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1. Introduction 

 

The increased demand for the advanced composite 

materials in several industries (aircraft, submarine, 

automobiles, building construction, communication and 

safety equipment) requires a comprehensive understanding 

of the structural component before the final finished 

product. The recent study shows that the composite market 

has been increased steeply worldwide and in particular the 

developed nation (the utilization raised by 6.3% in 2014 to 

reach $8.2 billion market price Mallick, 2007 at the United 

States).  Owing to the structural f lexibil ity a nd 

corresponding strength to weight ratios are the primary 

demands for most weight sensitive applications. Advanced 

composites have largely occupied the market since their 

inception in 1950‟s when merely 2-3% (Boeing 707‟s 

structure) components made of composite (Stewart 2009) 

whereas the current application jumps 50%. Hence, to 

satisfy the increased demand of the future as well as the 

current market, it is essential to predict the performance of 
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composite components, before the large-scale fabrication. 

The composite structural components are generally 

associated with the inherent risks and the uncertainty, 

hence, the accurate modeling may lead to the economic and 

hassle-free process. For this, it is prudent to carry out the 

computer-aided analysis in conjunction with the well-

known soft computing technique may help in unpleasant 

losses. Additionally, these structural components generally 

exposed to the dynamic type of load during the operational 

life and therefore leads to the vibrational fatigue. Hence, it 

is necessary to design the components not only for the 

strength purpose but also capable of withstanding the 

vibrational fatigue. The soft computing techniques are 

generally adopted for the optimization of the complex 

structural responses including the associated parameter 

(geometry, stacking sequence and environment for 

composite) where traditional methods unable to achieve the 

desired values. 

The optimal structural parameter has been computed via 

different soft computing techniques in the past to describe 

the best possible design input values for the final layered 

structure. Rao et al. (2011) developed first-time a teaching 

learning-based optimization (TLBO) technique heuristically 

to make a progress step-wise fashion by learning partly 

from the earlier work. This method has been applied 

successfully to solve different engineering problems such 

die casting (Rao et al. 2014), fatigue analysis of leaf spring 

(Sayare and Kamble 2015), machining of carbon fiber 

reinforced epoxy (Kumar et al. 2017) and erosion wear rate 
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optimization of short glass fibers and LD slag filled 

polypropylene composite (Pati et al. 2017) and so on. 

Similarly, the particle swarm optimization (PSO) technique 

a metaheuristic method and propelled by the social conducts 

of bird rushing or fish schooling. The fitness values for all 

particles are assessed by the objective function to be 

optimized and have speeds which coordinate the flying of 

the particles (Eberhart and Shi 2001). The effectiveness of 

this method has been studied by solving the entropy 

minimization problem of the heat exchangers (Rao and 

Patel 2010). Additionally, PSO technique implemented 

successfully for the optimal frequency evaluation of the 

laminated composite structure by taking the mid-plane 

kinematic models either the classical laminate theory 

(CLPT) (Bargh and Sadr 2012) or the higher-order shear 

deformation theory (HSDT) (Vosoughi et al. 2016). 

Likewise, the PSO is employed further to examine the 

structural damage identification (Perera et al. 2010) 

including the truss related cases (Tsavdaridis et al. 2015 and 

Kaveh and Talatahari 2009). 

The Artificial Bee Colony (ABC) algorithm is another 

technique where every food source relates to an answer for 

the optimization process and the measure of nectar at a food 

source refers to the fitness of solution. The employed 

honeybees find their food sources by leading a search in 

their neighborhood. Onlooker honey bees are enrolled to the 

food sources in light of their quality values. Top notch 

solutions have a higher probability for being chosen. The 

superiority of this method is proven (Karaboga and Basturk 

2008) by comparing the result of this method, i.e., ABC 

with the differential evolution, evolutionary algorithm and 

PSO methods. The ABC (Apalak et al. 2014) and the 

modified version of ABC (Omkar et al. 2011) for discrete 

variables is also developed and coupled with CLPT to 

optimize the design variables of the layered composite. In 

continuation to that, the improved form of the ABC is also 

utilized for the analysis of the cracked beam structural 

problem (Ding et al. 2017). Further, many research articles 

related to the weight minimization (Grzywinski 2015 and 

Vo-Duy et al. 2017), frequency maximization (Narita 2006, 

Apalak et al. 2008 and Zhang et al. 2014), topology 

optimisation implementation and stiffness anisotrpic effect 

on additively manufactured component (Chiu et al. 2018), 

thickness optimization (Conti et al. 1997) and buckling load 

optimization (Ho-Huu et al. 2016) of the layered and 

 

 

functionally graded carbon nanotube structures (Vo-Duy 

2018) are solved using different available techniques 

coupled with the CLPT and/or the HSDT (Aagaah et al. 

2006) type of displacment polynomials. Additionally, 3D 

elasticity theory is adopted to compute the nano structural 

responses and the particle influence using the modified 

theoretical models (Fourn et al. 2018, Karami et al. 2018 

and Menasria et al. 2017, Hajmohammad et al. 2018, 

Kolahchi et al. 2017a, b, Kolahchi 2017, Kolahchi and 

Cheraghbak 2017, Kolahchi and Bidgoli 2016) including 

the prediction of optimal buckling load (Kolahchi et al. 

2017a, b). 

The review of the articles indicates that the different 

optimization techniques have already been developed in the 

past including the mid-plane theories for the analysis and 

the prediction of the preferred parameter to design final 

finished structural components made of composite material 

(beam and plate). Also, we note that a comprehensive 

amount of literature discussed on either the CLPT or the 

FSDT kinematic models including the optimal technique 

instead of the HSDT type of displacement polynomial 

model (approximation for the d). Hence, the authors of the 

present research attempted first-time to derive a new 

coupled (higher-order kinematic model including different 

optimization algorithms, i.e., TLBO, PSO and ABC 

technique) FE model for the prediction of frequency 

responses by optimizing the fiber orientations assuming the 

frequency maximization. The numerical model stability 

established as a priori and extended to evaluate the defined 

responses for variable input parameter including the 

influence of selected optimal technique. Subsequently, the 

inferences of each parameter on the optimal structural 

frequencies are computed via different numerical examples 

and presented in details. 

 

 

2. Theoretical formulation 
 

The plate model has been established with the 

assumption that the plate is composed of the finite number 

of orthotropic layers of uniform thickness as depicted in 

Fig. 1. The dimensions of the plate are, i.e., length l1, width 

l2 in x1 and x2 direction, respectively and thickness is l3 in x3 

direction. 

 

 

 

 

Fig. 1 Representation of the laminated composite plate 
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2.1 Displacement field 
 

In this study, a higher-order shear deformation model 

has been utilized for the modeling of a laminated composite 

plate. The displacement field is considered as same as in the 

source (Patle et al. 2018) (the displacement variation 

throughout the thickness is assumed to be constant thus 

giving zero transverse normal strain) 
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Here, the displacement of any arbitrary point in the plate 

geometry is defined as 𝑢 , 𝑣  and 𝑤  along x1, x2 and x3 

direction. Additionally, the above-mentioned equation 

associated with u, v and w are the mid-plane displacement 

values and the rotations i.e., θ1 and θ2 are the rotation of 

normal to the mid-plane about x2 and x1 direction, 

respectively. The remaining terms θ3, λ1, λ2, ψ1 and ψ2 are 

the higher-order terms included from Taylor‟s series 

expansion to maintain the desired parabolic distribution of 

shear stress through the entire thickness of the plate. 
 

2.2 Constitutive relation 
 

For any kth layer laminae, the stress-strain relationship 

(Jones 1999) is expressed mathematically as below by 

considering an arbitrary angle „ϴ‟ of the fiber orientation as 
 

   ij ijij
Q      

(2) 

 

where, {𝜎𝑖𝑗 }, [𝑄 𝑖𝑗 ]  and {𝜀𝑖𝑗 } are the stress matrix, the 

elastic property matrix and the strain matrix respectively. 

Further, the elastic property matrix and strain matrix can be 

explored as 
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(4) 

 

2.3 Finite element formulation 
 

FEM provides accurate numerical solutions for critical 

engineering problems with least possible errors. Hence, in 

the current analysis the geometry is modeled with FEM 

using an isoparametric quadrilateral Lagrangian element 

and nine degrees of freedom per node for the accurate 

prediction of the final solution. The displacement vector at 

any point on the mid-surface for the discussed model is 

given by 
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(5) 

 

[Ni] represents the interpolation function and the 

displacement field vector for the ith node as {𝛿𝑖}. The nodal 

points generally signify the physical characteristics and the 

shape functions of the current element (Cook et al. 2003). 

Now, the mid-plane strain vector can be written as 
 

      i ii
B 

 
(6) 

 

where, [Bi] represents the strain displacement relation 

matrix in accordance with the type of model. 
 

2.4 Energy of the panel 
 

The strain energy (S) of the laminate can be expressed 

as 
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(7) 

 

Similarly, the kinetic energy (V) of the free vibrated 

composite panel can be expressed as 
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(8) 

where, expression ρ and {𝑑 } denotes the mass density and 

the velocity vector, respectively. 

The elemental stiffness matrix ([K]) and the mass matrix 

([M]) can be expressed as following 
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(9) 

 

2.5 Governing equations and solution technique 
 

Now, the governing equation is obtained by reducing the 

order of the total energy using to Hamilton‟s priniciple and 

denoted as in (Cook et al. 2003) 
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(10) 

 

Substituting Eqs. (7) and (8) into Eq. (9), the final form 

of the equation will be conceded as 
 

     
..
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(11) 

 

where, 𝛿  is the acceleration, 𝛿 is the displacement. 

The natural frequency of the system is computed from 
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the eigenvalue solution of the proposed equation and 

summarised as 
 

    2 0K M  
 

(12) 

 

where 𝜔  and Δ are the natural frequency and the 

corresponding eigen vector, respectively. 

Eq. (12) is solved by using the given sets of boundary 

conditions shown in Table 1 to avoid rigid body movements 

and to reduce the number of unknowns. 

 

2.6 Algorithms 
 

2.6.1 Teaching learning based optimization 
Teaching-learning is an important process where the 

objective is achieved through the learning from each step to 

improve the initial knowledge. Rao et al. (2011) proposed 

an algorithm, known as Teaching-Learning-Based Optimi-

zation (TLBO), which simulates the traditional teaching-

learning phenomenon of a classroom. The algorithm 

simulates two fundamental modes of learning: (i) teaching 

phase;p and (ii) learning phase. TLBO is a population based 

algorithm, where a group of students (i.e., learner) is 

considered the population and the different subjects offered 

to the learners are analogous with the different design 

variables of the optimization problem. The results of the 

learner are analogous to the fitness value of the 

optimization problem. The best solution in the entire 

population is considered as the teacher. 

 

2.6.2 Teaching phase 
Teacher phase is the initial phase which involves a tutor 

who imparts his knowledge to the learners to increase the 

average marks M1 of his students to a higher value M2. It is 

assumed that at any particular iteration k there are „m‟ 

number of subjects which are being taught to „l‟ number of 

learners and Mj is the average result of the students in any 

subject. The latest average marks Mnew considering all 

subjects is assumed to be the result of the best student ψbest. 

Now, the difference between the current average result and 

Mnew can be computed via following formulae 
 

_ ( )
k i f snewDiff Mean M T M 

 
(13) 

 

Here, Mnew is the best average obtained, ϕi is any 

 

 

random number and Tf is the teaching factor ranging from 0 

to 1. 

 T round [1 (0,1) ]2 1f rand  
 

(14) 

 

Further, the existing solution is modified by adding the 

aforesaid difference as 
 

, , _new j old j jDiff Mean  
 (15) 

 

2.6.3 Learning phase 
This phase of the algorithm simulates the learning of the 

students (i.e., learners) through interaction among 

themselves. The students can also gain knowledge by 

discussing and interacting with other students. A learner 

will learn new information if the other learners have more 

knowledge than him or her. The learning phenomenon of 

this phase is expressed below: 
 

for i = 1: 𝑀𝑛𝑒𝑤  

     Select any student randomly (Xj, i ≠j) 

            if Xi is better than Xj 

                  Xnew = Xold + rand*(Xi-Xj) 

            else  

       Xnew = Xold + rand*(Xj-Xi) 

            end 

   if Xnew is better than Xold 

Xi = Xnew 

   end if 

end for 
 

The step-wise procedure for the implementation of 

TLBO is given as below: 
 

Step 1 generate initial population randomly 

Step 2 calculate the mean of each design variable, i.e. 

mean(Xi) =   𝑋𝑖,𝑗
𝑀𝑛𝑒𝑤
𝑗=1  /𝑀𝑛𝑒𝑤  

Step 3 define a student as a teacher whose objective 

function (f) is maximum 

Step 4 update all student by using Eq. (13) 

Step 5 compared students with each other (see computer 

code given in the section 3.1.2) 

Step 6 is the termination criteria satisfied, if no, go to 

step 2. 

Step 7 find the student whose objective function (f) is 

maximum and assign it as best solution 
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Free (F): 1 2 1 2 1 2 0u v w             
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The total number of function evaluation of the TLBO is 

calculated as 2*Gn*Pn+Pn+, where “Gn” is the number of 

the iteration. However, the TLBO is an efficient algorithm 

to find global optimal solutions of the optimization 

problem. The later phase of the algorithm is dedicated for 

increasing the knowledge of students by group interactions. 

A student interacts randomly with his other fellow mates to 

upgrade his or her knowledge. Considering two separate 

learners χi and χj where i ≠ j at any iteration k 
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(16) 

 

χnew gets accepted whenever a better feasible solution is 

obtained. 

 

2.6.4 Artificial bee colony optimization 
In this optimization technique, the behavior of honey 

bees is manifested for predicting optimal solutions. There 

are two groups of the bees viz. employed bees and 

onlookers who take part in the process. The number of food 

sources around hive is assumed to be the number of 

employed bees. When the food source gets exhausted, an 

employed bee becomes a scout bee. The algorithms is 

subdivided into four phases; the first one is the initialization 

phase: 

The expression for random generation of the food 

source is shown below 

 

, (0,1) ( )m j j j jrand      
 (17) 

 

Where, m is the dimension, αj and are higher and lower 

extreme boundaries of a solution of the objective function, 

rand (0, 1) gives any random number within limits [0, 1]. 

The second phase is the employed bees‟ phase in which the 

neighbor food source τm,j is determined and calculated by 

the following equation. 

 

, , , , ,( )m j m j m j m j k j       
 

(18) 

 

where, j is an arbitrary parameter index, λj is an arbitrary 

selected food source, φm,j is a random number within the 

limits [-1, 1]. The objective function value (fitness) is 

evaluated as follows and a selection is made between λm and 

τm 

1
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The third phase is that of the onlooker bees‟ phase 

where the amount of food source is judged by its 

profitability and the profitability of all food sources δm is 

determined by the formula 
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(20) 

where, fit(λm) is the fitness of onlooker bees in the 

neighborhood of food source according to the expression 
 

(0,1) ( )m i i irand      
 

(21) 

 

Scout bees‟ or the final phase: If the food source 

couldn‟t change after the limit mentioned above, the food 

source will be abandoned and Eq. (17) is used to replace 

that food source. 
 

2.6.5 Particle swarm optimization 
This technique is developed on the basis of swarm 

intelligence heuristics which simulate the food searching 

patterns and corresponding behavior of few selective 

creatures in nature. Out of the available techniques, PSO 

imitates the behavior of a congregation of birds or fishes. In 

this method, a population is iteratively modified until a 

termination criteria puts an end to it. In PSO, the entire 

population K= {K1, K2 , ….. , Kn} of feasible answers is 

referred to as a swarm where K1, K2,….. , Kn represented as 

particles. This method does not modify the population in 

successive iterations but tries to maintain the initial 

population and update the positions of those particles after 

each iteration. There is no such concept of the survival of 

the fittest and particles do not mutate or regenerate as 

prominent in the genetic algorithms, but the particles 

interact among themselves and the better solutions are 

replaced with the inferior ones. 

In general, four variables associated with any particle 

presented in the form of subscript „j‟ at any particular 

iteration and superscript „k‟ are showing: 𝜁𝑗
(𝑘)

, 𝜆𝑗
(𝑘)

, 𝛾𝑗
(𝑘)

 

and 𝑣𝑗
(𝑘)

 are the current position vector, the previous best 

position, the previous best position of the surrounding 

particles and the particle speed, respectively. Initially, the 

particle positions are randomly organized, and the velocities 

are set as null or small random values. In this algorithm, the 

user has to input certain parameters like ε(k) which is the 

inertia weight or a damping factor whose value decreases 

approximately from 0.9 to 0.4 during iterations. φ1, φ2 are 

acceleration coefficients whose values lie approximately 

between 0 to 4. The model for particle update speed in the 

current analysis is mentioned below 
 

( 1) ( ) ( ) ( ) ( ) ( ) ( )

1 1 2 2v v φ ( ) φ ( )k k k k k k k

k i j j j j           
 
(22) 

 

where, η1 and η2 denote random numbers of uniform 

distribution. The three sections of the velocity of Eq. (22) 

are the inertia, cognitive behavior of present particle and 

surrounding particles, respectively. Position at any iteration 

k changes according to the following equation 
 

( 1) ( ) ( 1)vk k k

j j j   
 

(23) 

 

 

3. Results and discussion 
 

The mathematical formulation discussed in the above 

section is now converted into a MATLAB code to obtain the 

necessary dynamic responses and corresponding layer 
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sequences. The non-dimensional form of the fundamental 

frequency and the material property as presented below 

throughout the study else stated otherwise. 

Nondimensional frequency: 
 

1/2

2 0
1

o

l
D

 
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 




 
 

where the reference bending rigidity Do is given by: 

𝐷𝑜 = 𝐸2𝑙3
3/12(1 − 𝑣12𝑣21). 

Material Properties (Bargh and Sadr 2012) 
 

E1 = 138 GPa, E1 = E1 = 8.96 GPa, G12 = G13 = 7.1 GPa, 

G23 = 3.55 GPa, ν12 = ν13 = ν23 = 0.3. 
 

The problem involves finding the best orientation of 

 

 

fiber angles which maximizes the non-dimensional 

frequency, Ω. The symmetric condition is enforced by 

optimizing only one half of the laminated structure. The 

optimal design problem is stated as: 
 

Find: θ = (θ1, θ2, ..., θk) 

To maximize: Ω = Ω(θ1, θ2, ..., θk) 

θk is subjected to ‒90° ≤ θk ≤ 90° 

k is half of the layer number 
 

3.1 Performance check of the hybrid model 
 

The necessary performance check (convergence and 

comparison) of the currently developed computer code is 

performed in this section. For the convergence study, a 

square (l1/l2 = 1) simply-supported eight-layered laminated 
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(e) (f) 

Fig. 2 Convergence study of the simply-supported eight-layer antisymmetric angle-ply square plate (l1/l3 = 20, E1/E2 = 25). 
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composite plate (l1/l3 = 20) is considered. The material 

property is taken as defined above except, E1 = 25 E2. The 

necessary responses, i.e., nondimensional frequency and 

laminae orientations are obtained using all three kind of 

models (TLBO, PSO and ABC) and presented in Fig. 2. It 

infers from the figure that all the four orientations, as well 

as the frequency values, are almost stable from the 20th 

iterations. 

Now, for the comparison study, the eight-layered 

antisymmetric plate structure is analyzed for different edge 

conditions; CCCF, SSSS, SSSF, SFSF and SSCC. The 

notations, C, S and F stand for the clamped, the simply-

supported, and the free edge of the plate, respectively. For 

the edge condition CCCF geometrical parameter parameters 

are taken as (l1/l2 = 2, l1/l3 = 100) and for remaining edge 

conditions geometrical parameters are considered as (l1/l2 = 

1, l1/l3 = 100). The responses are calculated for the CCCF 

end constraint using the current PSO and compared with the 

source values obtained via the genetic algorithm. The 

present and the reference data (Bargh and Sadr 2012) 

provided in Fig. 3 for the comparison purpose. In addition, 

the responses for the remaining edge constraints are 

evaluated via the current PSO technique and compared with 

two techniques (layer-wise optimization and PSO solution 

technique) as provided in the references (Narita 2006, 
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Fig. 3 Comparison of natural frequency of eight-layered 

rectangular (l1 / l2 = 2) laminated plate CCCF 

boundary condition 
 

 

Bargh and Sadr 2012). The present and the reference values 

are provided in Table 2. The frequency values including the 

fibre orientations are obtained using the currently proposed 

techniques showing good agreement with the reference 

data. 
 

3.2 New illustrations 
 

After the necessary performance check of the present 

model, now the model is engaged to compute the frequency 

parameters for the different parameters to show the model 

applicability. For the parametric study, an eight-layer square 

antisymmetric laminated composite plate problem is 

considered with the defined material properties else stated 

otherwise. In addition, the geometrical parameters are 

defined in the description of the respective examples. 
 

3.2.1 Effect of aspect ratio (l1/l2) 
In this example the nondimensional natural frequency of 

the simply-supported laminated plate structure (l1/l3 = 100) 

is investigated for various length to breadth ratio (l1/l2 = 1, 

1.5, 2, 2.5 and 3). The said responses are obtained using all 

the three algorithms (TLBO, PSO and ABC). The 

nondimensional frequency responses and corresponding 

optimum lamination scheme are shown in Fig. 4 and Table 

3 respectively. It is observed from the responses that the 

non-dimensional fundamental frequency values are 

following the increasing trend with the increase in the 
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Fig. 4 Effect of plate aspect ratio on the non-dimensional 

fundamental frequency for simply-supported 

antisymmetric angle-ply laminated plates (l1/l2 = 

100) 
 

 

Table 2 Comparison study of fundamental frequency and orientations of eight-layer antisymmetric 

laminated composite plate with different boundary conditions (l1/l = =1) 

Case 
Edges 

BCs 

Ω Optimal Stacking 

Narita 

(2006) 

Bargh and 

Sadr (2012) 

Present 

(PSO) 

Narita 

(2006) 

Bargh and 

Sadr (2012) 

Present 

(PSO) 

1 SSSS 56.32 56.37 56.39 
(45°/-

45°/45°/45°)2 

(-45°/45°/ 

46°/46°)2 

(-45°/45°/ 

44°/48°)2 

2 SSSF 39.84 39.83 40.08 (0°/0°/0°/0°)2 (0°/0°/0°/0°)2 (0°/0°/0°/0°)2 

3 SFSF 38.69 38.69 38.95 (0°/°0/0°/0°)2 (0°/0°/0°/0°)2 (0°/0°/0°/0°)2 

4 SSCC 68.72 71.50 73.60 
(0°/45°/ 

-45°/-45°)2 

(-42°/42°/-

42°/42°)2 

(44°/-45°/-

45°/47°)2 
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aspect ratios irrespective of the different algorithms. This is 

because of the increase in structural stiffness (as the width 

is decreasing) with the increase in aspect ratio. 
 

3.2.2 Effect of length-to-thickness ratio (l1/l3) 
This example presents the dynamic responses for five 

length-to-thickness ratios (l1/l3 = 10, 20, 50, 100 and 150) of 

the square plate. The edges of the plate structure are 

considered to be simply-supported and the necessary 

responses obtained using all the three algorithms (TLBO, 

PSO and ABC) are presented in Fig. 5. In addition, the 

corresponding individual lamina orientation are tabulated in 
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Fig. 5 Effect of plate length to thickness ratio on the non-

dimensional fundamental frequency for simply-

supported antisymmetric angle-ply laminated plates 
 

 

 

 

 

 

Table 4. It is observed from the responses that the non-

dimensional fundamental frequency values are following 

the increasing trend with increasing the length to thickness 

ratios. Additionally, it is worth to mention that the optimum 

lamination scheme remains unchanged with the increase in 

length to thickness ratios. 
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Fig. 6 Effect Young‟s modulus ratio on the non-

dimensional fundamental frequency for simply-

supported antisymmetric angle-ply laminated 

plates (l1 /l3 = 100) 
 

 

 

 

Table 3 Effect of plate aspect ratio on the optimum lamination scheme for simply-supported angle-ply antisymmetric 

laminated plates (l1/l3 = 100) 

Algorithm 
l1/l2 

1 1.5 2 2.5 3 

TLBO (-45°/45°/44°/48°)2 (64°/-65°/-69°/84°)2 (-90°/90°/90°/-90°)2 (-90°/90°/-90°/-90°)2 (-90°/90°/90°/-90°)2 

PSO (-45°/45°/45°/45°)2 (66°/-63°/90°/-61°)2 (90°/-90°/-90°/-90°)2 (-90°/90°/90°/90°)2 (90°/90°/-90°/90°)2 

ABC (43°/-41°/-45°/51°)2 (62°/-65°/-74°/63°)2 (86°/-87°/-85°/85°)2 (89°/-87°/89°/-90°)2 (-89°/-87°/88°/-88°)2 
 

Table 4 Effect of plate length to thickness ratios on the optimum lamination scheme for simply-supported angle-ply 

antisymmetric laminated plates 

Algorithm 
l1/l3 

10 20 50 100 150 

TLBO (-45°/45°/45°/-45°)2 (45°/-45°/-45°/45°)2 (45°/-45°/45°/-45°)2 (45°/-45°/45°/44°)2 (45°/-45°/-45°/45°)2 

PSO (-45°/45°/45°/47°)2 (-45°/44°/45°/-45°)2 (45°/-45°/45°/-45°)2 (45°/-45°/45°/-45°)2 (45°/-45°/45°/-45°)2 

ABC (-45°/43°/-45°/45°)2 (45°/-45°/-45°/42°)2 (45°/-45°/-45°/45°)2 (45°/-44°/45°/-45°)2 (-44°/-45°/47°/-46°)2 
 

Table 5 Effect of Young‟s modulus ratio ratios on the optimum lamination scheme for simply-supported angle-ply 

antisymmetric laminated plates (l1 /l3 = 100) 

Algorithm 
l1/l3 

20 30 50 100 150 

TLBO (-45°/45°/45°/-48°)2 (45°/-45°/46°/-47°)2 (-45°/44°/46°/-44°)2 (-45°/45°/44°/-43°)2 (45°/-45°/-45°/46°)2 

PSO (-45°/45°/45°/-45°)2 (45°/-45°/-45°/45°)2 (-45°/-45°/45°/-45°)2 (-45°/45°/45°/-45°)2 (45°/-45°/-45°/45°)2 

ABC (-45°/43°/-45°/45°)2 (45°/-45°/-45°/42°)2 (45°/-45°/-45°/45°)2 (45°/-44°/45°/-45°)2 (-44°/-45°/47°/-46°)2 
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3.2.3 Effect of Young’s modulus ratio (E1/E2) 
In order to analyze the influence of the modular ratio 

nondimensional frequency values of the plate structure with 

simply-supported edges is evaluated in this illustration for 

different modular ratios (E1/E2 = 20,30,50,100 and 150). 

The thickness ratio of the plate is considered as (l1/l3 = 100). 

The values obtained using all the three algorithms (TLBO, 

PSO and ABC) are shown in Fig. 6 and Table 5. The 

nondimensional frequencies are following the increasing 

trend as the modular ratio increases. The increase in 

frequency values is due to the increase in stiffness of the 

panel with the increase in modular ratios. Because the 

transverse modulus is considered to be constant in this 

example and the corresponding longitudinal modulus value 

increases when the modular ratio increase. 
 

 

4. Conclusions 
 

A hybrid model is developed by coupling the higher-

order kinematic theory based FE model and three different 

optimization algorithms (TLBO, PSO and ABC) for the 

prediction of optimal stacking sequence and corresponding 

frequency values. The higher-order FE model is used to 

evaluate the eigenvalue responses, i.e., fundamental 

frequency and different optimization algorithm techniques 

for the prediction of the corresponding optimum lamination 

scheme. The final governing equation is obtained using the 

weak form finite element approach. The responses are 

computed numerically with the help of in-house computer 

code using the derived mathematical model in MATLAB-12 

environment. Now, the necessary stability and the accuracy 

of the computed frequencies including the optimal 

sequences are completed as a priory and further utilized 

them to comprehensive parametric study. The detailed 

parameter dependent numerical nondimensional frequency 

values are following an increasing pathe for the increased 

value of the aspect ratios, the thickness ratios and the 

modular ratios. However, the frequency parameter not 

affected considerably while the values of the thickness 

ratios and the optimal fibre angle sequence increase. 

Finally, from the current optimisation study, it can be 

concluded that all three techniques have the capability of 

predict the responses without much deviations. But the 

convergence rate including the consistency of results 

obtained via all three techniques indicate the suitability over 

other two methods. This is because the responses obtained 

using all three methods follow the converge immediate after 

twenty steps for each methodologies but the predictions via 

TLBO is consistent and close convergence between two 

successive values. 
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