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1. Introduction 

 

Plates with curved edges, panels and shells are 

extensively used in many important engineering 

applications such as aerospace, marine, civil, mechanical, 

liquid or gas storage tanks and pipeline, ship hulls, pressure 

vessels and automobile engineering. In general, laminated 

composite materials are used for their design Reddy (2003). 

The main reason for their use is that of high strength to 

weight ratio. Different plates and shell theories have been 

proposed and used for modeling of plates and shells for the 

past hundred years Qatu (2004); Soedel (2004); Reddy 

(2003); Civalek (2004). After obtaining the reasonable 

model, the next job is the solution of obtaining differential 

equations. For this, some numerical and analytical methods 

are purposed and extensively used by researcher for 

solution of the resulting equations Leissa (1993); Tornabene 

et al. (2014); Civalek (1988). It is also known that these 

types of structures are generally subjected to different kind 

dynamic loads. So, vibration behavior of these structures or 

their components is very important during their design 

steps. Up to date, free vibration analysis of annular, circular 

and sector plates with different material properties has 

received great attention by the researchers and design 

engineers. Su et al. (2014, 2015) was applied numerical 

technique for vibration analysis of laminated sector and 

annular plates. Stability and vibration analysis of composite 

sector plates have been made by Sharma et al. (2005). 

Three-dimensional frequency response of thick laminated 
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annular sector plates has been investigated by Malekzadeh 

(2009) via differential quadrature method. Tornabene et al. 

(2013, 2014, 2016) give detailed formulation and solution 

of curved plates and shells. Strong form FEM formulation 

for plates has also been derived by Fantuzzi and Tornabene 

(2014). Civalek (2006a, b, 2013, 2017) gives DSC solution 

for vibration problems of shells and plates. Detailed unified 

formulation and solution for plates and shells have given by 

Wang et al. (2016a, b). Free vibration of functionally 

graded moderately thick annular sector plates have been 

made by Saidi et al. (2011). Kahare and Mittal (2016, 2017) 

present some solution of circular and annular plates via 

FEM. Arefi et al. (2018) have been supply numerical 

solution for CNTR cylindrical pressure under thermals 

effect. Effect of thermal gradients on stress/strain 

distributions in a thin circular symmetric plate was analzed 

by Aleksandrova (2016). Hyperbolic shear deformation 

theory for bending, buckling and free vibration of FGM 

sandwich plates were made by Abdelaziz et al. (2017). 

Hamzehkolaei et al. (2011) present numerical solution for 

thermal effect on axisymmetric bending of functionally 

graded circular and annular plates using DQM. Thermal 

stresses and deflections of functionally graded sandwich 

plates using a new refined hyperbolic shear deformation 

theory have been investigated by Bouchafa et al. (2015). 

Bouderba et al. (2016) analyzed the thermal stability of 

functionally graded sandwich plates using a simple shear 

deformation theory. Thai and Kim (2018) also gives 

detailed solution for functionally graded plates via new 

quasi-3D sinusoidal shear deformation theory. Natural 

vibration characteristics of a clamped circular plate in 

contact with fluid have been solved by Jhung et al. (2005). 

Tahouneh (2014) present some numerical solution for free 

vibration analysis of bidirectional functionally graded 
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annular plates resting on elastic foundations. Yousefzadeh et 

al. (2018) made dynamic response of functionally graded 

annular/circular plate in contact with bounded fluid under 

harmonic load. Quasi-3D static analysis of two-directional 

functionally graded circular plates was solved by Wu and 

Yu (2018). Also, state space meshless method for the 3D 

analysis of FGM axisymmetric circular plates have been 

detailed investigated by Wu and Yu (2016). 

The main objective of this manuscript is to obtain the 

numerical solution for vibration problem of thick laminated 

annular, annular sector and laminated circular plates based 

on the two different shells theories. For achieve this, 

differential quadrature and discrete singular convolution 

methods are applied to numerically solve the equations of 

motion for free vibration problem of laminated annular and 

circular plates. For achieve this, governing equations of 

motion of annular and annular sector plates are directly 

obtained via conical shell equations. To solve the governing 

partial differential equations of motion for plate vibration, 

two novels numerical methods have been performed and 

their performance are compared. It is shown that both 

methods have good convergence. Also, the method of DSC 

has shown a relatively fast approach with less grid points. 

Effects of different material and geometric parameters on 

frequency values of annular and annular sector plates have 

been investigated. 

 

 

2. Numerical methods 
 

2.1 Differential quadrature (DQ) method 
 

In differential quadrature procedure, the given 

differential equation transform into a set of analogous 

algebraic equations in terms of the unknown function values 

at the reselected sampling grids in the field domain 
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After the first-order derivation is obtained the second, 

third and fourth-order derivatives can be easily found as 
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2.2 Discrete Singular Convolution (DSC) method 
 

Discrete singular convolution (DSC) is suggested by 

Wei (2001a, b) for the first time in order to fast solution of 

the mathematical physics problems (Wang et al. 2012, 

Gürses et al. 2012, Civalek and Acar 2007, Demir et al. 

2016, Civalek et al. 2016, 2010, Hou et al. 2005). As 

similar the other discrete numerical methods, the function f 

(x) and its derivatives with respect to the x coordinate at a 

grid point xi are approximated by a linear sum of discrete 

values f (xk) in a narrow bandwidth [x-xM, x+xM ] in DSC. 

Namely 
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In this paper, detailed formulation and mathematical 

details of the DQ and DSC method are not given; interested 

readers may refer to the works of (Wei et al. 2001, 2002, 

Gürses et al. 2009, Baltacıoğlu et al. 2010, 2011, Civalek 

2008, 2013, Duan et al. 2014, Civalek and Akgöz 2011, 

Mercan and Civalek 2016). It is mentioned that, the use of 

the regularized Shannon kernel (RSK) and Lagrange’s delta 

sequence kernel are very effective. These kernels are as 

follows 
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The solution also made by harmonic differential 

quadrature methods (Striz et al. 1995; Shu and Xue 1997; 

Civalek 2004). 

 

 

3. Theoretical formulation 
 

Consider a thick laminated annular plates and circular 

plates. 

The circular cylindrical panel is obtained via this figure 

using the α = 0. Also, when we take the α = 90 for semi-

vertex angle, the new form will be annular sector plate. The 

 

 

 

Fig. 1 Geometry and notation of plates from the conical 

shells 

756



 

Numerical approaches for vibration response of annular and circular composite plates 

geometry and coordinate axes of these panels and plates is 

depicted in this figure. The cone semi vertex angle, 

thickness of the shell, and cone length are denoted by , h 

and L, respectively. The shell is referred to a coordinate 

system (x,s, z). R1 and R2 are the by u, v, w in the x, s and z 

directions, respectively. 

 

3.1 First-order shear deformation theory 
 

The governing differential equations of motion via 

FSDT 
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We assume the harmonic functions fort the displacement 

of the conical shell as 
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After using Eqs. (13) in Eqs. (8)-(12) related equations 

can be written in suitable form as 
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1514131211  hLLLLL
 (14a) 
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Differential operators in Eq. (14) are listed in appendix 

A. 

 

3.2 Love’s shell theory 
 

Equations of motions are written as below in this theory 
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If the displacement terms are taken as below 
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Substituting Eq. (18) into Eqs. (15)-(17), we eliminate 

the s and t and the governing equations of motions for 

conical panel based on Love’s shell theory can be written as 
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where Gijk are the constant coefficients defined in Appendix 

B. 

 

 

4. Solution via numerical methods 
 
4.1 Solution by DSC method based on FSDT 

theory 
 

After applying the DSC method, the related equations of 

motion of laminated annular plate were discrete and given 

as 
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The coefficients of Lij given above equation are obtained 

after application of DSC rule. Discrete form of the related 

differential operators can be defined as 
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The operator of DSC using above can be given by 
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4.2 Solution by DQ method based on FSDT 
 

Related coefficients for partial derivations via DQ can 

be defined by 
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in which Cijk are weighting coefficients for DQ methods of 

any order. If the method of DQ is used for discretization, 

the equation of motion can be writing as follows 

 
02

1514131211  hLLWLVLUL y

DQ

x

DQDQDQDQ

 
02

2524232221  hLLWLVLUL y

DQ

x

DQDQDQDQ

 
02

3534333231  hLLWLVLUL y

DQ

x

DQDQDQDQ

 
012/23

4544434241  hLLWLVLUL y

DQ

x

DQDQDQDQ

 
012/23

5554535251  hLLWLVLUL y

DQ

x

DQDQDQDQ

 

(56) 

 

Related derivations for DQ can be written as similar the 

DSC method. 

 

4.3 Solution by DSC method based on Love’s shell 
theory 

 

The discretized forms of Eq. (56) can then be expressed 
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4.4 Solution by DQ method based on Love’s shell 
theory 

 

The discretized forms via DQ method is as follows 
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For computation three different boundary conditions 

have been taken into consideration listed below 
 

Simply supported edge (S) 
 

V = 0,  W = 0,  V = 0,  Mx = 0,  s = 0 = 0 (63) 
 

Clamped edge (C) 
 

U= 0,  V = 0,  W = 0,  x = 0,  s = 0 (64) 
 

Free edge (F) 
 

Vx = 0,  Nx = 0,  N = 0,  Mx = 0,  and  M = 0 (65) 
 

From the above procedures, one can derive the general 

form of eigenvalue equation as follows 
 

   XBΩXG ][][   (66) 

 

 

5. Numerical results 
 

In order to validate the presented two numerical 

methods and to examine their computational efficiency, 

convergence and accuracy is demonstrated for different 

plate examples. As a first example to validate the presented 

formulations, the obtained natural frequencies of a 

laminated (0/90) annular sector plates with clamped edges 

based on the presented methods are compared with the 

FSDT by Pang et al. (2007) in Table 1. The results are 

prepared for different values of modes. From this table, one 

could observe that the present DSC results for the laminated 

(0/90) annular sector plates are in good agreement with 

those of FSDT. Comparison of frequency values of 

isotropic circular plates with simply supported edges and 

annular plates have also been made and summarized in 

Tables 2 and 3. It is again showed that our DSC results are 

good agreement in literature (Khare and Mittal 2017, Wang 

et al. 2016b). In Table 4, non-dimensional frequencies in 

five modes of laminated annular sector plates have been 

listed for different thickness. It can be found that thickness 

to-radius ratio have a significant influence on the frequency. 

When the thickness to-radius ratio increased the frequency 

values decreases. This case also shown in Fig. 2 for 

laminated annular plates. This ratio is more significant on 

higher modes. 

Some detailed analyses on thickness-to-radii ratio have 

been also made and given in Tables 5-7 for circular and 

annular plates. It is concluded from these results that, the 

sector angles and mode numbers have also important 

Table 1 Convergence and comparison of frequency(Ω1 =

𝜔𝑅2
2 𝜌ℎ/𝐷) laminated (0/90) annular sector plates 

with clamped edges (R1/R2 = 0.5, h/R2 = 0.2, E1/E2 

= 40, α = 120°) 

Modes 

Reference results 
Present DSC results-FSDT 

(Ns =11) 

Pang et al. 

(2017) 
Nx = 11 Nx = 15 Nx = 17 Nx = 19 

1 5.175 5.1804 5.1804 5.1804 5.1804 

2 5.694 5.7063 5.7063 5.7063 5.7063 

3 6.619 6.6236 6.6236 6.6236 6.6236 

4 7.809 7.8169 7.8169 7.8169 7.8169 

5 9.150 9.1637 9.1637 9.1637 9.1637 
 

 

 

Table 2 Comparison of frequency (Ω1 = 𝜔𝑅2
2 𝜌ℎ/𝐷) 

values of isotropic circular plates with simply 

supported edges 

h/R2 

Reference results 
Present DSC results-FSDT 

(Ns =11) 

Khare and Mittal 

(2017) 
Ns = 9 Ns = 11 Ns = 13 Ns = 15 

0.1 4.8758 4.8749 4.8749 4.8749 4.8749 

0.2 4.7606 4.7593 4.7593 4.7593 4.7593 

0.3 4.5957 4.5881 4.5881 4.5881 4.5881 

0.4 4.3975 4.3914 4.3912 4.3912 4.3912 

0.5 4.1834 4.1768 4.1765 4.1765 4.1765 
 

 

 

Table 3 Frequency values (Ω1 = 𝜔𝑅1  𝜌ℎ/𝐴11) of 

laminated (0/90/0/90) S-C annular plate (h/R1 = 0.1; 

R1/R2 = 1/3) 

DSC 

Modes Wang et al. (2016) N = 11 N = 13 N = 15 

1 0.32783 0.33924 0.33924 0.33924 

2 0.32961 0.33068 0.33068 0.33068 

3 0.34780 0.35496 0.35496 0.35496 

4 0.40656 0.41136 0.41135 0.41135 

5 0.51503 0.52479 0.52477 0.52477 

 

HDQ 

Modes Wang et al. (2016) N = 11 N = 13 N = 15 

1 0.32783 0.33715 0.33713 0.33713 

2 0.32961 0.33008 0.33008 0.33008 

3 0.34780 0.35199 0.35196 0.35196 

4 0.40656 0.41086 0.41085 0.41085 

5 0.51503 0.52301 0.52297 0.52297 
 

 

 

role on this change. Namely, the thickness to-radius ratio is 

more effective on higher modes and small sector angles. 
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Table 4 Frequency values (Ω1 = 𝜔𝑅2
2 𝜌ℎ/𝐷) of (0/30/0) 

laminated circular plates (h/R2 = 0.2) with clamped 

edges 

Present DSC results 

h/R2 N = 9 N = 11 N = 13 N = 15 

0.1 8.1005 8.1003 8.1003 8.1003 

0.2 7.1593 7.1593 7.1593 7.1593 

0.3 6.1727 6.1724 6.1724 6.1724 

0.4 5.3105 5.3102 5.3102 5.3102 

0.5 4.6170 4.6167 4.6167 4.6167 
 

 

 

Table 5 Convergence and comparison of frequency 

(Ω1 = 𝜔𝑅2
2 𝜌/𝐸ℎ2) laminated (0/90/0/90) 

annular sector plates with clamped edges (R1/R2 = 

0.5, E1/E2 = 15, α = 90°) 

Modes 
Present results (Ns = 11) 

h/R2 Nx = 9 Nx = 11 Nx = 13 Nx = 15 

1 

0.05 13.7123 13.7123 13.7123 13.7123 

0.1 9.3421 9.3421 9.3421 9.3421 

0.2 5.3684 5.3684 5.3684 5.3684 

2 

0.05 15.5729 15.5727 15.5727 15.5727 

0.1 10.9030 10.9028 10.9028 10.9028 

0.2 6.3455 6.3453 6.3453 6.3453 

3 

0.05 19.65039 19.6501 19.6501 19.6501 

0.1 13.6127 13.6124 13.6124 13.6124 

0.2 7.8919 7.8916 7.8916 7.8916 

4 

0.05 25.3490 25.3483 25.3483 25.3483 

0.1 17.0192 17.0181 17.0181 17.0181 

0.2 9.6808 9.6802 9.6802 9.6802 

5 

0.05 30.3021 30.3016 30.3016 30.3016 

0.1 18.7213 18.7205 18.7205 18.7205 

0.2 10.1966 10.1962 10.1959 10.1959 
 

 

 

Table 6 Frequency (Ω1 = 𝜔𝑅1  𝜌ℎ/𝐴11) values of 

laminated (0/90) annular sector plates with clamped 

supported edges (E1/E2 = 2, R1/R2 = 1/2) 

h/R  
Present results (Nx = 11) 

Nx = 11 Nx = 13 Nx = 15 Nx = 17 

0.1 

90 6.5375 6.5375 6.5375 6.5375 

180 6.2348 6.2348 6.2348 6.2348 

270 6.1796 6.1796 6.1796 6.1796 

0.2 

90 4.5785 4.5785 4.5785 4.5785 

180 4.3519 4.3519 4.3519 4.3519 

27 4.3027 4.3027 4.3027 4.3027 
 

 

 

 

Table 7 Frequency (Ω1 = 𝜔𝑅1  𝜌ℎ/𝐴11) laminated 

(0/90/0/90) circular plates with simply supported 

edges 

h/R2 Modes 
Present results (Nx = 11) 

Nx = 9 Nx = 11 Nx = 13 Nx = 15 

0.01 

1 5.6236 5.6236 5.6236 5.6236 

2 13.4408 13.4408 13.4408 13.4408 

3 24.3378 24.3375 24.3375 24.3375 

4 36.2813 36.2811 36.2811 36.2811 

5 38.1010 38.1003 38.1003 38.1003 

0.1 

1 5.2934 5.2931 5.2931 5.2931 

2 11.7445 11.7440 11.7440 11.7440 

3 18.6398 18.6394 18.6394 18.6394 

4 19.5450 19.5443 19.5443 19.5443 

5 26.0377 26.0372 26.0372 26.0372 

0.2 

1 4.5941 4.5938 4.5937 4.5938 

2 8.8176 8.8174 8.8174 8.8174 

3 9.6023 9.6019 9.6019 9.6019 

4 13.8670 13.8667 13.8667 13.8667 

5 14.8196 14.8192 14.8190 14.8190 
 

 

 

Table 8 Frequency values (Ω1 = 𝜔𝑅2
2 𝜌ℎ/𝐷) of (0/30/0) 

laminated circular plates (h/R2 = 0.2) 

Present DSC results 

 N = 11 N = 15 

Modes Clamped 
Simply 

supported 
Clamped 

Simply 

supported 

1 7.1593 3.2705 7.1593 3.2705 

2 13.0281 8.8806 13.0281 8.8806 

3 18.9175 14.7314 18.9175 14.7314 

4 22.0339 18.0132 22.0339 18.0132 
 

 

 

Table 9 Frequency values (Ω1 = 𝜔𝑅2
2 𝜌ℎ/𝐷) of lami-

nated circular plates (h/R2 = 0.3) with clamped edge 

DSC 

Modes 0/0/0 0/30/0 0/60/0 0/90/0 

1 6.5208 6.2016 5.3482 4.9340 

2 10.9913 10.6314 9.5622 8.6591 

3 15.0871 14.9028 13.9243 12.9313 

4 17.5493 17.0219 15.0217 13.8004 

5 19.4305 19.3178 18.3711 17.6112 
 

HDQ 

Modes 0/0/0 0/30/0 0/60/0 0/90/0 

1 6.5196 6.2002 5.3470 4.9327 

2 10.9890 10.6304 9.5613 8.6579 

3 15.0861 14.9011 13.9234 12.9301 

4 17.5478 17.0213 15.0208 13.7990 

5 19.4297 19.3167 18.3700 17.6104 
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Table 10 Frequency (Ω1 = 𝜔𝑅2
2 𝜌/𝐸ℎ2) laminated 

(0/90/0) plates (h/R2 = 0.2) with clamped edge 

R1/R2 Modes 
Present results (Nx = 11) 

Nx = 11 Nx = 1, Nx = 15 Nx = 17 

0 

1 6.8843 6.8843 6.8843 6.8843 

2 10.5567 10.5567 10.5567 10.5567 

3 14.7804 14.7804 14.7804 14.7804 

4 17.1025 17.1025 17.1025 17.1023 

5 19.1138 19.1138 19.1138 19.1138 

0.5 

1 5.1627 5.1627 5.1627 5.1627 

2 5.4139 5.4139 5.4139 5.4139 

3 5.9615 5.9615 5.9615 5.9615 

4 6.2034 6.2034 6.2034 6.2034 

5 6.5538 6.5538 6.5538 6.5537 
 

 

 

Table 11 Frequency values(Ω1 = 𝜔𝑅2
2 𝜌ℎ/𝐷) of 

(0/90/0/90) laminated annular plates (h/R2 = 0.05) 

Present DSC results 

R1/R2 

N = 13 N = 15 

Clamped 
Simply 

supported 
Clamped 

Simply 

supported 

0.2 25.0368 15.1692 25.0368 15.1692 

0.4 22.0591 14.4067 22.0591 14.4067 

0.8 8.4035 3.1039 8.4035 3.1039 
 

 

 

have been analyzed and results given in Tables 8 and 9, 

respectively. It is seen that for all values of the modes, the 

frequency parameter decreases when increasing the core 

angle. The effect of radius ratio on frequency values of 

annular plates was carried out numerically and results 

depicted in Tables 10 and 11, respectively. 

It is obtained from these tables that the radii ratios have 

also been significant effect on frequency values. Obviously, 

it is show that the frequency parameters of the plates tend to 

decrease as plate radius ratio is increased. Furthermore, this 

phenomenon is more pronounced for higher modes 

frequency. Finally, variaton of fundamental frequency with 

modulus ratio for laminated plates and sector angles have 

been analyzed and results plotted in Figs. 3 and 4. The 

results show that the frequency rises gradually with increase 

in ratio of modulus of Young. Also the frequency values 

decrease when the sector angles increased. 
 

 

6. Conclusions 
 

In the present study, free vibration analyses of laminated 

circular and annular plates have been made via two- 

different numerical methods. Love’s shell theory and first-

order shear deformation theory (FSDT) have been used for 

modeling of plates. Different parameter effects on 

frequency values of laminated plates have been investigated 

in detail. The efficiency of the present two methods is 

 

Fig. 2 Variation of fundamental frequency with thickness 

for different boundary conditions of laminated 

(0/90/0/90) annular sector plates (R2/R1 = 2; α = 90; 

E1/E2 = 15) 
 

 

 

Fig. 3 Variation of fundamental frequency with modulus 

ratio for laminated (0/90/0/90)  annular sector 

plates (R2/R1 = 2;α = 90; h/R2 = 0.1) 
 

 

validated by comparing the results with the previous 

published work. It is know that the accuracy and 

performance of the numerical methods depend on different 

parameters. In the method of differential quadrature the 

sampling of grid distribution and the grid numbers are the 

more significant than the other parameters for accuracy. As 

for the accuracy of the DSC method, there are different 

issue are important for accuracy and convergence. These 

are: kernel types, grid numbers, ghost numbers, regularized 

parameters etc. However, types of kernel and grid numbers 

are two important parameters on accuracy. Previous studies 

have shown that Shannon’s delta kernel gives the best 

result. Also, DSC is more suitable for higher modes even 
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Fig. 4 Variation frequency with sector angles for laminated 

(0/90/90/0) annular sector plates (R2/R1 = 2;α = 90; 

h/R2 = 0.1; E1/E2 = 15) with CCCC edges 
 

 

not investigated in this study. It is observed that the results 

obtained by HDQ method are at the same level of accuracy 

than those of previous technique DSC method. The novelty 

of the present study is based on the three remarks listed 

below: 
 

● Both first-order shear deformation theory (FSDT) 

and the Love’s shell theories have been used for 

modeling of annular, annular sector and circular 

plates. 

● Governing equations of motion of annular and 

annular sector plates are directly obtained via conical 

shell equations. 

● In order to solve the remaining governing partial 

differential equations related the plate vibration, two 

novels numerical methods have been performed and 

their performance are compared. It is shown that 

both methods have good convergence. Also, the 

method of DSC has shown a relatively fast approach 

with less grid points. 

● *Effects of different material and geometric 

parameters on frequency values of annular and 

annular sector plates have been investigated. 
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The related differential operators in above equations can 

be defined as 
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