity, the parametesstéor the
where the structures are located are taken based on the Chinese seismic design code (GBJ 2001). T
standard values of the elastic modulus and the yield strength of steel frames are .206E+GF6aNd mm
225N / mnd, respectively. The column section of steel frames is square or H shape, and the beam
section is | shape.
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two-bay eight-story three-bay fifteen-story  four-bay twenty-two-story
Fig. 2 Steel frames (two-bay eight-story, three-bay fifteen-story, four-bay twenty-two-story)

Table 3 Standard values of the steel frames

Standard Column section Beam section  Story height Frame span
story (middle and side)/mm / mm /' m /' m
2-bay N H 350x350%23x15 | 600x200
g-story 178 H 350x350x21x13 x16x12 3.3x8 50,50
1~7 [] 380%380%25
3-bay [] 380%380%22 | 600x200
15story g 1c [] 380x380x20 x19x12 3.3x15 6.0,50, 6.0
[] 380%380%x17
1-8 [] 450x450%28
[] 450%x450%25
4-bay N [] 450%450%25 | 650x200
22-story 9~15 (] 450%450%22 X29%12 3.3x22 7.5, 6.0,6.0,7.5
16~22 [] 450%x450%22

[] 450x450%18

Table 4 Standard values of the live, dead loads and seismic parameters

Story dead Story live Seismic

load /kN Load kN intensity Site type
2-bay 8-story 300 150 8 Type 2 group 2
3-bay 15-story 450 200 8 Type 2 group 2
4-bay 22-story 600 260 8 Type 3 group 2

To provide additional insight into how much the earthquake uncertainty determines the problem, two
combinations of random variables are studied. In Case 1 (combination 1), only the randomness of
earthquake load is considered. In Case 2 (combination 2) the randomness of all the variables is
considered. The probability distributions of the maximum story drift obtained from the elastic and
inelastic analysis are compared. Generally in the seismic analysis, when the structure is given, the
magnitude of the earthquake load is the dominant factor that determines the structure performance
whether in elastic stage or inelastic stage. Thus, for all the 500 trials of the steel frames, the story drifts



192 Gang Li

Table 5 Statistical parameters of 8-story steel frame

Obtained by initial data by generated trials
Random variables Coefficient of Coefficient of
Standard value Mean variation Mean variation
Middle column area mf .207E+05 .207E+05 0.050 .206E+05 0.050
Side column area mm .187E+05 .187E+05 0.050 .187E+05 0.050
Beam area mfm .132E+05 .132E+05 0.050 .132E+05 0.051
Elastic modulusN / mm? .206E+06 .223E+06 0.080 .222E+06 0.081
Dead loadN .300E+06 .318E+06 0.070 .318E+06 0.072
Live loadN .150E+05 .707E+05 0.229 .709E+05 0.220
Yield strengthN / mm? .225E+03 .272E+03 0.150 .274E+03 0.149
Earthquake load CaseM. .260E+06 .276E+06 0.300 .276E+06 0.301
Earthquake load CaseM .260E+06 .276E+06 0.300 .263E+06 0.305
Table 6D, values of the maximum story drift of 8-story steel frame
Extreme type | Extreme type Il Normal Log-normal
Elastic 176E-01 .956E-01 .800E-01 272E-01
Case-1 Elastoplastic (1.5) .839E-01 .539E-01 .130E+00 .825E-01
S Elastoplastic (1.8) .116E+00 .354E-01 .158E+00 .109E+00
Elastoplastic (2.0) .139E+00 A422E-01 .156E+00 .130E+00
Elastic 199E-01 .101E+00 .853E-01 .292E-01
Case-2 Elastoplastic (1.5) .300E-01 941E-01 .913E-01 .373E-01
S Elastoplastic (1.8) .117E+00 466E-01 .147E+00 .111E+00
Elastoplastic (2.0) .144E+00 .562E-01 .157E+00 .137E+00
Table 7D, values of the maximum story drift of 15-story steel frame
Extreme type | Extreme type Il Normal Log-normal
Elastic .175E-01 .957E-01 .798E-01 .270E-01
Case-1 Elastoplastic (1.5) .393E-01 .819E-01 .913E-01 .458E-01
S Elastoplastic (1.8) .813E-01 .539E-01 .125E+00 .810E-01
Elastoplastic (2.0) .133E+00 .608E-01 .168E+00 .127E+00
Elastic .217E-01 .107E+00 J777E-01 .236E-01
Case-2 Elastoplastic (1.5) .204E-01 .106E+00 J77E-01 .234E-01
S Elastoplastic (1.8) A422E-01 .853E-01 .969E-01 A457E-01
Elastoplastic (2.0) .110E+00 .700E-01 .134E+00 .104E+00

obtained by the seismic analysis keep elastic for some trials and inelastic for the other trials. In order to
study the effect of different number of the trials with inelastic performance on the probability
distribution of the maximum story drift, a factor (the value of 1.5, 1.8 and 2.0 are taken herein) is
introduced to magnify the observed value of the earthquake load for each trial. In the slastopla
analysis, the ideal elastoplastic relation between stress and strain is assumed.

The statistical parameters of the random variables of 8-story frame obtainedifiighstandard
values and by the generated trials &tedl in Table 5. Some of the results are shown in Tables 6~11
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Table 8 D, values of the maximum story drift of 22-story steel frame

Extreme type |  Extreme type Il Normal Log-normal

Elastic 175E-01 .957E-01 797E-01 .270E-01

Case-1 Elastoplastic (1.0) .290E-01 .883E-01 .874E-01 .375E-01
S Elastoplastic (1.2) .631E-01 .670E-01 .112E+00 .657E-01
Elastoplastic (1.5) .114E+00 A67E-01 .149E+00 .109E+00

Elastic .281E-01 .956E-01 .856E-01 .320E-01

Case-2 Elastoplastic (1.0) .275E-01 .949E-01 .858E-01 .320E-01
S Elastoplastic (1.2) .300E-01 .851E-01 .861E-01 .369E-01
Elastoplastic (1.5) .990E-01 A470E-01 .134E+00 .935E-01

Table 9 Statistical parameters of maximum story drift of 8-story steel frame

Ratio of mean to  Coefficient of

Standard value Mean standard value variation

Elastic 211E-02 224E-02 1.06 0.300
Cose.y Elastoplastic (L5) 316E-02 344E-02 1.09 0.389
¢ Elastoplastic (1.8) 379E-02 419E-02 1.10 0.438
Elastoplastic (2.0) 422E-02 468E-02 111 0.473

Elastic 211E-02 200E-02 0.947 0.315
Case.p Elastoplastic (L5) 316E-02 301E-02 0.952 0.328
aS€2  Elastoplastic (1.8) 379E-02 371E-02 0.979 0.445
Elastoplastic (2.0) 422E-02 413E-02 0.978 0.483

Table 10 Statistical parameters of maximum story drift of 15-story steel frame

Ratio of mean to Coefficient of

Standard value Mean standard value variation

Elastic .184E-02 .195E-02 1.06 0.301
Case-1 Elastoplastic (1.5) .276E-02 .295E-02 1.07 0.331
S Elastoplastic (1.8) .331E-02 .357E-02 1.08 0.381
Elastoplastic (2.0) .368E-02 .400E-02 1.09 0.451

Elastic .184E-02 .176E-02 0.958 0.314
Case-2 Elastoplastic (1.5) .276E-02 .264E-02 0.958 0.316
S Elastoplastic (1.8) .331E-02 .320E-02 0.967 0.351
Elastoplastic (2.0) .368E-02 .359E-02 0.975 0.435

and Figs. 3 and 4, in which Elastoplastic (1.5) denotes the elastoplastic analysis with the magnification
factor 1.5 to the observed value of earthquake load. Tables 6-8,aralues of the K-S test for
different probabity distribution hypotheses and Tables 9~11 are statisticahpeters of the maximum

story drift, in which the standard value of story drift is calculated by the seismic analysis using the
initial standard values of steel frames and external loads. Fig. 3 shows the curves of the probability
density functions of maximum story drift based on the histogram and the hypothesized distribution
functions of extreme value type | and type Il distributions, normal and log-normal distributions. Fig. 4
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Table 11 Statistical parameters of maximum story drift of 22-story steel frame

Ratio of mean to Coefficient of

Standard value Mean standard value variation

Elastic .254E-02 .270E-02 1.06 0.301

Case-1 Elastoplastic (1.0) .254E-02 271E-02 1.07 0.319
S Elastoplastic (1.2) .305E-02 .328E-02 1.08 0.360
Elastoplastic (1.5) .381E-02 A411E-02 1.08 0.422

Elastic .254E-02 .243E-02 0.959 0.311
Case-2 Elastoplastic (1.0) .254E-02 .244E-02 0.959 0.313
Elastoplastic (1.2) .305E-02 .294E-02 0.964 0.329
Elastoplastic (1.5) .381E-02 .374E-02 0.983 0.418

shows the linear relation between the mean and coefficient of variation of the elastoplastic maximum
story drift by regression.

It should be noted that in elastoplastic analyses (particularly for the trials with the large magnification
factor to the earthquake load), the following two situations may occur in several trials in the calculation
process: (1) the analysis process does not convergence due to large story drift; (2) the maximum stor
drift exceeds 2.5%. In fact, the structure could collapse in the above two situations which are not
allowed in practical design according to the design code (GBJ 2001). Therefore, the trials with the
above two situations (only few trials in the whole triss® eliminated in the process of statistical
analysis of observed value for the of maximum story drift, which is the reason that the mean of the
maximum elastoplastic story drift seems small to some extent.

The following observations can be obtained from the above results:

(1) Probability distribution of maximum story drift (see Tables 6~8 and Fig. 3). In elastic analysis
of steel frame samples, the maximum story drift has extreme value distribution type | or log-
normal distribution, in which the extreme value type | distributits Better. In elastoplastic
analysis, the choice of probability distribution of the maximum elastoplastic story drift of steel
frames is related to the mean of the maximum elastoplastic story drift. It follows extreme
value type | distribution when the mean value is small, less than 0.3% (that is, there are rela-
tively few samples in elastoplastic stage). This is similar to the probability distribution
obtained by elastic analysis. It has extreme value type Il distribution when the mean is large,
say, more than 0.35%. By the way, the maximum story drift among all stories of the trials of
the steel frames always occurs in two particular stories, with very slight difference between
the drift values of these two stories. For example, for 8-story steel frame, the maximum story
drift always occurs in the 2nd or 3rd story (few cases of the 3rd story); for 15-story frame, the
3rd or 4th story and for 22-story frame, the 4th or 5th story.

(2) Coefficient of variation of maximum story drift (see Tables 9~11). In elastic analysis of steel
frame samples, for Case-1 (only the randomness of earthquake load is treated), the coefficient
of variation of maximum story drift is 0.30, the same as that of earthquake load; for Case-2
(the randomness of all variables is treated), the coefficient of variation of maximum story drift
is 0.31, a little larger than that efrthquake load, which shows that the coefficient of varia-
tion of maximum story drift is mainly determined by that of earthquake load. In other words,
the uncertainty of earthquake load is the dominant factor to the uncertainty of structural
responses, which has also been observed by others (Wen 2001a 2001b, Song and Ellingwoot
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Fig. 3 Different probability density functions of maximum story drift of 8-story steel frame

1999, Li and Cheng 2002). In elastoplastic analysis, the coefficient of variation of maximum
story drift is related to the mean, in other words, the number of trials of steel frame samples
in elastoplastic stage will affect the value of the coefficient of variation of maximum story
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Fig. 4 Relation between mean and coefficient of variation of maximum story drift

drift. When the mean of the maximum story drift becomes large, the coefficient of variation
also becomes large. The approximate relation between the mean and the coefficient of variation of
the maximum story drift can be obtained by linear regression as follew&2.5<+ 0.0941
(Case-1) and/=111x + 0,0159 (Case-2)x(denotes the mean value andhe coefficient of
variation of maximum story drift). The data are shown in Tables 9~11 of the results of the
elastoplastic analysis, with three couples of data for each frame type of Case-1 and Case-2,
respectively.

(3) Ratio of mean to standard value of the maximum story drift (see Tables 9~11)stla ela
analysis, the ratio of mean to standard value of the maximum story drift for Case-1 is about
1.06, the same as that of earthquake load; the ratio for Case-2 is about 0.947~0.959 due to th
effect of randomness of other variables besides earthquake load. In elastoplastic analysis, the
standard value of steel frame is generally in elastic stage, some trials of steel frame samples
are in elastoplastic stage and others keep in elastic stage, thus, the ratio of mean to standar
value of the maximum story drift has little fdifence from that of elastic analysis, which are
1.07~1.11 for Case-1 and 0.952~0.983 for Case-2.

6. Conclusions

The present paper studies the statistical properties of the maximum elastoplastic story drift of steel
frames considering the randomness of earthquake load, dead load, live load, steel elastic modulus, ste
yield strength and structural member dimensions. Thétseshwow that the probability distribution of
the maximum elastoplastic story drift of steel frames is related to the mean. An extreme value type |
distribution is best when the mean is small, and an extreme value type Il distribution is best when the
mean value is relatively large.

This solution is helpful to develop an efficient approximate approach of reliability analysis with the
limit state function in terms of the maximum story drift. For example, in general structural reliability
analysis, the limit state function can be writterf @§ P) = u, - u (X, P) in whichu, is the allowable
story drift, u (X, P) is the maximum story drift, which is the high nonlinear and implicit function with
respect to the basic random variab¥grandom variables related to structural properties) Rnd
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(random variables related to external loads), and needs time-consuming FEM reanalysis in eact
iteration step of reliability analysis. If we obtained the probability distribution and statistieah@t@rs

of the maximum story drift of steel frames by only several FEM analysis based on the solution in the
present paper, then the limit state function simplifies into the following explicit equitipn

Us) = Uy — U, in whichugis the random variable of the maximum story drift with the known probability
distribution and statisticalgpameters, and thus any available algorithm of reliability analysis can be
employed to solve such a simple problem.

It should be pointed out that the solution obtained based on 500 samples in the present pape
sometimes may not guarantee the good approximation of the tails of probability distribution of the
maximum story drift, which is very important for small probability cases in structural reliability
analysis. And the predictions of seismic story drift are based on static analyses and not dynamic, thus
the uncertainty associated with using equivalent static force analysis is not reflected in the results in the
present paper. These problems will be studied further in the future.
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