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Abstract. A higher level of engineering standard in the field of construction, is the use of prestressin
building structures. The concept of prestressing steel structures has only recently been widely consi
despite a long and successful history of prestressing concrete members. Several analytical stud
prestressed steel girders were reported in literatures, but much of the work was not studied with refere
the optimal design and behaviour of the prestressed steel plate girder. A plate girder prestressed eccen
will behave as a beam-column, which is subjected to axial compression and bending moment which
cause the beam to buckle out. The study of buckling of the prestressed steel plate girder is necess
stability criteria. This paper deals with the stability of prestressed steel plate girder using concept of  “Vlasov’s
Circle of Stability” under eccentric prestressing force.
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1. Introduction

The structural efficiency, economy and design flexibility of prestressed steel plate girder c
reflected in their extensive use in engineering work. For the optimal design of a simply supp
prestressed steel plate girder (Fig. 1), the flange plates welded to a relatively thin web pla
normally varied in size and thickness satisfying the bending requirement with the tendons pr
below the bottom flange. Introduction of a tendon converts a girder to a statically indeterminate s
Under the service loads the bearing capacity of the girder increases, firstly because the prestresses 
cancelled initially, a fact which extends the elastic service range of the material, and secondly be
girder with a tendon behaves as a statically indeterminate beam.

Theory for twisting deformation is explained by Gemmerling (1960) in which he has sugg
working method for checking the stability of prestressed beams on the basis of the general theory
worked out by Vlasov. The basic theory of bending and torsion of thin-walled elastic beams ha
treated in detail in Timoshenko and Gere (1951) from which the basic equations are studied. B
(1991) in his paper presents design charts for the elastic buckling load induced by stressing an e
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tendon, and uses this to obtain a design buckling strength in accordance with the LRFD Specif
Theory of Beam-Column is fully explaind by Chen and Atsuta (1977).

The purpose of this paper is to study the behaviour of prestressed steel girder and to ch
optimal designed girder for torsional buckling. The ratio of depth of neutral axis from top & bo
flanges also plays an important role in the optimal design. The depth of web has been assume
to effective span by 10. The position of the tendon will also be important to avoid buckling of t
plate girder.

2. Location of tendon

Behavior of a girder, its design and economic performance depend to a great degree on the loc
the tendon. Tendons may be rectilinear for full or partial span and curved. Tendons may be loca
within the depth of the girder or built out.

The effectiveness of a tendon increases with its distance to the center of gravity of the girde
section, and it may be of smaller cross section. Girders with tendons built out at a considerable d
beyond their cross section may be used when there is no limit to the depth of the structure. Ho
the disadvantage is complicated anchor design and the girder handling. If the tendon is locate
the girder, it gives easier handling of the girder and protection against corrosion. But the demerit
location of anchors and jacks, which is a big design problem. However reducing the depth of the
near the tendon anchoring can solve the problem.

The connection of tendon depends upon the profile of tendon along the length of girder. A s
tendon is simple and convenient as regards tensioning and anchoring as it is connected at the 
is free all along the length. In case of other profile of tendons, the tendons are connected at 
intervals by means of diaphragms, ribs, clamps and other types of grips which allow longitu
movement but prevent buckling of girder during prestressing. Curved tendons are advantageous
create a prestress whose value varies over the length of the girder. A point where a tendon bend
the vertical components, which additionally ease the stresses in the girder. However, the disadv
of curved tendons is their complicated manufacturing, as it involves greater consumption of cost
strength material and requires the use of special guides for laying tendons. Friction arises betw
tendon and the guide in the course of prestressing, thus increasing the tendon force, all in 
introduction of curvilinear tendons involves problems in anchor bearing plate design and tensionin
device location.

Fig. 1 Straight tendon for full span
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3. Behaviour of prestressed steel plate girder as a beam-column

Due to introduction of prestressing force, the steel girder will be subjected to axial compre
bending moment and shear. Thus, the steel girder will behave as a beam-column, which is
compressive, bending and shear stresses. Columns and beams are special cases of beam-c
beam-column is likely to buckle under a particular combination of compression and bending mo
In order to determine the strength of a beam-column, it is necessary to obtain a particular comb
of loads under elastic and inelastic behaviour of the material and the interaction of flexural and 
buckling modes complicates the behaviour of beam-column.

To obtain the optimum cross sectional area of the steel girder, the girder will be designed as a beam
column which is subjected to axial compression and the bending moments, and the interaction f
that must be satisfied (as per clause 7.1.1.of I.S. 800-1984) is

(1)

Also, prestressed girders subjected to both shear and bending stresses are proportional acc
to clause 7.1.4 of IS 800-1984. The equivalent stress σe,cal. obtained from the following formula,
shall not exceed the value σe = 0.9 fy is

(2)

where, σac,cal., σbc,cal. = calculated average axial and bending compressive stressed.
where, σac, σbc = permissible axial and bending compressive stressed.
where, fy = yield stress, τvm = maximum permissible shear stress.

4. Problem formulation

A simply supported prestressed steel girder of I-section is considered for the design. The
compression flange is assumed to be laterally unsupported. The tendon is provided below the
flange to have maximum advantage of prestressing, connected at supports and is free all al
length of the girder. The optimal ratio of depth of neutral axis from top and bottom flanges, to o
optimum cross-section, is 2.1. The depth of web is taken equal to span/10 with best regard 
economical effectiveness in minimum cross sections.

 For the various loading cases and considering the tendon profile straight over full span of the
two separate loading conditions are taken into account;

viz. a) Dead Load + Prestressing load, and
b) Dead Load + Live Load + Prestressing load + Self-stressing Load

To reach the required objective the design parameters are assumed and then the girder is de
obtain the optimized cross section.

σac cal,

σac

--------------
σbc cal,

1
σac cal,

0.6 fcc⋅
-----------------– 

 
-------------------------------- 1≤+

σe cal, σbc cal,
2 3 τvm cal,

2⋅+=
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4.1. Permissible prestressing force

To obtain the optimum cross-section, the permissible prestressing force is obtained by keep
prestressing force unknown in the equation and equating it by 1, the permissible prestressing 
calculated by trial & error method for the assumed cross-sectional parameters.

(3)

∴ Total prestressing force

where, MDL = bending moment due to dead weight of plate girder.
where, e = eccentricity.
where, Z2 = section modulous along the bottom flange.
where, A = cross-sectional area of the plate girder.
where, Pper = permissible prestresseing force.
where, ∆P = self-stressing force in the tendon due to external load.
where, fcc = elastic critical stress in compression.
where, σac, σbc = permissible axial and bending compressive stressed.

For this total prestressing force and assumed cross-section, the combined stresses are check
limiting value.

5. Torsional buckling of members

Torsional buckling of a member may occur either by twisting or by combination of bending and
twisting. Such torsional buckling failures occurs if torsional rigidity of a section is very low. The c
section may be solid or thin walled section. The thin walled members may be open or closed. Ge
non-circular sections warp when the members get twisted. If the end sections are free to wa
member is said to be subjected to uniform or pure torsion or St. Venants torsion, resulting in pure shear
stresses. If an end section of a member is restrained, it is said to be under non-uniform or w
torsion, resulting in shear and warping stresses.

The assumption that plane section remains plane after deformation is valid for the following:
• Round bars and cylindrical tubes.
• Open sections having two thin rectangles whose lines meet at a point (angles and tees).
• Thin walled hollow sections the resultants of sides that intersect in one point.
All other solid or hollow sections, including rectangular hollow sections of constant wall thicknes

rolled steel beams and channels do not remain plain after deformation that is, when the memb
twisted the sections do not remain plane, but get warped. When the sections are free to warp, only 
stresses are produced due to torsion, which is called pure or St. Venants torsion. When warpin

Pper A⁄
σac

-----------------
Pper e⋅ MDL–( ) z2⁄

1
Pper A⁄
0.6 fcc⋅
-----------------– 

  σbc⋅
----------------------------------------------+ 1=

P Pper P∆+=
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section is restrained, the torsion produces shear and warping stresses due to warping torsion.
If the plane section remains plain at the restrained end, the St. Venants torsion constant is take

polar moment of inertia of section.

6. Stability of beams in the prestressing range for torsional buckling

A beam-column is likely to buckle under a particular combination of compression and bending mo
Gemmerling (1960) considered the problem of plan shape bending with no allowance for bendi
twisting deformation.

The value of the critical force in the tendon, which causes the loss of stability by the beam in twisting
deformation, is:

(4)

where, Ix, Iy - axial moment of inertia
where, Iw and J - warping and torsion constant.
where, Xtd and Ytd - coordinates of the c.g. of tendon w.r.t. axes x and y.
where, G - shear modulus, taking G = 0.4E 
where, E - Young’s modulus for steel, E = 2.1 × 105 N/mm2

where, rd - polar radius of gyration.

(5)

(6)

where, x and y are the current coordinates of the cross section w.r.t. the principal axes.
It may be shown that for some values of tendon coordinates, the denominator of Eq. (4) turns 

and the critical force thus becomes infinitely great, which means that the loss of stability is impossible.
Equating the denominator in Eq. (4) to zero, we obtain the expression for a curve character
which is that the tensioning of a tendon located in any point of the curve or beyond it cannot ca
beam to buckle. This curve is Vlasov’s circle of stability.

The coordinates of the circle of stability and its radius are determined as below:

(7)

Ncr

π2

L2
----- E Iw G J⋅+⋅ ⋅

rd2 Xtd
2– Ytd

2 Ux

Ix

------ Ytd

Uy

Iy

------ Xtd⋅+⋅+–

----------------------------------------------------------------------------------=

r d
I x I y+

A
--------------=

Ux x2 y2+( )
A
∫ y dA⋅ ⋅=

Uy x2 y2
+( )

A
∫ x dA⋅ ⋅=









Kx Xm=   Ky Ym=;    ; R2 Kx
2 Ky

2 rd
2+ +=
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A beam may lose stability if the tendon is located inside the circle of stability only. The minim
value of the critical force will answer to a tendon located in the point of coordinates-

(8)

In this case value of the critical force is 

(9)

The maximum value of the critical forces will be in a tendon located on the boundary o
circle of stability. When the tendon is located outside the circle of stability, buckling is imposs
since the critical force in the tendon which is required for the girder to buckle is not tensile
compressive.

Therefore, no checks for buckling are necessary, if a tendon is located at a distance y from the beam
center of gravity, as the physical property of a tendon is to be in tension always and not compr
where,

(10)

thus, to have the prestressed steel plate girder safe for torsional buckling, the tendon sho

Xm

Uy

2I y

-------=      Ym

Ux

2I x

-------=;

Ncr

π2

L2
----- E Iw G J⋅+⋅ ⋅

rd2 Ux

Ix

------ Ytd

Uy

Iy

------ Xtd⋅+⋅+

--------------------------------------------------------=

y Ky R±( )
Ux

2I x

------- R± 
 = =

Fig. 2 Beam cross-section with Vlasov’s circle of stability
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ravity
placed on or outside the circle of stability so that buckling is impossible.
For an I-beam asymmetric cross section, the parameter Ux is

(11)

where, Ix1, Iy1, Ix2 and Iy2 = moments of inertia of top and bottom flanges w.r.t. the principal axis.
where, and = distance between the centre of top and bottom flanges from the centre of g

of the beam cross section.

Ux Ix1 I y1+( ) h1′ I x2 I y2+( ) h2′
tw h1′4⋅

4
------------------

tw h2′4⋅
4

------------------+ +⋅+⋅=

h1′ h2′

Table 1 Critical buckling force in tendon for h2 / h1=2.1, e / h2 = 1.0 for the optimal crosssections

Sr. 
No.

Span
(m)

Load
(kN/m)

C/S Area
(Sq. mm)

Total Prestressing 
Force P(kN)

Eccen-Tricity
(mm)

Dist.
Y (mm)

NCR

(kN)

1 10 60 23270 586.5 749 710 -5310
2 10 70 24500 681.7 749 726 -10900
3 10 80 25770 768.3 749 741 -41500
4 10 90 27100 866.9 752 758 +47900
5 10 100 28330 962.6 752 773 +20200

1 12 60 28180 722 888 855 -6790
2 12 70 29640 834 888 874 -19200
3 12 80 31910 946 888 892 +97900
4 12 90 33460 1060 888 909 +24800
5 12 100 35860 1180 890 924 +21600

1 15 60 36260 928 1089 1069 -16900
2 15 70 39110 1075 1091 1094 +163000
3 15 80 41390 1213 1091 1114 +38000
4 15 90 43400 1368 1091 1133 +28100
5 15 100 47090 1508 1096 1154 +23500

 1 18 60 45720 1144 1294 1294 -2047000
2 18 70 49460 1330 1297 1322 +44400
3 18 80 51930 1500 1297 1344 +32600
4 18 90 55630 1679 1300 1368 +25000
5 18 100 58050 1866 1300 1386 +22300

1 20 60 52480 1299 1432 1444 +77900
2 20 70 56700 1507 1434 1477 +37600
3 20 80 59380 1692 1436 1499 +25000
4 20 90 63070 1887 1438 1520 +27000
5 20 100 65660 2087 1437 1538 +27700

Note: -ve sign indicates compressive critical force in tendon and +ve sign indicates tensile critical force in
tendon.
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6.1. Illustration

Considering steel plate girder with a transverse uniformly distributed load, simply supported, w
compression flange laterally unsupported. As the section is not restrained, the ends are free to w
the applied torsion is resisted by St. Venant’s torsion constant ‘J’. The tendon is located just below th
bottom flange along the girder, considering ratio e / h2 = 1.0. The plate girder is symmetric along y-axis,
and the ratio h2 / h1 = 2.1 for optimal cross-section.

Therefore, we can take co-ordinates Xm = 0 and Xtd = 0, Also, Uy = 0
For an unsymmetrical I-section,
Torsion constant,

(12)

Warping constant,

(13)

where, ttf, tbf - the thickness of top and bottom flange.
where, btf, bbf - the width of top and bottom flange.
where, tw and h - the thickness and depth of web.
where, h1, h2 - the depth of neutral axis from top and bottom flanges.

Using the above equations from Eqs. (4) to (13), the critical load for a single span girder for v
loads and span can be calculated. For uniformly distributed loads, the critical loads are calcula
tabulated in Table 1.

7. Conclusions

The following conclusions are made from the above study.
1) Steel plate girder under external and prestreesed load will behave as a beam-column.
2) Limiting the ratio depth of web / span = 10 and placing the tendon below the bottom flange, 

critical force (Ncr) is required for torsional buckling of girder, making the girder safe against twisting
deformation. Hence the concept of Vlasovs circle of stability can be satisfactorily used.

3) To make the girder safe against torsional bucking, the tendon should be placed on the c
stability or beyond it, even if the girder is not restrained.
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