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Abstract. This study focuses on the influence of a composite external strengthening on the na
frequencies of a steel beam with open cracks. In a first step, the leading parameters associated with th
of the composite strengthening are experimentally identified. An analytical model is developed in ord
quantify the importance of the force transfer within the resin interface. In a second step, the analytical m
of a cracked beam with composite external strengthening is compared to experiments.
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1. Introduction

For the past two decades, external strengthening involving composite material has appeare
innovative technique to solve various problems associated with aging and damaging structure
wide range of composite materials and their highly specific mechanical properties make them
attractive for this purpose (Meier, Deuring, Meier, Schwegler 1992), (Triantafillou 1998). Altho
numerous studies have already been carried out on the static behavior of structures with cosite
reinforcement, the influence of the composite on the vibration characteristics of reinforced stru
has yet to be explored.

First, the composite active length associated with the force transfer within the resin jo
experimentally identified as the leading parameter associated with the effect of the composite.

After, an analytical model developed in Ovigne, Massenzio, Jacquelin, Hamelin (200
implemented to evaluate the natural frequencies of a cracked beam with composite strengt
Furthermore, Täljsten’s model (1997) is extended to a modal case in order to obtain shea
mode shapes of the resin joint. These mode shapes are used to evaluate the composite active length.

Finally, the analytical modeling for both natural frequencies of the beam and shear stress
shapes of the resin joint are experimentally validated.
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2. Effect of a composite external strengthening: experimental approach

2.1. Specimens

A 765 mm long steel beam with a 20×39 mm section is used for this test. Open crack state is e
by the thickness of the notches which is about 2 mm. The composite material used for the e
strengthening is made of two layers of unidirectional carbon fiber wrap impregnated with epoxy
(G = 1200 MPa). The carbon wrap characteristics are: toughness: 3400 MPa, Young modulus: 
MPa, weight: 200 g/m2. The longitudinal Young modulus of the composite Ecompo is experimentally
evaluated by a tensile test to be 70000 MPa.

2.2. Natural frequencies measurement

The natural frequencies of the beam are measured in free-free boundary conditions so as to en
reproducibility. The vibration tests consist of hanging the beam on elastic bonds whose stiffness 
lower than the value of the beam stiffness so as to simulate free-free boundary conditions. An 
hammer (Bruel and Kjaer 8202 with a force transducer B&K 8200) is used for supplying a 
frequency bandwidth impulse (0-10 kHz) on the beam. An accelerometer (Metravib 103M no937) fixed at
several positions on the beam, is used to pick up its response. The excitation and the response are an
a Siglab analyzer that allows us to explore the transfer function of the beam in the frequency doma

2.3. Effect of the composite on the natural frequencies of an intact beam

The natural frequencies of an intact steel beam are measured in free-free boundary conditions b
and after bonding the composite (Fig. 1). Only the five first bending modes are considered in this study
The results point out that the composite has no significant influence on the natural frequencie
intact beam (Table 1). Indeed, the composite bending stiffness and mass that are superposed to
the beam are not high enough to modify the modal scheme.

Fig. 1 Intact steel beam with composite reinforcement

Table 1 Natural frequencies (Hz) of an intact steel beam. Experiment

Mode number Intact beam beam with CFRP Increase (%)

1 357 359 0.3
2 969 972 0.3
3 1853 1860 0.4
4 2976 2985 0.3

5 4292 4308 0.4
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2.4. Effect of the composite on the natural frequencies of a cracked beam

On the contrary, in presence of cracks, the influence of the composite is quite significant. Th
beam is now damaged by three notches with various lengths (20 mm 30 mm and 20 mm respe
located at each quarter of span (Fig. 2). The natural frequencies are measured before a
composite reinforcement (Table 2).

The increase of the natural frequencies is due to composite bridging effect. The longitudinal st
of the composite limits relative displacements of the notch lips. Therefore, the damaged sec
stiffened. The bridging force induced within the composite is transferred on each side of the fa
bonding. Then, an anchorage effect is brought into play with shearing of the resin joint.

2.5. Effect of bridging force transfer on natural frequencies of a cracked beam

An experimental procedure is developed in order to determine the leading parameter associa
the bridging effect due to CFRP. It consists in reinforcing a beam only in the vicinity of a crack. The
composite is progressively removed on each side by cutting and the natural frequencies are m
This test points out the fact that the bridging effect is located in the vicinity of the fault. Indeed

Fig. 2 Beam with 3 notches and CFRP

Table 2 Natural frequencies (Hz) of a beam with 3 notches. Experiment

Mode number beam without CFRP beam with CFRP Increase (%)

1 182 293 61
2 740 835 13
3 1109 1479 33
4 2838 2895 2
5 3847 4010 4

Fig. 3 Active length evaluation
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natural frequencies are not affected by the composite removal outside a zone. This zone is ca
active length of the composite Lactive. On the contrary, when the length of the composite equals Lactive the
anchorage of the composite is not verified and the frequencies decrease (Fig. 3). As expec
natural frequencies associated with the even modes are not affected by a midspan notch. Lactive is
evaluated to 20 mm with respect to the uneven modes (Fig. 3).

2.6. Conclusions on the composite bridging effect

As a conclusion, the bridging effect induced by the composite is characterised by:

• A neglectible influence outside the vicinity of the fault because of its low mass and low bending st
• A great influence inside the active length located on both sides of the notch

So, the effect of the composite strengthening can be viewed as a longitudinal stiffness located in the
vicinity of the crack and can be modeled by the approach formulated in Ovigne, Massenzio, Jac
Hamelin (2002). This analytical model is implemented in the calculation of the active length.

3. Modeling of bridging force transfer on vicinity of the crack

3.1. Modeling of a beam with open cracks and external strengthening

The model is presented in further detail in Ovigne, Massenzio, Jacquelin, Hamelin (2002). It is
on the assembly of beam elements with interconnecting conditions resulting in the transfer matrix of the
cracked section with external strengthening (Fig. 4). The effect of the open crack is taken into a
according to stress concentration around the crack tip. So, a rotation stiffness , of the c
section is derived.

The longitudinal stiffness of the composite along its active length Lactive is denoted as krepair and is
given by:

(1)

The cracked section with external strengthening is modeled by an elastic hinge located at th
side of the beam. The rotation stiffness   is given by:

(2)

kcrack
θ

krepair

EcompoScompo

Lactive

------------------------------=

khinge
θ

khinge
θ kcrack

θ krepair
θ+=

Fig. 4 External strengthening of a cracked section
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where the rotation stiffness due to the composite is:

(3)

Then, the resulting flexibility associated with the rotation discontinuity is given by:

(4)

The transfer matrix of the notched section with composite is then:

(5)

The natural frequencies and mode shapes of the entire beam are calculated from the assem
the beam elements and each open crack with composite bridging. The beam elements are desc
the Timoshenko theory where the transverse displacement v(x, t) and the section rotation θ (x, t) are
used. Separating time and space variables gives:

(6)

(7)

According to the governing equations of the beam element, the displacement magnitudes 
written as:

(8)

(9)

And the shear force P and bending moment M magnitudes can then be expressed as:

(10)

(11)

where pj ( j = 1 to 4) are the four wave numbers derived from the characteristic polynom asso
with the four degree equation of motion of a Timoshenko beam when expressions Eqs. (6) a
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are taken into account. Aj
k are constants that can be determined considering the assembly.

The assembly is devised for a beam with N notches. The four boundary conditions in terms of forc
and displacements at each side of the entire beam in free-free conditions are added. It lea
4(N + 1) × 4(N + 1) system in terms of Aj

k coefficients Eq. (12).

(12)

The natural pulsation ω of the entire beam set the determinant of the matrix [Mat] equal to zero

Det[Mat](ω) = 0 (13)

For a given pulsation, the Aj
k coefficients vector in Eq. (12) is computed as a function of o

arbitrary Aj
k coefficient and the mode shape is computed with Eq. (8).

3.2. Shear stress mode shapes inside the resin joint

The anchorage of a composite plate and the force transfer within a resin interface have already bee
studied (Bizindavyi and Neale 1999), (Chajes and Finch 1996). The analysis of the shear stres
the adhesive layer has been studied by Täljsten (1997) for the static problem of peeling failure t
be encountered for beams with external composite strengthening. The Täljsten model is extended h
to the modal problem of the bridging force transfer on each side of a crack so as to obtain a stre
shape of the shearing inside the resin joint. 

In the vicinity of the notch, the shear stress inside the resin joint is due to the relative displace
between the beam and the composite. It can be expressed as:

(14)

And then,

(15)

The composite is subjected to tensile loading then:

Mat

size 4 N 1+( ) 4 N 1+( )×

A1
1

A2
1

⋅
⋅

A3
N 1+

A4
N 1+

0[ ]=

τ x( ) G
e
---- ucompo x( ) ubeam x( )–( )=

dτ x( )
dx

------------- G
e
---- εcompo x( ) εbeam x( )–( )=

Fig. 5 Shear stress in the resin joint
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(16)

The beam is subjected to bending:

(17)

Eqs. (15), (16), (17) lead to 

(18)

The equilibrium of the composite plate leads to:

(19)

(20)

where v(x) and P(x) are given by Eqs. (8) and (10). Then, a second order differential equatio
term of shear stress is obtained

(21)

where:

(22)

3.2.1. Boundary conditions
The shear stress is maximal at the cracked section. Its value is computed by considering the

displacements of the notch lips.

(23)

For the composite:
(24)

For the beam element

(25)

θ (x) is given in Eq. (9), and then:

(26)
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nd then

found
Substituting Eqs. (24) and (26) in Eq. (23) leads to:

(27)

Furthermore, outside the active length, the bridging force is transferred to the beam element a
the shear stress is null:

(28)

3.2.2. Solving
The solution to the homogeneous equation associated with Eq. (21) is: 

(29)

Where ϕ1 and ϕ2 are constants. A particular solution to the non-homogeneous Eq. (21) can be 
of the form:

(30)

Where ψj  for j = 1 to 4 are constants expressed as:

(31)

Applying the boundary conditions Eqs. (27), (28) leads to:

(32)

and

(33)

Then, the general solution to Eq. (21) is:

(34)

4. Experimental validation

4.1. Eigen frequencies of a cracked beam with composite strengthening

The 765 mm long steel beam with 3 notches is tested with 3 reinforcement configurations:
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• The 3 notches are bridged (Table 3)
• Only the extrem notches are bridged (Table 4)
• Only one extreme notch is bridged (Table 5) 

The experimental results are compared to those obtained by the model. The analytical modelin
into account the active length of the composite (Fig. 3). The results point out the ability of the mo
predict the natural frequencies of the beam with less than 2% of error for the five first bending m

4.2. Shear stress mode shapes inside the resin joint

The experimentally validated analytical modeling (§ 4.1), is then used to determine the shea
mode shapes inside the resin joint on the third beam element associated with the beam with 3 
and CFRP on the central one. For this element, the axial coordinate x3 varies from 0 up to 0.191 m.

The shear stress τ (x3) calculation involves Eqs. (14) to (34) with all the parameters needed obta
from analytical modeling. Once the shear stress is computed along the span, the stress mode
normalized by dividing τ (x3) by τ (0). The evolution of τ (x3), for the three first uneven bending mode
(Figs. 6, 7 and 8), is compared to this of the relative variations of the eigen frequency (∆ fi / fi ) presented

Table 3 Natural frequencies (Hz). CFRP on all notches

Mode number Experiment Model Error (%)

1 293 291 0.7
2 835 833 0.3
3 1479 1471 0.5
4 2895 2920 0.9
5 4010 3969 1.0

Table 4 Natural frequencies (Hz). CFRP on the central and one extremal notches

Mode number Experiment Model Error (%)

1 286 286 0.0
2 779 784 0.7
3 1406 1410 0.3
4 2876 2904 1.0
5 3974 3964 0.3

Table 5 Natural frequencies (Hz). CFRP on the central notch

Mode number Experiment Model Error (%)

1 281 280 0.1
2 741 743 0.3
3 1341 1343 0.1
4 2845 2886 1.5
5 3951 3959 0.2
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in (Fig. 3). When ∆fi / fi (x3) is null, it means that x3
 is higher than the active length or, as can be seen

higher modes, the curvature of the element helps the composite to be anchored on the beam 
and (8).

The mode shapes are needed to point out the influence of the curvature of the beam elemen
evolution of shear stress.

The results concerning τ (x3) show that the shear stress sharply decreases from the tip of the 
element up to a point that corresponds to the half of the active length. An approximately 20 mm
active length can be observed in (Figs. 6, 7 and 8). These results are in agreement with expe
results concerning the frequency drop obtained when the composite is progressively cut up aro
notch. The shear stress is influence by the beam element curvature. This is clearly shown on Fig
x3 = 0.11 m, τ (x3) reverses sign, as the transverse displacement v(x3) is quasi maximum and in the sam
time, θ (x3) reverses sign (the small gap is due to the presence of the notch that disturb the she
along the beam element). When τ (x3) is null, the composite is anchored. So in Fig. 8, the compo
between x3 = 0.11 m and x3 = 0.191 m is anchored and is not disturbed by the notch and is indepe
from the composite located between x3 = 0 m and x3 = 0.11 m and acts as a composite bonded on
uncracked beam. Then, τ (x3) is maximal when v(x3) is null. As shown in (§ 2.3) this portion o
composite has no significant influence on the frequency of the beam and then the frequency drop
neglected when the composite of this zone is cut up (Fig. 8). In that zone, the remaining shear 
only due to the beam element curvature.

Fig. 6 First shear stress mode shape, mode shape, frequency drop
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5. Discussion

The primary parameter associated with the influence of the composite strengthening is the
length. This parameter is greatly influenced by the resin joint thickness e. Fig. 9 presents the evolution
of τ (x3) for various values of resin joint thicknesses and for the first mode. When e increases, the active
length of the composite increases too and the frequency decreases. Then in order to study the i
of e on a given mode, an iterative calculation is needed. First, the active length is evaluated
frequency f1 of 291 Hz (Table 3), then it is used to compute a new frequency f1’. Then, a new active
length is computed for a frequency of f1’ and so on. The results convergence is obtained with f
iterations for a precision of 0.1 Hz.

Fig. 9 shows that the composite active length is doubled when the thickness of the resi
increases in the range of 0.8 e−4 m to 3 e−4 m, corresponding to the practical values that can be obser

6. Conclusions

The first step of this study has shown that a carbon epoxy external strengthening can signif
influence the modal scheme of a cracked beam. The longitudinal stiffness of the composite inte
so as to limit the relative displacements of the crack lips, resulting in an enhancement of the stiff

Fig. 7 Third shear stress mode shape, mode shape, frequency drop
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. This
and can
the cracked section. This effect, called crack bridging, implies an active length of the composite
parameter derives from the transfer mechanism of the bridging force on both sides of the crack 

Fig. 8 Fifth shear stress mode shape, mode shape, frequency drop

Fig. 9 Influence of the resin joint thickness on the composite active length
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be experimentally evaluated by the procedure described in this paper. Furthermore, the low mas
composite material does not modify the mass terms of the problem and the influence of the com
can be consequently neglected outside the vicinity of the cracks.

As a consequence, a cracked beam with composite strengthening can be modeled by an ass
beam elements with interconnecting conditions described in Ovigne, Massenzio, Jacquelin, H
(2002) in which active length of the composite is taken into account. Then, a modal extens
Täljstens model is proposed in order to compute shear stress mode shapes of the resin. The str
shapes are used to evaluate the active length of the composite.

Finally, the analytical model is experimentally validated under specific specimens allowin
control of both the leading assumptions of the modeling and of the crack geometries. The valida
a steel beam with three notches for various strengthening configurations showed good agr
between the experimental natural frequencies and the experimental ones (2% error). The an
evaluation of the composite active length based on shear stress mode shapes determination
good agreement with the experimental value obtained from the procedure developed.

The prediction of the eigen frequencies of cracked reinforced concrete beams with comsite
strengthening will be undertaken soon.
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Notation

A Beam cross sectional area
Aj

k Coefficients associated with v (x)
a, ak Notch length, notch length of the kth notch
Bj

k Coefficients associated with θ (x)
b Beam width
Cij Flexibility matrix term
Cj

k Coefficients associated with P
e Thickness of the resin joint
E, Ecompo Young modulus and longitudinal Young modulus of composite
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fi Natural frequency associated with the mode i
G Shear modulus
h Beam height
I Beam inertia
KIM , KIP Strain intensity factor associated with M and to P for the first opening mode
KIIP Strain intensity factor associated with P for the second opening mode
k Shear factor
khinge

θ , krepair
θ Rotation stiffness of the elastic hinge, external strengthening rotation stiffness

krepair External longitudinal stiffness
Lactive Composite active length
M Bending moment
m Mass
P Shear force
Pi Generalized force P1= M and P2 = P
pj Wave number
Scompo Composite cross sectional area
t Time
v(x), v(x, t) Transverse displacement amplitude and transverse displacement
Wnotch Strain energy associated with a notch
xk Axial coordinate associated with the kth beam element
β Shear rotation
θ (x), θ (x, t) Global rotation amplitude and global rotation
ν Poisson ratio
ω Natural angular frequency
ζ Non-dimensional parameter associated with a

CC
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