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1. Introduction 

 

Fiber reinforced composite materials have increasingly 

used to improve the structural efficiency in many 

engineering fields. Composite plates have been widely used 

in various industries such as spacecraft, marine, and 

automobiles because of their advantages of weight and 

mechanical properties with a comparison to the metallic 

structures. Various types of failure and damage may occur 

in these structures that have been extensively studied in 

recent decades (Jin and Batra 1999, Tornabene et al. 2018, 

Kamareh et al. 2018). Due to the variety of their 

applications, composite plates are subjected to different 

loading conditions. In this paper, the composite laminated 

plates are considered to be under in-plane compressive 

loads and lateral pressure loads.  In this situation, 

buckling, post-buckling and nonlinear phenomena for these 

structures should also be discussed. Therefore, the main 

subject of this paper is the evaluation of the ultimate 

strength and damage prediction of composite plates under 

combined in-plane compressive loads and lateral pressure 

loads. 

Before starting the research, it is necessary to give a 

brief overview of past research. A lot of research has been 
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done on static, buckling, post-buckling and geometric 

nonlinear analyses of plates and plate structures. Static 

analysis of inter-laminar stresses and free edge effects in a 

laminated composite beam resting on the Winkler-type 

elastic foundation has been discussed by Afshin and Taheri-

Behrooz (2015) using Reddy’s layerwise theory. In the 

research published by Argyris and Tenek (1997), complete 

reviews on studies of buckling and post-buckling of 

structures by different methods have been reported. Batra 

and Xiao (2013) studied the post-buckling and delamination 

analyses of straight and curved laminated beams using a 

layer-wise third order theory incorporating a cohesive zone 

model. The applicability of a new extended layerwise 

approach for thermal buckling load optimization of 

laminated plates has been investigated by Topal (2013). 

Patel (2014) studied nonlinear bending of composite 

stiffened plates subjected to uniform transverse loading. 

Dynamic behavior of FGM plates with different edge 

boundary condition has been discussed by Chakraverty and 

Pradhan (2014). Paik et al. (2015) investigated the 

localization of buckling modes in plates and laminates using 

Mindlin plate theory and the finite element method. Becheri 

et al. (2016) investigated the buckling of symmetrically 

composite plates due to nth-order shear deformation theory 

with curvature effect by an exact analytical solution. 

Buckling and post-buckling thermo-mechanical 

deformations of an FGM Timoshenko beam are also 

investigated by Sun et al. (2016).  In another study, Jiang 
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et al. (2018) investigated thermal effects on the buckling, 

post-buckling and nonlinear vibration behaviors of 

composite laminated trapezoidal plates. In recent years, 

many studies have been conducted on laminated composite 

arbitrarily shaped plates. For example, Fantuzzi and 

Tornabene (2016) developed a strong form collocation 

method for solving laminated composite plates wherein 

discontinuities arise. They used the Differential Quadrature 

(DQ) method for solving the mathematical problem and 

isogeometric mapping was implemented for the nonlinear 

mapping of complex shapes. In another similar research, 

Fantuzzi et al. (2018) developed the strong formulation 

finite element method and the weak form was solved using 

commercial fin2ite element packages based on the domain 

decomposition technique according to geometric 

discontinuities. 

The finite element method (FEM) is although one of the 

most practical and commonly used methods for analyzing 

the buckling and post-buckling behaviors of plates, it 

requires a large number of degrees of freedom to obtain 

acceptable results and therefore extremely large data and 

computer core is needed. Zhang and Yang (2009) presented 

recent developments in finite element analysis for laminated 

composite plates. As an alternative method for analyzing 

the buckling and post-buckling of composite plates and 

plate structures, the finite strip method (FSM) may be used 

which is based on the discretization of the domain into 

longitudinal strips. Buckling and post-buckling of relatively 

thick and symmetrically cross-ply laminates using exact 

finite strip method have been investigated by Ghannadpour 

et al. (2014). The post-buckling behavior of functionally 

graded plates in thermal environments using semi-analytical 

finite strip method has also studied by Ovesy et al. (2015). 

The post-buckling response and nonlinear behavior of 

imperfect composite plates, when subjected to progressive 

end-shortening has been predicted by Ovesy et al. (2005) 

using two different versions of the finite strip method. 

Ghannadpour and Ovesy (2009a) analyzed the buckling of 

laminated composite plates and prismatic plate structures 

using exact finite strip method. They have also studied the 

buckling and initial post-buckling analyzes of channel 

section and Box section struts using an exact finite strip 

(Ghannadpour and Ovesy 2009b, Ovesy and Ghannadpour 

2011). It can be seen in the literature that other numerical 

and computational techniques have also been used for 

buckling and post-buckling analyzes of plate structures. 

One of the most commonly used methods is the meshless or 

mesh-free methods. Naghsh et al. (2018) focused on 

analyzing the thermal buckling point-supported thin 

laminated composite plates by the element-free Galerkin 

method. Recently, Vu et al. (2018) have presented a novel 

mesh-free method for investigating the buckling, bending 

and free vibration behavior of FGM plates. Ghannadpour 

and Kiani (2018) investigated the post-buckling and 

geometrically nonlinear behaviors of imperfect functionally 

graded plates using spectral collocation method. More 

recently, Ghannadpour and Mehrparvar have investigated 

the post-buckling and nonlinear behaviors of relatively 

thick composite and functionally graded plates containing 

elliptical and rectangular cutouts using two new 

computational approaches (Ghannadpour and Mehrparvar 

2018, Mehrparvar and Ghannadpour 2018).  

In all previously mentioned works, linear and nonlinear 

behaviors of composite plates have been investigated 

without considering the effects of damage and failure. Since 

the main purpose of this study is to examine both analyzes 

of geometric nonlinearity and progressive damage of 

composite plates, therefore it is also necessary to give a 

brief review about fracture, damage and ultimate strength of 

composite plates. It should be noted that the ultimate 

strength analyzes of composite plates are usually conducted 

by the finite element method. A brief review of studies of 

fracture and damage of composite laminates can be found in 

the paper published by Vedrtnam and Pawar (2017). 

Progressive damage modeling of open-hole composite 

laminates has been investigated by Su et al. (2015). They 

have used the finite element method and for failure analysis, 

the quadratic Hashin failure criteria have been used. In 

another finite element research work, Muthusamy and 

Sivakumar (2014) have predicted the onset and the 

progression of damage in the continuous fiber reinforced 

composite laminates taking into consideration the different 

mechanical behavior of the constituents in the composites 

under different loading conditions. Aghaei et al. (2015) 

investigated damage analysis of composite beams subjected 

to low velocity impact by different failure criteria 

implemented in ABAQUS software. A finite-element model 

for composite beams with partially delaminated layers has 

been used by Mahieddinet et al. (2015) to investigate their 

behavior. In their formulation account was taken of lateral 

strains and the first-order shear deformation theory was 

used. 

It should be noted that if a damage research was carried 

out by the finite element method, it is a very complex and 

high time-consuming procedure. Simplified and reliable 

methods for such analyzes are required that could easily and 

quickly be used to estimate the ultimate strength of 

composite plates. Tornabene et al. (2017) proposed a 

mathematical scheme to model a damaged mechanical 

configuration for laminated plates and shells. Their 

theoretical framework for the two-dimensional shell model 

was based on a unified formulation able to study and 

compare several Higher-order Shear Deformation Theories 

(HSDTs). To analyze the buckling and ultimate strength of 

metal plates with and without stiffener, a group of 

simplified methods has been developed by Brubak et al. 

(2007) and by Brubak and Hellesland (2007a, 2007b, 2008). 

Recently, analysis of ultimate strength of imperfect 

composite plates has been carried out by Hayman et al. 

(2011). This study includes simply supported square 

laminated composite plates under in-plane loads that their 

results were validated with finite element analysis. The 

calculation of the first ply failure load and ultimate strength 

of imperfect simply-supported composite plates under in-

plane compressive load and with the assumptions of small 

deflection theory have been done by Yang et al. (2013). 

They have used the well-known Ritz method based on the 

first order shear deformation theory. The degradation model 

in their analysis was instantaneous material degradation that 

applied in complete ply or region of failed ply. A similar 
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study but with the assumptions of large deflection theory 

has also been reported by Yang and Hayman (2015a). In 

their recent research (2015a), they have also investigated 

the ultimate strength and geometric nonlinear behavior of 

imperfect simply-supported composite plates with linear 

material degradation model. More recently, Ghannadpour 

and Shakeri (2018) presented energy based collocation 

method to progressive damage analysis of composite plates 

under compressive loads. In their analysis, nonlinear terms 

in the strain-displacement relations were neglected. In the 

latest research, Ghannadpour et al. (2018) studied the 

geometric nonlinear and progressive damage behavior of 

relatively thick and simply supported composite plates 

subjected to end-shortening and uniform and sinusoidal 

lateral pressure loads using Ritz approach. 

With the above descriptions, in this paper, ultimate 

strength, post-buckling and geometric nonlinear analyzes of 

composite plates have been investigated using two different 

numerical methods. The plates are considered to be 

subjected to both in-plane compressive and lateral pressure 

loads. Moderately thick laminates have been analyzed and 

therefore first order shear deformation plate theory is 

considered with the assumptions of large deflections. The 

square plates with all simply-supported edges and also 

plates with some clamped edges are considered in this 

study. The in-plane boundary conditions are chosen in such 

a way that all four edges of the plates are kept straight. As 

mentioned before, two different numerical methods, called 

Rayleigh-Ritz and collocation are introduced to estimate the 

ultimate strength of composite plates. The formulations of 

two methods are based on the concept of the principle of 

minimum potential energy and Newton–Raphson technique 

will be used to solve the obtained system of nonlinear 

algebraic equations. In the Rayleigh-Ritz method, two 

degradation models have been used with material 

degradation either applied to the entire failed ply that is 

called complete degradation model (CDM) or to the 

affected regions of a failed ply called region degradation 

model (RDM). In the second method, a new energy based 

collocation technique is introduced in which the domain of 

the plate is discretized into the Legendre-Gauss-Lobatto 

points. In this method, in addition to the two previous 

models (i.e. CDM and RDM), the new model named node 

degradation model (NDM) will also be used in which the 

material properties of the area just around the failed node 

are reduced. To predict the failure location in both methods, 

Hashin failure criteria have been used and the 

corresponding material properties of the failed zone are 

reduced instantaneously. 
 

 

2. Theoretical development 
 

2.1 Basic formulations 
 

A rectangular laminated plate of dimensions of 𝑎 × 𝑏 

and the total thickness ℎ is considered. The origin of the 

coordinate is assumed to be located at the center of the 

plate. The laminate is considered to be subjected to in-plane 

compressive loads on the edge 𝑥 = 𝑎 2  along the x-

direction called 𝑁𝑥  and uniform lateral pressure loads on 

the plate along the z-direction. Two different types of 

boundary conditions are considered that they will be 

presented in details in the next section. The laminates are 

assumed to be moderately thick, thus theoretical 

formulations are based on the first order shear deformation 

theory (FSDT). With that, the displacements in the plate can 

be described by the following relations줌 
 

𝑑𝑥 𝑥, 𝑦, 𝑧 = 𝑢 𝑥, 𝑦 + 𝑧𝜑𝑥  (1a) 

 

𝑑𝑦 𝑥, 𝑦, 𝑧 = 𝑣 𝑥, 𝑦 + 𝑧𝜑𝑦  (1b) 

 

𝑑𝑧 𝑥, 𝑦, 𝑧 = 𝑤 𝑥, 𝑦  (1c) 
 

Where  𝑢, 𝑣, 𝑤  are displacements of mid-plane, and 

𝜑𝑥  and 𝜑𝑦  denote the rotations of a transverse normal 

about axes parallel to the y and x axes, respectively. 

Therefore, the deformation of a laminated plate is expressed 

by 

𝕕 = 𝒖 + z𝝑 (2) 
 

Where 𝕕 =  𝑑𝑥 𝑑𝑦 𝑑𝑧 𝑇 is called the displacement 

vector and 𝒖 =  𝑢 𝑣 𝑤 𝑇  and  𝝑 =  𝜑𝑥 𝜑𝑦 0 𝑇  are 

mid-plane displacement and rotation vectors, respectively.  

The vector of strains 𝒆  with the assumptions of 

moderately large displacements is written as 
 

𝒆 =  ℯ𝑥𝑥 ℯ𝑦𝑦 ℯ𝑥𝑦 ℯ𝑥𝑧 ℯ𝑦𝑧 ℯ𝑧𝑧  𝑇 =  
𝒆𝑝

𝒆𝑛
  (3) 

 

Where 𝒆𝑝  and 𝒆𝑛  denote the in-plane and out-of-

plane components vectors with subscripts 𝑝  and  𝑛 , 

respectively. By considering the geometric nonlinearity, the 

strain-displacement relations can be given as 
 

𝒆𝑝 = 𝓓𝑝𝒖 +
1

2
 𝓓𝑝 ⊗ 𝑤 𝓓𝑛𝒖 + 𝑧 𝓓𝑝  𝝑 

      = 𝜺𝑝 + 𝜺𝑛𝑙 + 𝑧𝜿 = 𝜺0 + 𝑧𝜿 
(4a) 

 

𝒆𝑛 = 𝓓𝑛𝒖 + 𝝑 = 𝜸 (4b) 
 

Where ⊗ denotes the Kronecker product. Also Eqs. (4) 

define the plate strain vectors that are the in-plane strains 

vector 𝜺0, the curvatures vector 𝜿, and the shear strains 

vector 𝜸. In writing the above equations, two operators  

𝓓𝑝  and 𝓓𝑛  have been used which are defined as follows 
 

𝓓𝑝 =

 
 
 
 
 
 
 
𝜕

𝜕𝑥
0 0

0
𝜕

𝜕𝑦
0

𝜕

𝜕𝑦

𝜕

𝜕𝑥
0
 
 
 
 
 
 
 

 ;       𝓓𝑛 =

 
 
 
 
 0 0

𝜕

𝜕𝑥

0 0
𝜕

𝜕𝑦
0 0 0  

 
 
 
 

   (5) 

 

To describe the mechanical state, the stress vector 𝝈 is 

defined as 
 

𝝈 =  𝜎𝑥𝑥 𝜎𝑦𝑦 𝜎𝑥𝑦 𝜎𝑥𝑧 𝜎𝑦𝑧 𝜎𝑧𝑧  𝑇 =  
𝝈𝑝

𝝈𝑛
  (6) 

 

The constitutive equations for the oriented kth 

orthotropic ply of the laminate with the assumption that the 
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plate is in a state of plane stress (𝜎𝑧𝑧 = 0) are 
 

𝝈𝑝
 𝑘 

= 𝑸 𝑝
 𝑘 

𝓮𝑝 ;   𝑸 𝑝
 𝑘 

=  

𝑄 11 𝑄 12 𝑄 16

𝑄 12 𝑄 22 𝑄 26

𝑄 16 𝑄 26 𝑄 66

 

(𝑘)

 (7a) 

 

𝝈𝑛
(𝑘)

= 𝑸 𝑛
(𝑘)

𝓮𝑛 ;   𝑸 𝑛
 𝑘 

=  
𝑄 55 𝑄 45 0

𝑄 45 𝑄 44 0
0 0 0

 

 𝑘 

 (7b) 

 

The internal forces and moments which are measured 

per unit length are including, the in-plane stress resultants 

𝑵 , the moment resultants  𝑴  and the transverse force 

resultants 𝑻 and they can be obtained by 
 

 
𝑵
𝑴
𝑻

 =  

𝑨𝑝 𝑩 0

𝑩 𝑫 0
0 0 𝑨𝑛

  

𝜺0

𝜿
𝜸

 = 𝑺𝜺 (8) 

 

In which 𝑨𝑝 , 𝑩, 𝑫,and 𝑨𝑛  are the generalized stiffness 

matrices, which are extensional stiffness matrix, 

extensional-bending stiffness matrix, bending stiffness and 

interlaminar shear stiffness matrices, respectively. They can 

be computed by the following equations. 
 

 𝑨𝑝 , 𝑩, 𝑫 =   𝑸 𝑝
 𝑘  1, 𝑧, 𝑧2 

ℎ𝑘

ℎ𝑘−1

𝑁ℓ

𝑘=1

𝑑𝑧 (9a) 

 

𝑨𝑛 = 𝐾   𝑸 𝑛
 𝑘 

ℎ𝑘

ℎ𝑘−1

𝑁ℓ

𝑘=1

𝑑𝑧 (9b) 

 

Where 𝐾  is the shear correction factor. The total 

potential energy Π for a laminated plate is consists of the 

strain energy of the plate 𝒰  and potential energy of 

external forces 𝒱. The strain energy of the plate 𝒰 can be 

obtained by the following relation. 
 

𝒰 =
1

2
 𝝈𝑇𝒆 𝑑𝑉

 

𝑉

=
1

2
  𝝈𝑇𝒆 𝑑𝑧𝑑Ω

 

𝑧

 

Ω

 

     =
1

2
 𝜺𝑇𝑺𝜺 𝑑Ω

 

Ω

 

(10) 

 

Where Ω is the domain occupied by the plate mid-

plane. Since in the current study, the laminates are subjected 

to in-plane compressive loads and also uniform lateral 

pressure load, the potential energy of external forces and 

loads can be computed by introducing the external force 

vector 𝓕 =  𝑁𝑥 𝑁𝑦 𝑁𝑥𝑦  𝑇  and also pressure vector 

𝓟 =  0 0 𝑃0 𝑇 .  Parameter 𝑃0  denote the uniform 

pressure value that is applied to the whole plate in the 𝑧-

direction. Therefore, the potential energy of external forces 

𝒱 and finally the total potential energy of a laminate can be 

obtained by 
 

𝒱 = −   𝜺𝑝
𝑇𝓕 − 𝒖𝑇𝓟  𝑑Ω

 

Ω

 (11a) 

 

Π = 𝒰 + 𝒱  (11b) 

By using Eqs. (4)-(9)-(10) and (11), the total potential 

energy Π can finally be written as follows 
 

Π =
1

2
  𝜺0

𝑇𝑨𝑝𝜺0 + 𝜺0
𝑇𝑩𝜿 + 𝜿𝑇𝑩𝜺0

 
 

Ω

 

                +𝜿𝑇𝑫𝜿 + 𝜸𝑇𝑨𝑛𝜸 − 2𝜺𝑝
𝑇𝓕  +2𝒖𝑇𝓟  𝑑Ω 

(12) 

 

2.2 Boundary conditions 
 

In order to calculate the total potential energy of a 

laminate, it is required to approximate the displacement 

fields of the problem. In order to approximate the 

displacement functions, it is necessary to describe the 

essential boundary conditions. Two different types of 

boundary conditions are considered in this study; the square 

plates with simply supported on all edges (type A) and the 

square plates with clamped edges in the 𝑦-direction and 

simply supported edges in the 𝑥-direction (type B). The 

plate is assumed to be under in-plane compressive loads on 

the edge 𝑥 = 𝑎 2  along the 𝑥-direction and as mentioned 

earlier it is subjected to lateral pressure loads on the plate 

along the 𝑧-direction. 

For in-plane boundary conditions, all edges of the plate 

are kept straight for any in-plane movement and therefore 

𝑢𝑐  and 𝑣𝑐  which are shown in Fig. 1 are for satisfying 

these straight conditions. As it can be seen, the labelling 

schemes are included in these figures to assign the related 

boundary conditions. The letter S refers to simply supported 

boundary condition and the letter C refers to clamped 

boundary condition on the specified edge. Therefore, based 

on mentioned conditions, the two aforementioned boundary 

conditions are different from the viewpoint of out-of-plane 

boundary conditions. 

Since the problem-solving technique in this study is 

based on minimizing the total potential energy functional, 

the approximated displacement fields have to satisfy only 

the essential boundary conditions. 
 

 

3. Equilibrium equations and solution procedure 
in Rayleigh-Ritz method 
 

In the Rayleigh-Ritz method employed in this research, 

the displacement fields of the problem are approximated by 

harmonic functions. Given the boundary conditions in the 

previous section, the required displacement fields for type A 

boundary conditions are 
 

𝜑𝑥 𝑥 , 𝑦  =   𝑅𝑖𝑗
𝜑𝑥 cos  𝑖𝜋

 𝑥 + 1 

2
 

𝑁𝑡
𝑅

𝑗 =1

𝑁𝑡
𝑅

𝑖=1

sin  𝑗𝜋
 𝑦 + 1 

2
  

(13a) 

 

𝜑𝑦 𝑥 , 𝑦  

=   𝑅
𝑖𝑗

𝜑𝑦 sin  𝑖𝜋
 𝑥 + 1 

2
 

𝑁𝑡
𝑅

𝑗 =1

𝑁𝑡
𝑅

𝑖=1

cos  𝑗𝜋
 𝑦 + 1 

2
  

(13b) 

 

𝑤 𝑥 , 𝑦  

=   𝑅𝑖𝑗
𝑤 sin  𝑖𝜋

 𝑥 + 1 

2
 

𝑁𝑡
𝑅

𝑗 =1

𝑁𝑡
𝑅

𝑖=1

sin  𝑗𝜋
 𝑦 + 1 

2
  

(13c) 
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𝑢 𝑥 , 𝑦  

=   𝑅𝑖𝑗
𝑢 sin  𝑖𝜋

 𝑥 + 1 

2
 

𝑁𝑡
𝑅

𝑗 =1

𝑁𝑡
𝑅

𝑖=1

sin  𝑗𝜋
 𝑦 + 1 

2
    

+
𝑢𝑐 𝑥 + 1 

2
 

(13d) 

 

𝑣 𝑥 , 𝑦  

=   𝑅𝑖𝑗
𝑣 sin  𝑖𝜋

 𝑥 + 1 

2
 

𝑁𝑡
𝑅

𝑗 =1

𝑁𝑡
𝑅

𝑖=1

sin  𝑗𝜋
 𝑦 + 1 

2
 

+
𝑣𝑐 𝑦 + 1 

2
 

(13e) 

 

For type B, all displacement fields are similar to type A 

except the displacement fields 𝜑𝑦  and 𝑤  that can be 

defined as 
 

𝜑𝑦 𝑥 , 𝑦  

=   𝑅
𝑖𝑗

𝜑𝑦 sin  𝑖𝜋
 𝑥 + 1 

2
 

𝑁𝑡
𝑅

𝑗 =1

𝑁𝑡
𝑅

𝑖=1

sin  𝑗𝜋
 𝑦 + 1 

2
  

(13f) 

 

𝑤 𝑥 , 𝑦  

=   𝑅𝑖𝑗
𝑤 sin  𝑖𝜋

 𝑥 + 1 

2
 

𝑁𝑡
𝑅

𝑗 =1

𝑁𝑡
𝑅

𝑖=1

sin2  𝑗𝜋
 𝑦 + 1 

2
  

(13g) 

 

Where 𝑥  and 𝑦  are non-dimensional coordinates 

defined as 2𝑥/𝑎 and 2𝑦/𝑏, respectively and 𝑁𝑡
𝑅  is the 

number of terms in the series expansion which is taken 

same for all displacement fields. The coefficients 𝑢𝑐 , 𝑣𝑐  

and 𝑅𝑖𝑗
𝜏  where 𝜏 ∈  𝑢, 𝑣, 𝑤, 𝜑𝑥 , 𝜑𝑦  are unknowns of the 

problem in the Rayleigh-Ritz method that should be found, 

and parameters 𝑖  and 𝑗 are positive integers. The 

coefficients 𝑢𝑐 , 𝑣𝑐  are for satisfying the straight conditions 

mentioned in Fig. 1 for in-plane displacements  𝑢, 𝑣 . 

The total potential energy can ultimately be rewritten in 

a matrix form by using the Hessian technique. 

 

 

Π = −𝒅𝑇𝑽𝐹 +
1

2
𝒅𝑇𝑲0𝒅 +

1

6
𝒅𝑇𝑲1 𝒅 𝒅 

+
1

12
𝒅𝑇𝑲2 𝒅 𝒅 

(14) 

 

Where 𝑽𝐹 is a column matrix of constants including 

the effects of applied loads. The column matrix 𝒅 contains 

the unknown of the problems. Subscript 0 is for symmetric 

square stiffness matrices whose coefficients are constant 

whilst subscript 1 and 2 are for matrices with linear and 

quadratic functions of the unknowns, respectively. The 

unknown coefficients of the problem are found by solving 

the nonlinear equilibrium equations which can be obtained 

by the application of the principle of minimum potential 

energy as 
 

𝑭 𝒅 = −𝑽𝐹 +  𝑲0 +
1

2
𝑲1 𝒅 +

1

3
𝑲2 𝒅  𝒅 = 𝟎 (15) 

 

To solve the above nonlinear algebraic equations, the 

well-known Newton–Raphson technique is used. To do that, 

a vector 𝒅𝒊 is assumed as an approximate trial solution at a 

particular force 𝑁and load 𝑃0 . 𝑭 𝒅𝒊  indicates the error 

equations for the approximation. By applying the Newton-

Raphson process, an improved solution 𝒅𝒊+𝟏 is found by 

equating to zero the curtailed Taylor’s expansion of 

𝑭 𝒅𝒊+𝟏  in the neighbourhood of 𝒅𝒊 as 
 

𝑭 𝒅𝒊+𝟏 ≃ 𝑭 𝒅𝒊 +
𝜕𝑭 𝒅𝒊 

𝜕𝒅𝒊

 𝒅𝒊+𝟏 − 𝒅𝒊 = 0 

𝑭 𝒅𝒊 +  𝑲0 + 𝑲1 𝒅𝒊 + 𝑲2 𝒅𝒊   𝒅𝒊+𝟏 − 𝒅𝒊  

= 0 

(16) 

 

In order to obtain the accurate results, the relevant 

convergence criteria are defined based on both the vector 

containing the unknown coefficients (𝒅) and all equations 

containing these coefficients i.e., 𝑭(𝒅) . The iterative 

procedure is repeated until the following conditions 

including convergence of the solution vector and 

satisfaction of the equations are satisfied concurrently. 
 

 

  

(a) (b) 

Fig. 1 Boundary conditions type A (a) and type B (b) 
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 ∆𝒅𝑟 

 𝒅𝑟+1 
< 5 × 10−5 

 𝑭(𝒅𝑟) < 5 × 10−5 

(17) 

 

where 𝑟  is the iteration counter in Newton-Raphson 

technique and  .   denotes the 2-norm. 
 

 

4. Equilibrium equations and solution procedure 
in collocation method 
 

In the collocation method, the approximation of 

displacement fields is performed by Legendre basis 

functions  𝑃  which is one of the most powerful 

mathematical series for numerical methods. Legendre basis 

functions or Legendre polynomials are solutions to the 

following Legendre differential equation 

 
𝑑

𝑑𝑥
  1 − 𝑥2 

𝑑

𝑑𝑥
𝑃𝑛(𝑥) + 𝑛 𝑛 + 1 𝑃𝑛 𝑥 = 0 (18) 

 

Also, Legendre polynomials satisfy the three-term 

recursion as 
 

𝑃𝑛+1 𝑥 =
2𝑛 + 1

𝑛 + 1
𝑥𝑃𝑛 𝑥 −

𝑛

𝑛 + 1
𝑃𝑛−1 𝑥  (19) 

 

Where 𝑃0 𝑥 = 1  and 𝑃1 𝑥 = 𝑥 . Therefore, the 

displacement fields of the problem can be approximated by 

the following relations. 
 

𝜏  𝑥 , 𝑦  = 𝔹𝜏 𝑥 , 𝑦    𝐶𝑖𝑗
𝜏 𝑃𝑖−1 𝑥  𝑃𝑗−1 𝑦  

𝑁𝑡
𝐶

𝑗 =1

𝑁𝑡
𝐶

𝑖=1

 

                   +𝑓𝜏 𝑥 , 𝑦  𝐶𝑐
𝜏 = 𝓣𝜏

𝑇𝓒𝜏  

(20) 

 

Where 𝜏 ∈  𝑢, 𝑣, 𝑤, 𝜑𝑥 , 𝜑𝑦  is a displacement field and 

𝑁𝑡
𝐶  is the number of terms in the series expansion which is 

taken same for all displacement fields as before method. 

The coefficients 𝐶𝑖𝑗
𝜏  and 𝐶𝑐

𝜏  (i.e., 𝐶𝑐
𝑢 ≡ 𝑢𝑐  and 𝐶𝑐

𝑣 ≡ 𝑣𝑐) 

are the unknown coefficients in the collocation method and 

function 𝑓𝜏 𝑥 , 𝑦   is defined as below 
 

𝑓𝜏 𝑥 , 𝑦   =  
 1 + 𝑥  2 
 1 + 𝑦  2 

0

for 𝜏 ≡ 𝑢
for 𝜏 ≡ 𝑣

∀ 𝜏 ∈  𝑤, 𝜑𝑥 , 𝜑𝑦  

  (21) 

 

The so-called boundary function 𝔹𝜏 𝑥 , 𝑦   is also 

chosen to ensure the fulfillment of the essential boundary 

conditions mentioned in Fig. 1. It can be defined as 
 

𝔹𝜏 𝑥 , 𝑦   

=   1 +  −1 𝛽−1𝑥  
𝜇𝛽

𝜏
 

𝛽=1,2

  1 +  −1 𝛽−1𝑦  
𝜇𝛽

𝜏
 

𝛽=3,4

 (22) 

 

Where 𝛽 denotes the edge number and the exponents 

𝜇𝛽
𝜏  can take the value 0 for free condition and the value 1 

according to the conditions of held or straight for each 

displacement field 𝜏 ∈  𝑢, 𝑣, 𝑤, 𝜑𝑥 , 𝜑𝑦 . As can be seen in 

the right-hand side of Eq. (20), each displacement field 

𝜏 ∈  𝑢, 𝑣, 𝑤, 𝜑𝑥 , 𝜑𝑦  can be written as the product of a row 

vector 𝓣𝜏
𝑇 containing the Legendre and boundary functions 

and a column vector 𝓒𝜏  containing the corresponding 

unknown collocation coefficients. 

As mentioned before, the equilibrium equations are 

obtained based on the concept of the principle of minimum 

potential energy. Therefore, the elements in Eq. (12) should 

be written as described here. For this purpose, the vectors 

𝒖 and 𝝑 can be rewritten in the compact matricial form 
 

𝒖 =  

𝓣𝑢
𝑇 0 0

0 𝓣𝑣
𝑇 0

0 0 𝓣𝑤
𝑇

  

𝓒𝑢

𝓒𝑣

𝓒𝑤

 =  

𝚪𝑢

𝚪𝑣

𝚪𝑤

 𝑼𝒖 = 𝚪𝒖𝑼𝒖 (23a) 

 

𝝑 =  

𝓣𝜑𝑥
𝑇 0

0 𝓣𝜑𝑦
𝑇

0 0

  
𝓒𝜑𝑥

𝓒𝜑𝑦

 = 𝚪𝝑𝑼𝝑 (23b) 

 

Accordingly, the strain vectors defined in Eq. (4) can 

also be rewritten as 
 

𝜺𝑝 = ℬ𝑝𝒖𝑼𝒖 (24a) 
 

𝜿 = ℬ𝑝𝝑𝑼𝝑 (24b) 
 

𝜸 = ℬ𝑛𝒖𝑼𝒖 + ℬ𝝑𝑼𝝑 (24c) 
 

𝜺𝑛𝑙 =
1

2
ℬ𝑛𝑙𝒖𝑼𝒖 (24d) 

 

Where 
 

ℬ𝑝𝒖 = 𝓓𝑝𝚪𝒖 (25a) 
 

ℬ𝑝𝝑 = 𝓓𝑝  𝚪𝝑 (25b) 
 

ℬ𝝑 = 𝚪𝝑 (25c) 
 

ℬ𝑛𝒖 = 𝓓𝑛𝚪𝒖 (25d) 
 

ℬ𝑛𝑙𝒖 =  𝓓𝑝 ⊗ 𝚪𝑤𝑼𝒖 𝓓𝑛𝚪𝒖 (25e) 
 

And the total potential energy Π by using Eq. (24), can 

finally be written as 
 

Π =
1

2
  𝑼𝒖

𝑇 ℬ𝑝𝒖
𝑇 𝑨𝑝ℬ𝑝𝒖 + ℬ𝑛𝒖

𝑇 𝑨𝑛ℬ𝑛𝒖 𝑼𝒖  
 

Ω

 

        +𝑼𝒖
𝑇 ℬ𝑝𝒖

𝑇 𝑩ℬ𝑝𝝑 + ℬ𝑛𝒖
𝑇 𝑨𝑛ℬ𝝑 𝑼𝝑 

        +𝑼𝝑
𝑇 ℬ𝑝𝝑

𝑇 𝑩ℬ𝑝𝒖 + ℬ𝝑
𝑇𝑨𝑛ℬ𝑛𝒖 𝑼𝒖 

        +𝑼𝝑
𝑇 ℬ𝑝𝝑

𝑇 𝑫ℬ𝑝𝝑 + ℬ𝝑
𝑇𝑨𝑛ℬ𝝑 𝑼𝝑 

        +𝑼𝒖
𝑇  

1

2
ℬ𝑝𝒖

𝑇 𝑨𝑝ℬ𝑛𝑙𝒖 +
1

2
ℬ𝑛𝑙𝒖

𝑇 𝑨𝑝ℬ𝑝𝒖 𝑼𝒖 

        +𝑼𝒖
𝑇  

1

2
ℬ𝑛𝑙𝒖

𝑇 𝑩ℬ𝑝𝝑 𝑼𝝑 

        +𝑼𝝑
𝑇  

1

2
ℬ𝑝𝝑

𝑇 𝑩ℬ𝑛𝑙𝒖 𝑼𝒖 

        +𝑼𝒖
𝑇  

1

4
ℬ𝑛𝑙𝒖

𝑇 𝑨𝑝ℬ𝑛𝑙𝒖 𝑼𝒖 

        −2𝑼𝒖
𝑇ℬ𝑝𝒖

𝑇 𝓕  +2𝑼𝒖
𝑇ℬ𝒖

𝑇𝓟  𝑑Ω 

(26) 
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Where  ℬ𝑢
𝑇 = Γ𝑢 . As noted before, the domain is 

discretized by a set of nodes in the current study, therefore 

the above continuous integrals should be replaced by 

summations which can be calculated over all nodes. For this 

purpose, Legendre-Gauss-Lobatto nodes that can be 

obtained by solving the following equations are established 

here 

 
𝑥 𝜁  ∶    𝑃𝑚−1

′  𝑥 𝜁 = 0

𝑦 𝜂  ∶    𝑃𝑛−1
′  𝑦 𝜂 = 0

  (27) 

 

Where the parameters 𝑚 and 𝑛 denote the number of 

nodes in x and y directions, respectively and 𝑥 𝜁  and 𝑦 𝜂  

are non-dimensional coordinates of 𝜁th  and 𝜂th node in the 

x and y directions. Fig. 2 represents a scattered set of 

Legendre-Gauss-Lobatto nodes (𝑚 × 𝑛 = 13 × 13 ) in a 

typical domain Ω. 

In order to achieve better accuracy and also to avoid the 

excessive number of nodes to reduce computational costs, 

an appropriate weight coefficient can be considered for each 

node. Calculation of the weight coefficients for nodes is 

performed by taking the idea from Gauss-Lobatto rules and 

therefore, the continuous integral of total potential energy 

(i.e., Eq. (26)) after eliminating the constant factors is then 

converted to the following relation 
 

Π =   𝜛𝜁𝜔𝜂   𝑼𝒖
𝑇  ℬ𝑝𝒖

𝑇 𝑨𝑝
 𝜁 ,𝜂 

ℬ𝑝𝒖
   

𝑛

𝜂=1

𝑚

𝜁=1

 

        +ℬ𝑛𝒖
𝑇 𝑨𝑛

 𝜁 ,𝜂 
ℬ𝑛𝒖 𝑼𝒖 

       +𝑼𝒖
𝑇  ℬ𝑝𝒖

𝑇 𝑩 𝜁 ,𝜂 ℬ𝑝𝝑 + ℬ𝑛𝒖
𝑇 𝑨𝑛

 𝜁 ,𝜂 
ℬ𝝑 𝑼𝝑 

       +𝑼𝝑
𝑇  ℬ𝑝𝝑

𝑇 𝑩 𝜁 ,𝜂 ℬ𝑝𝒖 + ℬ𝝑
𝑇𝑨𝑛

 𝜁 ,𝜂 
ℬ𝑛𝒖 𝑼𝒖 

       +𝑼𝝑
𝑇  ℬ𝑝𝝑

𝑇 𝑫 𝜁 ,𝜂 ℬ𝑝𝝑 + ℬ𝝑
𝑇𝑨𝑛

 𝜁 ,𝜂 
ℬ𝝑 𝑼𝝑 

       +𝑼𝒖
𝑇  

1

2
ℬ𝑝𝒖

𝑇 𝑨𝑝
 𝜁 ,𝜂 

ℬ𝑛𝑙𝒖 +
1

2
ℬ𝑛𝑙𝒖

𝑇 𝑨𝑝
 𝜁 ,𝜂 

ℬ𝑝𝒖 𝑼𝒖 

       +𝑼𝒖
𝑇  

1

2
ℬ𝑛𝑙𝒖

𝑇 𝑩 𝜁 ,𝜂 ℬ𝑝𝝑 𝑼𝝑 

       +𝑼𝝑
𝑇  

1

2
ℬ𝑝𝝑

𝑇 𝑩 𝜁 ,𝜂 ℬ𝑛𝑙𝒖 𝑼𝒖 

       +𝑼𝒖
𝑇  

1

4
ℬ𝑛𝑙𝒖

𝑇 𝑨𝑝
 𝜁 ,𝜂 

ℬ𝑛𝑙𝒖 𝑼𝒖 

         −2𝑼𝒖
𝑇ℬ𝑝𝒖

𝑇 𝓕 + 2𝑼𝒖
𝑇ℬ𝒖

𝑇𝓟   
𝑥=𝑥𝜁

𝑦=𝑦𝜂
 

(28) 

 

Where  𝜁, 𝜂  indicates the 𝜁th node in the x-direction 

and 𝜂th node in the y-direction as represented in Fig. 2. The 

coefficients 𝜛𝜁  and 𝜔𝜂  are weight coefficients of nodes 

in the x and y directions, respectively and they can be 

computed by 

𝜛1 = 𝜛𝑚 =
2

𝑚 𝑚 − 1 
; 

𝜛𝜁 =
2

𝑚 𝑚 − 1  𝑃𝑚−1 𝑥 𝜁  
2 

(29a) 

 

𝜔1 = 𝜔𝑛 =
2

𝑛 𝑛 − 1 
; (29b) 

 

Fig. 2 Discretized plate model 

 

 

𝜔𝜂 =
2

𝑛 𝑛 − 1  𝑃𝑛−1 𝑦 𝜂  
2 (29b) 

 

To obtain the equilibrium equations of the problem 

using the principle of minimum potential energy, the 

discretized form of the total potential energy Eq. (28) 

should be minimized with respect to the unknown primary 

variables 𝑼𝒖 and 𝑼𝝑 (i.e., 𝜕Π 𝜕𝑼𝒖 = 0 and 𝜕Π 𝜕𝑼𝝑 =
0). Therefore, the final set of equilibrium equations can be 

written as 

 

   𝜛𝜁𝜔𝜂
  ℬ𝑝𝒖

𝑇 𝑨𝑝
 𝜁 ,𝜂 

ℬ𝑝𝒖 + ℬ𝑛𝒖
𝑇 𝑨𝑛

 𝜁 ,𝜂 
ℬ𝑛𝒖  

𝑥=𝑥𝜁

𝑦=𝑦𝜂

𝑛

𝜂=1

𝑚

𝜁=1

 𝑼𝒖 

+    𝜛𝜁𝜔𝜂
  ℬ𝑝𝒖

𝑇 𝑩 𝜁 ,𝜂 ℬ𝑝𝝑 + ℬ𝑛𝒖
𝑇 𝑨𝑛

 𝜁 ,𝜂 
ℬ𝝑  

𝑥=𝑥𝜁

𝑦=𝑦𝜂

𝑛

𝜂=1

𝑚

𝜁=1

 𝑼𝝑 

+    𝜛𝜁𝜔𝜂
  

3

4
ℬ𝑛𝑙𝒖

𝑇 𝑨𝑝
 𝜁 ,𝜂 

ℬ𝑝𝒖

𝑛

𝜂=1

𝑚

𝜁=1

+
3

4
ℬ𝑝𝒖

𝑇 𝑨𝑝
 𝜁 ,𝜂 

ℬ𝑛𝑙𝒖  
𝑥=𝑥𝜁

𝑦=𝑦𝜂

 𝑼𝒖 

+    𝜛𝜁𝜔𝜂
  ℬ𝑛𝑙𝒖

𝑇 𝑩 𝜁 ,𝜂 ℬ𝑝𝝑  
𝑥=𝑥𝜁

𝑦=𝑦𝜂

𝑛

𝜂=1

𝑚

𝜁=1

 𝑼𝝑 

+    𝜛𝜁𝜔𝜂
  

1

2
ℬ𝑛𝑙𝒖

𝑇 𝑨𝑝
 𝜁 ,𝜂 

ℬ𝑛𝑙𝒖  
𝑥=𝑥𝜁

𝑦=𝑦𝜂
𝑛

𝜂=1

𝑚

𝜁=1

 𝑼𝒖 

=    𝜛𝜁𝜔𝜂
  ℬ𝑝𝒖

𝑇   
𝑥=𝑥𝜁

𝑦=𝑦𝜂

𝑛

𝜂=1

𝑚

𝜁=1

 𝓕  

−    𝜛𝜁𝜔𝜂
  ℬ𝒖

𝑇  𝑥=𝑥𝜁

𝑦=𝑦𝜂

𝑛

𝜂=1

𝑚

𝜁=1

 𝓟  

(30) 
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   𝜛𝜁𝜔𝜂
  ℬ𝑝𝝑

𝑇 𝑩 𝜁 ,𝜂 ℬ𝑝𝒖 + ℬ𝝑
𝑇𝑨𝑛

 𝜁 ,𝜂 
ℬ𝑛𝒖  

𝑥=𝑥𝜁

𝑦=𝑦𝜂

𝑛

𝜂=1

𝑚

𝜁=1

 𝑼𝒖 

+    𝜛𝜁𝜔𝜂
  ℬ𝑝𝝑

𝑇 𝑫 𝜁 ,𝜂 ℬ𝑝𝝑 + ℬ𝝑
𝑇𝑨𝑛

 𝜁 ,𝜂 
ℬ𝝑  

𝑥=𝑥𝜁

𝑦=𝑦𝜂

𝑛

𝜂=1

𝑚

𝜁=1

 𝑼𝝑 

+    𝜛𝜁𝜔𝜂
  

1

2
ℬ𝑝𝝑

𝑇 𝑩 𝜁 ,𝜂 ℬ𝑛𝑙𝒖  
𝑥=𝑥𝜁

𝑦=𝑦𝜂
𝑛

𝜂=1

𝑚

𝜁=1

 𝑼𝝑 = 𝟎 

(31) 

 

The above nonlinear sets of equations are solved 

iteratively to satisfy the preceding criteria mentioned in 

section 3. 
 

 

5. Damage models 
 

In this section, the methodology of progressive damage 

analysis including the failure criteria, material degradation 

model and ply geometric degradation models is described in 

details. 
 

5.1 Failure criteria 
 

To determine the failure load and the corresponding 

failure mode, Hashin failure criterion is used in the present 

study (Hashin and Rotem 1973). This criterion includes 

four different damage functions which correspond to the 

different modes of failure namely fiber tension, fiber 

 

 

Table 1 Four different damage functions in Hashin criterion 

Failure mode 
Mathematical 

model 
Damage function 

Fiber failure in 

tension 
𝜎1 ≥ 0 𝒻𝑓

𝑇 =  
𝜎1

𝑋𝑇
 

2

 

Fiber failure in 

compression 
𝜎1 < 0 𝒻𝑓

𝐶 =  
𝜎1

𝑋𝐶
 

2

 

Matrix failure in 

tension 
𝜎2 ≥ 0 𝒻𝑚

𝑇 =  
𝜎2

𝑌𝑇
 

2

+  
𝜏12

𝑆12
 

2

 

Matrix failure in 

compression 
𝜎2 < 0 𝒻𝑚

𝐶 =  
𝜎2

𝑌𝐶
 

2

+  
𝜏12

𝑆12
 

2

 
 

 

 

compression, matrix tension, and matrix compression as 

given in Table 1. 

In this table, 𝑋𝑇  and 𝑋𝐶  denote tensile and 

compressive strengths of fiber and 𝑌𝑇 and 𝑌𝐶 are tensile 

and compressive strengths of the matrix, respectively. 

Failure happens when any of these modes reaches unity. 
 

5.2 Material degradation model 
 

As it is known, when damage occurs in a composite 

structure, the effective material properties are reduced. This 

reduction can be modeled in this study by the following 

matrix. 
 

𝑸𝑝 =
1

∆
 

𝑑𝑓𝐸1 𝑑𝑓𝑑𝑚𝜈12𝐸2 0

𝑑𝑓𝑑𝑚𝜈21𝐸1 𝑑𝑚𝐸2 0

0 0 𝑑𝑓𝑑𝑚∆𝐺12

  

∆= 1 − 𝑑𝑓𝑑𝑚𝜈21𝜈12 

(32) 

 

Where 𝐸1 , 𝐸2 , 𝐺12 , 𝜈12  and 𝜈21  are undamaged 

material properties. The parameters 𝑑𝑓  and 𝑑𝑚  are the 

damage factors in fiber and matrix directions, respectively. 

According to the degradation model presented by Hayman 

et al. (2011) and Yang et al. (2013), the transverse shear 

stiffness matrix 𝑄𝑛  is not degraded during the damage 

analysis. 

In the current progressive damage model, the reduction 

of material properties is considered to happen instanta-

neously. When failure is detected in the specific zone 

(complete, region or node), its properties are instanta-

neously reduced to %1  of their initial and undamaged 

values (i.e., 𝑑𝑓  or 𝑑𝑚 = 0.01). 

 

5.3 Ply geometric degradation models 
 

In this study, two or three geometric degradation models 

depend on the type of numerical method (Rayleigh-Ritz or 

collocation) are assumed to estimate the degradation zone 

around the failure location which are named complete, 

region and node degradation models. When the failure 

occurs in a location, the material properties of its zone 

should be reduced as: 
 

(1) Complete Degradation Model (CDM) in which, the 

material properties of the entire ply are reduced. 

  

(a) (b) 

Fig. 3 Ply geometric degradation models around the location failure: (a) Region degradation model (RDM); 

(b) Node degradation model (NDM) 
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(2) Region Degradation Model (RDM) in which a plate 

is divided into 9 regions and material properties of 

the region where failure has occurred are reduced. 

(as illustrated in Fig. 3(a)). 

(3) Node Degradation Model (NDM) in which, the 

material properties of the area around the failed 

node are reduced. (as illustrated in Fig. 3(b)) 
 

Both CDM and RDM models can be used in the 

Rayleigh-Ritz method but the third model (i.e., NDM) is not 

applicable due to the lack of nodes in mathematical 

modeling of the plate in this method. 
 

 

6. Numerical results and discussion 
 

6.1 Geometry and material properties 
 

The square laminated plates with dimension 𝑎 = 500 

are investigated in this section. Their layups are assumed to 

be  0/45/90/-45 
X,s

. The thickness of each layer is 1 mm 

and X gets the values “ 𝑋 =  2, 3, 4, 6 ”, The material 

properties for each lamina are assumed as 
 

𝐸1 = 49627 MPa, 𝐸2 = 15430 MPa, 𝜗12 = 0.272,  

𝐺12 =  𝐺23 =  𝐺13 = 4800 MPa, 

𝑋𝑡 = 968 MPa,     𝑋𝑐 = 915 Mpa,      𝑌𝑡 = 24 Mpa, 

𝑌𝑐 = 118 MPa,     𝑆12 = 65 MPa 

 

It is noted that to apply the ply region degradation 

model, it is necessary to define the size of the regions 

 

 

Table 2 Assumed sizes for regions in NDM model 

Region Dimensions (𝑚𝑚 × 𝑚𝑚) 

1, 3, 7 and 9 160 × 160 

2 and 8 180 × 160 

4 and 6 160 × 180 

5 180 × 180 
 

 

 

 
Fig. 4 Convergence study of ultimate in-plane load with 

regard to the number of terms for 24 mm laminate 

under 𝑄 = 2 

shown in Fig. 3 whose values can be found in Table 2. 

In order to show the results, a pressure load factor is 

defined as 𝑄 = 𝑛𝑃0𝑎3 8𝐷22 . Parameter 𝑛 is the number 

of layers in the laminates and 𝑃0 is the magnitude of the 

applied pressure load. 
 

6.2 Convergence study 
 

In order to do the convergence analysis and to find the 

sufficient number of terms in the displacement fields in 

both methods (𝑁𝑡
𝑅 and 𝑁𝑡

𝐶), ultimate in-plane load or last 

ply failure (LPF) stress of square laminated plate under in-

plane load with boundary condition type A and with layup 
 0/45/90/−45 3𝑠  have been calculated for different 

number of terms. To obtain the results, a uniform pressure 

load factor 𝑄 = 2 is also assumed to be applied on the 

plate. Fig. 5 represents the convergence study of ultimate 

in-plane load with regard to the number of terms in both 

Rayleigh-Ritz and collocation method. 

According to Fig. 4, it can be observed that the 

converged results are obtained by considering 9 × 9 terms 

(i.e., 𝑁𝑡
𝑅 = 𝑁𝑡

𝐶 = 9) in each displacement field for both 

Rayleigh-Ritz and collocation methods. Therefore, the total 

number of unknown coefficients is 407 for both methods. 

Also, similar analyzes have been conducted in 

collocation method with regards to the number of nodes for 

all three geometric degradation models and it was 

concluded that the total number of 121 nodes (𝑚 × 𝑛 =
11 × 11) are sufficient to obtain converged results. 

 

6.3 Verification of the formulation 
 

In order to verify the proposed formulations, finite 

element model without taking account of the damage is also 

analyzed. Laminate with 24 mm thickness (i.e., 𝑋 =  3) 

and for two different values of lateral pressure load factors 

is studied here. The magnitude of load factors is selected to 

be 𝑄 = 1  and 𝑄 = 3.  Boundary conditions of the 

laminates are also considered to be type A. The finite 

element analysis is carried out using static general solver of 

ABAQUS software package. The plates are meshed using 

four-node quadrilateral shell element with reduced 

integration (S4R). Through the convergence study it was 

found that a mesh of 40 × 40 S4R elements could give 

accurate results. Also in this software, the interaction 

module has been used to create straight boundary conditions 

on edges. 

As it can be seen from the Figs. 5-6, there is an excellent 

agreement between the results obtained by all three 

methods. 
 

6.4 Results for boundary condition type A 
 

Both Rayleigh-Ritz and collocation methods have been 

used here to analyze the laminates with boundary condition 

type A. In analyzing the laminates using Rayleigh-Ritz 

method, both complete and region degradation models 

(CDM and RDM) are considered while in collocation 

method, only complete degradation model is taken into 

account. All results obtained here are compared with each 

other and presented in appropriate tables and figures. To 
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Fig. 5 Response of load vs central out-of-plane 

displacement for 24 mm laminates (boundary 

conditions type A) 

 

 

 

Fig. 6 Response of load vs end shortening 

displacement for 24 mm laminates (boundary 

conditions type A) 

 

 

this end, the results of Rayleigh-Ritz method considering 

the CDM model are tabulated in Table 3. 

Similar results obtained by collocation method 

considering the CDM model are tabulated in Table 4. 

The presented results have been computed for composite 

plates with 16, 24 and 32 mm thicknesses and for 5 

different values of lateral pressure load factors. The 

magnitude of load factors is selected to be 𝑄 =
0, 1, 2, 3, 𝑄𝑠 . The parameter 𝑄𝑠  in which the first ply 

failure (FPF) occurs in zero longitudinal stress, is called a 

specific load factor. In these tables, the first ply failure load 

(i.e., The longitudinal applied load in which the first ply is 

failed) and location of the failure in terms of ply number 

and coordinates of the failure point have been included. The 

ultimate strength or last ply failure (LPF) stress (i.e., The 

longitudinal applied load after which no lamina can 

withstand load), the failure location (i.e., ply number and 

coordinates of failure point) and the number of layers 

whose matrix or fiber fails, are also included in these tables. 

According to Tables 3 and 4, it is seen that by increasing 

the number of plies first ply failure stress and ultimate load 

are increased. It is also observed that the FPF almost occurs 

in the center of the last layer and in most cases, the ultimate 

load coincides with the fiber failure. Based on the 

observations, it can be stated that for 0o and 90o plies 

failure often occurs first in the center of the plate, while it 

happens at the corners for ± 45o  plies. 

Furthermore, to describe the progressive damage 

behavior, the variation of load in terms of end-shortening 

displacement and also the variation of load versus out-of-

plane-displacement for some selected results given in these 

tables, are depicted in the following figures. Solid and 

hollow circles in these figures, indicate the first ply failure 

and last ply failure stresses of the laminates, respectively. 

The important consequence of the results presented in both 
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Table 3 The results for complete ply degradation model using Rayleigh-Ritz method (type A) 

𝑋 (Number 

of layers) 

Pressure load 

factor (𝑄) 

FPF stress 

(MPa) 

Ply No. 

(coordinates 

of failure) 

LPF stress 

(MPa) 

Ply No. 

(coordinates 

of failure) 

No. of plies 

with failed 

matrix 

No. of plies 

with failed fiber 

2(16) 

0 92.89 16(0,0) 134.70 2(-250,250) 16 2 

1 68.75 16(0,0) 131.84 2(-250,250) 16 2 

2 47.20 16(0,0) 129.14 2(-250,250) 16 2 

3 27.61 16(0,0) 126.56 2(-250,250) 16 2 

4.54 0 16(0,0) 121.82 2(-250,250) 16 2 

3(24) 

0 205.23 22(0,0) 205.23 22(0,0) 1 0 

1 143.62 24(0,0) 172.58 23(-250,-250) 24 1 

2 93.58 24(0,0) 167.22 23(-250,-250) 24 1 

3 50.25 24(0,0) 162.25 2(-250,250) 24 2 

4.34 0 24(0,0) 155.25 2(-250,250) 24 2 

4(32) 

0 209.14 3(-250,-250) 281.30 1(0,0) 25 0 

1 190.39 3(0,0) 232.60 1(0,0) 28 1 

2 144.98 32(0,0) 218.55 1(0,0) 28 1 

3 74.85 32(0,0) 205.80 1(0,0) 29 1 

4.27 0 32(0,0) 195.03 1(0,0) 29 1 
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Fig. 7 Response of load vs central out-of-plane 

displacement for 16 mm laminate using Rayleigh-

Ritz method and CDM model (type A) 
 

 

 

Fig. 8 Response of load vs end shortening for 16 mm 

laminate using Rayleigh-Ritz method and CDM 

model (type A) 
 

 

 

Fig. 9 Response of load vs central out-of-plane 

displacement for 16 mm laminate using 

Collocation method and CDM model (type A) 
 

 

 

Fig. 10 Response of load vs end shortening for 16 mm 

laminate using Collocation method and CDM 

model (type A) 
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Table 4 The results for complete ply degradation model using Collocation method (type A) 

𝑋 (Number 

of layers) 

Pressure load 

factor (𝑄) 

FPF stress 

(MPa) 

Ply No. 

(coordinates 

of failure) 

LPF stress 

(MPa) 

Ply No. 

(coordinates 

of failure) 

No. of plies 

with failed 

matrix 

No. of plies 

with failed fiber 

2(16) 

0 92.53 16(0,0) 136.36 2(250,-210) 16 2 

1 68.50 16(0,0) 134.05 2(250, -210) 16 2 

2 47.25 16(0,0) 131.34 2(250, -210) 16 2 

3 27.62 16(0,0) 128.77 2(250, -210) 16 2 

4.54 0 16(0,0) 124.84 2(250, -210) 16 2 

3(24) 

0 205.49 22(0,0) 205.49 22(0,0) 1 0 

1 143.00 24(0,0) 168.57 1(10, 100) 24 2 

2 92.75 24(0,0) 167.05 1(10, 110) 24 2 

3 50.12 24(0,0) 164.69 1(10, 110) 24 2 

4.34 0 24(0,0) 158.74 2(250,-220) 24 2 

4(32) 

0 209.00 3(-250,-250) 279.93 1(0,0) 25 0 

1 190.25 3(0,0) 232.12 1(0,0) 28 1 

2 144.25 32(0,0) 215.34 1(0,0) 29 1 

3 75.00 32(0,0) 203.47 5(-250,-250) 30 0 

4.27 0 32(0,0) 192.05 1(0,0) 30 1 
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Fig. 11 Response of load vs central out-of-plane 

displacement for 24 mm laminate using Rayleigh-

Ritz method and CDM model (type A) 

 

 

 

Fig. 12 Response of load vs end shortening for 24 mm 

laminate using Rayleigh-Ritz method and CDM 

model (type A) 

 

 

 

Fig. 13 Response of load vs central out-of-plane 

displacement for 24 mm laminate using 

Collocation method and CDM model (type A) 

 

 

tables and figures is that by increasing the load factor 𝑄 

the last ply and first ply failure stresses are decreased but 

the last ply failure stresses are reduced much lower than 

first ply failure loads. 

In these figures, nonlinear behaviors of the plates with 

 

Fig. 14 Response of load vs end shortening for 24 mm 

laminate using Collocation method and CDM 

model (type A) 

 

 

 

Fig. 15 Response of Load vs central out-of-plane displace-

ment for 32 mm laminate with 𝑄 = 3 and CDM 

model (Rayleigh-Ritz and Collocation methods) 
 

 

 

Fig. 16 Response of Load vs end shortening for 32 mm 

laminate with 𝑄 = 3 and CDM model (Rayleigh-

Ritz and Collocation methods) 
 

 

and without taking account of damage have been shown. 

Undamaged results have been displayed by dashed lines and 

the damaged results have been displayed by solid lines. 

In order to better comparison between two methods, the 
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Fig. 17 Response of load vs central out-of-plane 

displacement for 16 mm laminate using Rayleigh-

Ritz method and RDM model (type A) 
 

 

results obtained by both formulations for laminate with 32 

mm thickness and for pressure load factor 3 are represented 

in Figs. 15-16. 

In addition to previous results, the results for region 

degradation model (RDM) using the Rayleigh-Ritz method 

are also presented and investigated here. Table 5 shows the 

results for composite plates having boundary conditions 

type A. Similar to before, first ply failure stresses and 

locations have been achieved. Also in the table, last ply 

failure stresses and the number of matrix and fiber failed 

regions are included for each laminate thickness and load 

factor. 

As respected, it can be observed that there is no 

difference between the first ply failure loads obtained by 

both CDM and RDM models. However, in most cases, the 

CDM model gives generally slightly lower ultimate loads 

than the RDM model. In Figs. 18 and 19, the applied load is 

plotted against the central out-of-plane displacement and 

end shortening displacement respectively, for plates having 

the total thickness of 16 mm. 

 

 

 

Fig. 18 Response of load vs end shortening for 16 mm 

laminate using Rayleigh-Ritz method and RDM 

model (type A) 

 

 

 

 
The behaviors of the load against central out-of-plane 

displacement and load against end-shortening displacement 

for plates with ℎ = 24  mm and values of load factor 

𝑄 = 3 are depicted in Figs. 19-20. In these figures, in 

addition to the results obtained by RDM model, and results 

of CDM using the Rayleigh-Ritz method are also 

represented. 

At the end of this section, in order to better under-

standing the behavioral differences of the laminates with 

different thicknesses in progressive damage process, the 

results with pressure load factor 𝑄 = 2 are depicted in 

Figs. 21-22. 

As it can be seen by increasing the thickness of the 

laminates, first ply failure and last ply failure occur in the 

higher amount of load. This is while the amounts of end 

shortening displacements corresponding to the first ply 

failure loads decrease. 
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Table 5 The results for region ply degradation model using Rayleigh-Ritz method (type A) 

𝑋 (Number 

of layers) 

Pressure load 

factor (𝑄) 

FPF stress 

(MPa) 

Ply No. 

(coordinates 

of failure) 

LPF stress 

(MPa) 

Ply No. 

(coordinates 

of failure) 

No. of plies 

with failed 

matrix 

No. of plies 

with failed fiber 

2(16) 

1 68.75 16(0,0) 145.47 133 4 131.84 

2 47.20 16(0,0) 143.46 133 4 129.14 

3 27.61 16(0,0) 140.40 130 4 126.56 

4.54 0 16(0,0) 136.64 130 4 121.82 

3(24) 

1 143.62 24(0,0) 169.51 208 1 172.58 

2 93.58 24(0,0) 167.18 208 1 167.22 

3 50.25 24(0,0) 164.38 208 3 162.25 

4.34 0 24(0,0) 163.06 204 3 155.25 

4(32) 

1 190.39 3(0,0) 232.63 252 1 232.60 

2 144.98 32(0,0) 218.61 252 1 218.55 

3 74.85 32(0,0) 204.43 253 1 205.80 

4.27 0 32(0,0) 191.04 252 1 195.03 
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Fig. 19 Response of Load vs central out-of-plane 

displacement for 24 mm laminate with 𝑄 = 3 

using Rayleigh-Ritz method by CDM and RDM 

(type A) 

 

 

 

Fig. 20 Response of Load vs end shortening for 24 mm 

laminate with 𝑄 = 3 using Rayleigh-Ritz 

method by CDM and RDM (type A) 

 

 

6.5 Results for boundary condition type B 
 

Another category of results for the second boundary 

conditions (type B) is presented in this section. In the 

Rayleigh-Ritz method only the results associated with the 

 

 

 

 

Fig. 21 Response of Load vs central out-of-plane 

displacement for 16 mm, 24 mm and 32 mm 

laminates with 𝑄 = 2 using Rayleigh-Ritz and 

RDM (type A) 

 

 

 

Fig. 22 Response of Load vs end shortening for 16 mm, 

24 mm and 32 mm laminates with 𝑄 = 2 using 

Rayleigh-Ritz and RDM (type A) 

 

 

CDM model are computed and in the collocation method, 

the results associated with all ply geometric degradation 

models (i.e., CDM, RDM, and NDM) are calculated and 

presented. The results in this section have been calculated 

with enough number of terms. These results are tabulated in 
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Table 6The results for complete ply degradation model using Rayleigh-Ritz method (type B) 

𝑋 (Number 

of layers) 

Pressure load 

factor (𝑄) 

FPF stress 

(MPa) 

Ply No. 

(coordinates 

of failure) 

LPF stress 

(MPa) 

Ply No. 

(coordinates 

of failure) 

No. of plies 

with failed 

matrix 

No. of plies 

with failed fiber 

3(24) 
1 201.00 3(0,0) 255.70 1(0,0) 24 1 

2 98.05 1(0,0) 247.46 1(0,0) 24 1 

4(32) 
1 202.41 3(0,0) 297.23 1(0,0) 30 1 

2 133..10 1(0,0) 288.29 1(0,0) 32 1 

6(48) 
1 203.20 3(0,0) 302.65 1(0,0) 38 1 

2 181.23 3(0,0) 297.01 1(0,0) 45 1 
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Tables 6 to 9. Similar to the previous section, first and last 

ply failure loads are reported in these tables. Moreover, the 

number of failed zones (ply, region or node) in each fiber or 

matrix mode is also given. 

It can be observed that the laminate under a small 

pressure load factor fails first in the third layer, while at 

larger value of pressure load factor laminates fail often in 

the first layer. In the case of LPF, all plates with all pressure 

load factors fail in the center of the first layer and in fiber 

mode. 

In Figs. 23-24, the applied load is plotted against the 

central out-of-plane displacement and end shortening 
 

 

 

Fig. 23 Response of load vs central out-of-plane 

displacement for 24 mm laminate with 𝑄 = 2 

using Rayleigh-Ritz method and CDM model 

(types A and B) 

 

 

 

 

displacement respectively, for plates having the total 

thickness of 24 mm and 𝑄 = 2 . In order to better 

comparison, the results for boundary conditions type A are 

also represented in these figures. It is noted that the results 

presented in these figures are computed by the Rayleigh-

Ritz method. 

As it is apparent in Figs. 23-24, ultimate load of the 

laminates with boundary condition type A are much smaller 

than those with boundary condition type B. This also occurs 

at smaller values of end shortening displacement. In 

Collocation method, the results associated with region and 

node degradation models (RDM and NDM) have been also 

obtained. Tables 8 and 9 show these results for composite 

 

 

 

Fig. 24 Response of load vs end shortening for 24 mm 

laminate with 𝑄 = 2 using Rayleigh-Ritz 

method and CDM model (types A and B) 
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Table 7 The results for complete ply degradation model using Collocation method (type B) 

𝑋 (Number 

of layers) 

Pressure load 

factor (𝑄) 

FPF stress 

(MPa) 

Ply No. 

(coordinates 

of failure) 

LPF stress 

(MPa) 

Ply No. 

(coordinates 

of failure) 

No. of plies 

with failed 

matrix 

No. of plies 

with failed fiber 

3(24) 
1 200.97 3(0,0) 253.47 1(0,0) 24 1 

2 97.87 1(-10,0) 245.28 1(0,0) 24 1 

4(32) 
1 202.19 3(0,0) 296.94 1(0,0) 31 1 

2 132.01 1(10,250) 288.31 1(0,0) 32 1 

6(48) 
1 203.34 3(0,0) 302.94 1(0,0) 39 1 

2 180.00 1(0,-250) 296.66 1(0,0) 45 1 
 

Table 8 The results for region ply degradation model using Collocation method (type B) 

Number 

of layers 

Pressure 

load factor 

(𝑄) 

FPF stress 

(MPa) 

Ply No. 

(coordinates 

of failure) 

LPF stress 

(MPa) 

Number of 

regions with 

failed matrix 

Number of 

regions with 

failed fiber 

LPF stress 

(MPa) CMD 

3(24) 
1 200.97 3(0,0) 257.36 207 1 253.47 

2 97.87 1(-10,0) 247.43 207 1 245.28 

4(32) 
1 202.19 3(0,0) 297.91 253 1 296.94 

2 132.01 1(10,250) 288.91 268 0 288.31 

6(48) 
1 203.34 3(0,0) 303.23 346 1 302.94 

2 180.00 1(0,-250) 297.61 380 1 296.66 
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Fig. 25 Response of load vs central out-of-plane 

displacement, compression between degradation 

model for 24 mm laminate with 𝑄 = 3 using 

Collocation method (type A) 
 

 

 

Fig. 26 Response of load vs end shortening, compression 

between degradation model for 24 mm laminate 

with 𝑄 = 3 using Collocation method (type A) 
 

 

plates having boundary conditions type B. As before, first 

ply failure stresses and locations have been achieved. In 

these tables, last ply failure stresses and the number of 

matrix and fiber failed regions and nodes are reported for 

some load factor values. 

The behaviors of load against central out-of-plane 

displacement and load against end-shortening displacement 

for plates having the total thickness of 24 mm and different 

 

 

 

Fig. 27 Response of load vs central out-of-plane 

displacement, compression between degradation 

model for 24 mm laminate with 𝑄 = 2 using 

Collocation method (type B) 

 

 

 

Fig. 28 Response of load vs end shortening, compression 

between degradation model for 24 mm laminate 

with 𝑄 = 2 using Collocation method (type B) 
 

 

values of load factor and boundary condition are depicted in 

Figs. 25-28. In these figures, in addition to the results 

obtained by NDM, the results taken from two other models, 

are also represented. 

As it can be observed, there is no difference between the 

values of first ply failure loads calculated by three 

degradation models as expected however, the complete 

model gives generally slightly lower values of the ultimate 

load than the two others. 

With the comparison between three degradation models, 
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Table 9 The results for node ply degradation model using Collocation method (type B) 

Number 

of layers 

Pressure 

load factor 

(𝑄) 

FPF stress 

(MPa) 

Ply No. 

(coordinates 

of failure) 

LPF stress 

(MPa) 

Number of 

regions with 

failed matrix 

Number of 

regions with 

failed fiber 

LPF stress 

(MPa) CMD 

3(24) 
1 200.97 3(0,0) 264.82 2435 1 253.47 

2 97.87 1(-10,0) 252.02 2463 1 245.28 

4(32) 
1 202.19 3(0,0) 299.09 3040 1 296.94 

2 132.01 1(10,250) 290.49 3137 1 288.31 
 

Collocation 

Collocation 

Collocation 

Collocation 
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it is seen that the node degradation model gives upper last 

ply failure load and this can be due to the effects of dividing 

the plate (or ply) into smaller areas. Therefore, if one wants 

to obtain better and more accurate results, NDM should be 

used in which more computation time is also needed but in 

the early stages of structural design; the results taken from 

RDM can be accepted with lightly lower accuracy. 

 

 

7. Conclusions 
 

Two methods were proposed in this study to investigate 

the ultimate strength of composite plates under combined 

in-plane and lateral pressure loads. Laminates with two 

different types of boundary conditions were studied. The 

concept of the first order shear deformation theory was 

established to drive the equilibrium equations. The onset of 

damage was predicted by Hashin’s failure criteria and 

material properties of damaged zone were degraded by 

instantaneous material degradation model. Three geometric 

degradation models were assumed to estimate the 

degradation zone around the failure location. The results of 

two methods were compared with each other. By 

comparison the results obtained from three degradation 

models, it was observed that the progressive damage 

analysis using node degradation model provide marginally 

better results than two other geometric degradation models, 

but it takes more time to do computation. 
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