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1. Introduction 

 

Advances in nanoscience have led to the emergence of 

an extensive range of nanoscale systems and equipment 

such as nano-electromechanical systems. Due to their 

unique mechanical, electronic, optical and thermal 

properties, carbon nanotubes, graphene ribbons and 

graphene sheets currently have a wide range of applications 

in these systems. The analysis and assessment of these 

structures are therefore very important. As a nanostructure, 

graphene contains a layer of covalently-bonded carbon 

atoms in a honeycomb structure (Iijima 1991). Graphene 

has attracted the particular attention of researchers due to its 

special mechanical, electrical and thermal properties and 

also its fairly low production cost (Dai 2002, Navarro et al. 

2007, Lee et al. 2008, Yakobson et al. 1996, Stankovich et 

al. 2006). A variety of theoretical methods have been used 

to examine the mechanical and elastic properties of an ideal 

and flawless single-layer graphene sheet, including density 

functional theory (DFT), quantum mechanics, molecular 

dynamic simulation and continuous medium mechanics. Liu 

et al. (2007) found Young’s modulus as 1.05 TPa for single- 

layer graphene using the density functional technique. Jiang 

et al. (2009) investigated Young’s modulus for different 

sizes of single-layer graphene at different temperatures 

                                          

Corresponding author, Ph.D. Student, 

E-mail: vahid.th1982@gmail.com; 

vahid.tahouneh@ut.ac.ir 

 

 

using molecular dynamics. Shen et al. (2010) examined 

Young’s and shear moduli of nanoscale structures at 

different temperatures. The analysis of failure and ultimate 

strength of single-layer graphene sheets was carried out by 

Ni et al. (2010), who showed that these nanostructures are 

much stronger in armchair alignment than zigzag alignment. 

Tsai and Tu (2010) examined the mechanical properties of 

graphene by molecular dynamics. The main problems with 

atomic models include time-consuming calculations and the 

subsequent limitation in the dimensions of molecular and 

atomic structures. Great efforts have therefore been made in 

recent years to develop nanoscale theories of continuous 

medium mechanics. To this end, Reddy et al. (2006) found 

Young’s modulus as 0.669 TPa for single-layer graphene 

using continuous medium mechanics. Sakhaee-Pour (2009) 

and Georgantzinos et al. (2010) found Young’s modulus 

values as 1.025 TPa and 1.367 TPa respectively, using the 

finite element technique, in which the atomic bonds were 

modelled as truss, beam or spring. Graphene sheets appear 

as wrinkled when in equilibrium. These wrinkles can have a 

height of 7 Å . Moreover, defects called the ridge defect also 

appear on graphene sheets due to shearing strain (Udupa 

and Martini 2011). Bu et al. (2009) used molecular dynamic 

simulation to assess the mechanical properties of armchair-

structured graphene nanoribbons at 300 K. This simulation 

indicated the presence of 0.88-nm-high bulges and wrinkles 

in the nanoribbons equivalent to approximately a 5%-strain 

on the nanoribbon. Kvashnin et al. (2010) investigated the 

properties of circular graphene for various radii and also the 

effect of different densities of vacancy defects on the 
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Abstract.  Geometric imperfections may be created during the production process or setting borders of single-layer graphene 

sheets (SLGSs). Vacancy defects are an instance of geometric imperfection, so investigating the effect of these vacancies on the 

mechanical properties of single-layer graphene is extremely important. Since very few studies have been conducted on the 

structure of imperfect graphene (with the vacancy defect) as an anisotropic structure, further study of this defective structure 

seems imperative. Due to the vacancy defects and for the proper assessment of mechanical properties, the graphene structure 

should be considered anisotropic in certain states. The present study investigates the effects of site and size of vacancy defects on 

the mechanical properties of graphene as an anisotropic structure using the lekhnitskii interaction coefficients and Molecular 

Dynamic approach. The effect of temperature on the severity of the SLGS becoming anisotropic is also investigated in this 

study. The results reveal that the amount of temperature has a big effect on the severity of the structure getting anisotropic even 
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material properties of the graphene are studied in this research work. According to the present study, using material properties of 

flawless graphene for imperfect structure can lead to inaccurate results. 
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mechanical properties of single-layer graphene sheet. The 

Stone-Wales defect in graphene and other substances with a 

covalence bond configuration of the geometric type sp2 

were investigated by Ma et al. (2009). Tahouneh et al. 

(2016) studied the effect of fiber reinforced CNT arrays on 

the material properties of nanocomposites. Tornabene et al. 

(2018) studied free vibration of laminated nanocomposite 

plates and shells using first-order shear deformation theory 

and the Generalized Differential Quadrature (GDQ) 

method. Each layer of the laminate was modelled as a three-

phase composite. A survey of several methods under the 

heading of strong formulation finite element method 

(SFEM) was presented by Tornabene et al. (2015). These 

approaches were distinguished from classical one, termed 

weak formulation finite element method (WFEM). 

Soleimani et al. (2017) investigated the postbuckling 

characteristics of single layered graphene sheets (SLGSs) 

using Nonlocal elasticity theory and von-Karman nonlinear 

model in combination with the isogeometric analysis (IGA). 

Jalali et al. (2016) investigated the influence of out-of-plane 

defects on vibrational analysis of single layered graphene 

sheets. Marin (2008) proved the existence and uniqueness 

of the generalized solutions for the boundary value 

problems in elasticity of initially stressed bodies with voids 

(porous materials). Marin and Ö chsner (2017) studied the 

mixed initial boundary value problem for a dipolar body in 

the context of the thermoelastic theory proposed by Green 

and Naghdi. For the solutions of this problem, Marin and 

Ö chsner (2017) proved a result of Hölder’s-type stability on 

the supply terms. Marin (2016) formulated a heat-flux 

theory for taking into account a new set of state variables 

including the heat-flux vector and an evolution equation for 

it. Marin (1997) proved that the Cesaro means of the kinetic 

and strain energies of a solution with finite energy became 

asymptotically equal as time tended to infinity. The same 

author (Marin 2010) considered a right cylinder composed 

of a physically dipolar thermoelastic material for which one 

plane end was subjected to an excitation which was 

harmonic in time. He obtained a spatial decay estimate, 

similar to that of Saint-Venant type. Zhang et al. (2009) 

used the governing equations and simulation to indicate that 

the gas-identification property of chemical sensors increases 

significantly in graphene with the vacancy defect compared 

to defect-free graphene. Kumar and Srivastava (2016) 

investigated the effective elastic properties of CNT- and 

graphene-based nanocomposites using 3-D nanoscale 

representative volume element (RVE) based on continuum 

mechanics using finite element method (FEM). Moradi-

Dastjerdi and Payganeh (2017a) studied thermoelastic 

dynamic behavior of functionally graded carbon nanotube 

reinforced composite (FG-CNTRC) cylinders subjected to 

mechanical pressure loads, uniform temperature 

environment or thermal gradient loads by a mesh-free 

method. Moradi-Dastjerdi and Momeni-Khabisi (2016) 

investigated free vibration, forced vibration, resonance and 

stress wave propagation behavior in nanocomposite plates 

reinforced by wavy carbon nanotube (CNT). Moradi-

Dastjerdi and Payganeh (2017b) considered transient heat 

transfer analysis of functionally graded (FG) carbon 

nanotube reinforced nanocomposite (CNTRC) cylinders 

with various essential and natural boundary conditions. 

Tahouneh (2017) studied effects of CNTs waviness and 

aspect ratio on vibrational response of FG-sector plate using 

GDQ method. Tahouneh (2017) investigated free vibration 

analysis of continuously graded carbon nanotube-reinforced 

(CGCNTR) rectangular plates resting on two-parameter 

elastic foundations. The volume fractions of oriented, 

straight single-walled carbon nanotubes (SWCNTs) were 

assumed to be graded in the thickness direction. 

Allahkarami et al. (2018) examined the in-plane and out-of-

plane forced vibration of a curved nanocomposite 

microbeam. The same authors (2017) investigated the 

magneto-thermo-mechanical vibration and damping of a 

viscoelastic functionally graded-carbon nanotubes (FG-

CNTs)-reinforced curved microbeam based on Timoshenko 

beam and strain gradient theories. Sun et al. (2014) also 

studied the effect of vacancy defects on the ultimate 

strength of graphene sheets. In another study (Sun et al. 

2015), molecular dynamic modelling was used to 

investigate the effect of defects on the unique properties of 

graphene while considering graphene an anisotropic 

structure. This research work revealed that graphene 

properties are totally dependent on angular orientation. The 

authors showed that the mechanical properties of graphene 

sheets are least sensitive to vacancy defects at the angle of 

15 degree. Wu et al. (2015) found dynamic properties and 

relaxation time for a variety of graphene groups with 

vacancy defects using molecular dynamic simulation in 

Large-scale Atomic/Molecular Massively Parallel Simulator 

(LAMMPS). They showed that the maximum dynamic 

displacements of graphene increase with the number and 

size of vacancy defects. Based on theories relating to 

graphene molecular bonds, Xie et al. (2014) studied the 

effect of single- and double-vacancy defects on the photonic 

properties and thermal conductivity of graphene with 

defects and showed that the type of these defects has a 

significant effect on the photo and thermal conductivity of 

graphene. Neek-Amal and Peeters (2010) performed the 

MD simulation of nano-indentation of circular graphene 

sheets similar to the experiments of Lee et al. (2008). 

Utilizing quantum mechanics, Yanovsky et al. (2009) 

obtained mechanical properties of graphene sheets. None of 

the cited studies have investigated the properties of 

imperfect graphene with an anisotropic structure. Given the 

existing articles and information related to the authors of 

this research work, no articles have yet been published for 

investigating the effect of vacancy defects on the material 

properties of single-layer graphene as an anisotropic 

structure using Lekhnitskii interaction coefficients and the 

molecular dynamic method. Other researchers have 

addressed the vibrational and stress analysis of graphene 

structures with vacancy or Stone-Wales defects. It is worth 

noting that, despite assuming vacancies in fairly simple 

shapes at different analytical and semi-analytical solutions, 

these researchers have still used the mechanical properties 

of ideal and flawless graphene. The properties used in these 

articles were isotropic or orthotropic. The results of the 

present research show that, in addition to the size of 

vacancy defects, their site also significantly affects the 

material properties of graphene. It is observed that the 
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amount of temperature has a big effect on the structure 

getting anisotropic. In this study the effect of site and size 

of vacancy defects on the severity of the structure becoming 

anisotropic are studied by determining Lekhnitskii 

interaction coefficients. Unlike the molecular dynamic 

technique used in previous studies, which assumed a 

random location for vacancy defects on single-layer 

graphene, the present article mainly aims to systematically 

examine single-layer graphene sheets with a single or a 

series of defects. The study first finds the mechanical 

properties of an ideal graphene sheet using the molecular 

dynamic technique, and after validating the method, the 

effects of different sizes and numbers of vacancy defects on 

the mechanical properties of graphene are investigated. The 

results suggest that the size, site and temperature can lead to 

the emergence of anisotropic properties with varying 

intensities in graphene. 
 

 

2. Molecular dynamic modelling 
 

In the present study, the Tersoff potential energy 

function is used for estimation and simulation of covalent 

bond energy between carbon atoms in graphene. Molecular 

simulation is carried out with a canonical ensemble. The 

Velocity-Verlet algorithm is used to solve equations of 

motion in terms of time. The relaxation process is carried 

out before and after making shape changes to minimize the 

energy of single-layer graphene at the desired temperature. 

By applying strains, stress changes are calculated in terms 

of the applied strain, and the stiffness tensor of the material 

and therefore its properties are obtained. The method is first 

validated using the results from previous studies on defect-

free graphene, and the effects of site and size of the vacancy 

defects on the mechanical properties of graphene are then 

addressed. 
 

 

3. Stress-strain correlation in monolayer with 
desired direction 
 

The (x, y) coordinate system can be assumed as Fig. 1. 

Main directions of the materials on this plane are defined 

with axes 1 and 2. Axis 1 makes ɵ angle with axis x and in 

line with the fibers. 

The stress exerted on a coordinate can be transposed to 

another coordinate using transpose matrix indicated in the 
 

 

 

Fig. 1 The correlation between main axes of materials 

and the axes of the structure 

following equation 
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(1) 

 

Strains can be transposed from main coordinates to 

geometric coordinates with a similar method. Equation (1) 

can be summarized as 
 

 
x 1

1

y 2

12xy

T


   
   
     
        

(2) 

 

Where matrix [T] can be stated as follows 
 

2 2

2 2

2 2
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[T] S C 2CS

CS CS C S

 
 
  
     

(3) 

 

Specific orthotropic state of a monolayer is a case in 

which main coordinates of materials are aligned with 

geometric coordinates of the layer. Therefore, stress-strain 

correlation can be formulated as 
 

x 1 11 12 1

y 2 12 22 2

xy 12 66 12

Q Q 0

Q Q 0

0 0 Q

        
      
          

                

(4) 

 

Generally, axes are not aligned with each other. 

Accordingly, final stress-strain correlation in geometric 

coordinate should be specified based on the information of 

stiffness matrix in main coordinates of the materials, and its 

transposition to geometric coordinates. Initially, equation 

(4) is main coordinates and summarized as follows 
 

 
1 1

2 2

12 12

Q

    
   
     
         

(5) 

 

By considering previous equations, it can be concluded 

that 
 

   
x 1 x

1 1 1

y 2 y

xy 12 xy

T T [Q][R][T][R]
  

      
    
         

             

(6) 

 

Expression [R][T][R]-1 can be indicated as [T]-T, where 

T stands for translation matrix. It should be taken into 

account that in the above-mentioned equation matrix [R] is 

defined as follows 
 

1 0 0

[R] 0 1 0

0 0 2

 
 


 
    

(7) 
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Finally, stress-strain correlation in (x, y) geometric 

coordinates of structure formulated as follows 

 

x x 11 12 16 x

y y 12 22 26 y

xy xy 16 26 66 xy

Q Q Q

[Q] Q Q Q

Q Q Q

        
      
          

                

(8) 

 

It should be noted that although matrix [Q¯] may have 9 

non-zero values, it has four independent and constant 

coefficients similar to matrix [Q]. Since properties of the 

layer are in orthotropic coordinates of the materials, it is 

called “general orthotropic layer” where the material axis of 

this layer does not align with geometric axis. Eq. (8) is used 

for layer analysis which merely includes independent 

constants of orthotropic materials. The advantage of using 

“general orthotropic layer” in comparison with anisotropic 

layer is that its characteristics can be easily calculated by 

tests. However, if the main axes of orthotropic materials are 

not specified, all the calculations should be carried out as an 

anisotropic layer. It is emphasized to use a layer with 

orthotropic characteristics and generalize it to a general 

state using Eq. (8). With a similar method, strain-stress 

correlation can be calculated in geometric coordinates by 

inversing Eq. (8). 

The strain-stress correlation in main coordinates is 

 

1 11 12 1

2 12 22 2

12 66 12

S S 0

S S 0

0 0 S

      
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      

            

(9) 

 

Therefore, the final equation with compatibility matrix 

in geometric coordinates is 

 

x x 11 12 16 x

T

y y 12 22 26 y

xy xy 16 26 66 xy

S S S

[T] [S][T] S S S

S S S

        
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                

(10) 

 

Where [T]T is calculated from [R][T]-1[R]-1. 

Due to Q¯26 and Q¯16 in Eq. (8), and S¯26 and S¯16 in 

Eq. (10), results for general orthotropic plates will be 

obviously more complicated than specific orthotropic 

plates. By calculating some other parameters, plate analysis 

can be carried out in a general mode and in line with 

anisotropic plates. The strain-stress correlation of a desired 

membrane plate (anisotropic) defined as follows 

 

1 111 12 16

2 12 22 26 2

16 26 6612 12

S S S

S S S

S S S

     
    
      
           

(11) 

 
3.1 Anisotropic structure assessment using 

Lekhnitskii interaction coefficients 
 

The components of the compatibility matrix of this 

anisotropic sheet are calculated as follows (Lekhnitskii 

1963) 

11 1 22 2

16 12,1 1 1,12 12

12 12 1 21 2

26 12,2 2 2,12 12

66 12

S 1 E ,S 1 E ,

S E G ,

S E E ,

S E G ,

S 1 G

 

   

   

   

  

(12) 

 

Calculating the S16 and S26 components requires a 

number of coefficients known as Lekhnitskii interaction 

coefficients. Ƞi,ij is Lekhnitskii coefficient type 1, which 

describes stretching in the i direction due to a shearing 

stress in the ij plane, and equals to 
 

i,ij i ij     (13) 

 

In this state, τij = τ ,and all the other stresses are zero. 

 

 

 

Fig. 2 the schematic representation of a flawless graphene 

sheet. 

 
 
Table 1 A comparison of the computed mechanical 

properties in the present study and the ones reported 

in the literature 

Study Method 
Young’s modulus 

(TPa) 

Present Molecular dynamic 0.751 

Lee et al. (2008) Experimental 1 ± 0.1 

Jiang et al. (2009) Molecular dynamic 1.1 

Shen et al. (2010) Molecular dynamic 0.905 

Ni et al. (2010) Molecular dynamic 1.13 

Tsai and Tu (2010) Molecular dynamic 0.912 

Kvashnin et al. (2010) Molecular mechanics 1.39 (average) 

Reddy et al. (2006) 
Continuum 

mechanics 
0.669 

Liu et al. (2007) 
Density functional 

theory 
1.05 

Sakhaee-Pour (2009) Finite element 1.025 

Georgantzinos et al. 

(2010) 
Finite element 1.367 

Neek-Amal and Peteers 

(2010) 
Molecular dynamic 0.501 ± 0.032 

Yanovsky et al. (2009) Quantum mechanics 0.737 
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Ƞij,i is Lekhnitskii interaction coefficient type 2, which 

describes shearing in the ij plane due to the normal tension 

applied in the i direction, and equals to 
 

ij,i ij i     (14) 

 

In this state, σi = σ, and all the other stresses are zero. 

Note that the material becomes more isotropic as the 

amount of Lekhnitskii coefficients approach zero, and vice 

versa. 
 
 

4. Validating the method for defect-free single-
layer graphene 
 
In this section, the results obtained for ideal graphene 

compared to the results calculated in previous studies. Fig. 

2 shows the schematic representation of a flawless graphene 

sheet. As shown in Table 1, the values of Young’s modulus 

are fairly scattered and ranged from 0.5 TPa to 1.4 TPa. 

Given the present findings, the method used in the present 

study can clearly lead to acceptable results. 
 
 

5. Problem statement 
 

5.1 The effects of temperature on mechanical 
properties of single-layer graphene sheet 

 

In this stage, the influences of temperature and also 

length-to-width (Lx/Ly) aspect ratio on mechanical 

properties of a single-layer graphene sheet are investigated. 

The temperature is varing from 100K to 600K and the 

aspect ratio is considered to change from 1.1366 to 5.5209 

(Fig. 3). Figs. 4-6 show the variation of Young’s (Ex, Ey) 

and shear modulus (Gxy) for single-layer graphene sheet 

(SLGS) with temperature ranging from 100K to 600K. It 

can be seen that the Young’s modulus both in x and y 

directions strictly decrease with increases in temperature. In 

 
 

contract, the shear modulus (Gxy) almost remains constant 

as temperature increases from 100K to 600K. As explained 

earlier, Lekhnitskii coefficients can be used for assessing 

the effects of site and size of vacancy defects and also 

temperature on the mechanical properties of graphene 

sheets. It is worth nothing that the mechanical properties of 

substances become more isotropic as the amount of 

Lekhnitskii coefficients approach zero, and vice versa. In 

this stage, the influence of temperature and aspect ratio 

(Lx/Ly) on the severity of the SLGS getting anisotropic are 

studied. To do this, the length of graphene is selected as 

51.65 nm, 99.60 nm, 150.03 nm, 200.45 nm and 250.87 nm 

for a fixed width of 45.44 nm, i.e., the aspect ratio (Lx/Ly) 

are 1.1366, 2.192, 3.3017, 4.4113 and 5.5209 respectively 

(Fig. 3). It is observed from Figs. 7-11, in all cases with the 

increase of temperature the structure tends to be more 

anisotropic and the value of Lekhnitskii coefficient (Ƞ12,2) 

somehow increasing. 

 

5.2 The effects of vacancy defects on mechanical 
properties of single-layer graphene sheet 

 

Unlike the molecular dynamic technique used in 

previous studies, which assumed a random location for 

vacancy defects on single-layer graphene, the present article 

mainly aims to systematically examine single-layer 

graphene sheets with a single or a series of defects. Note 

that graphene sheet thickness is assumed as 3.2 nm in all the 

cases. Five cases are investigated for studying the effect of 

vacancy defects on the mechanical properties of single-

layer graphene sheet as an anisotropic structure as follows: 
 

 A single defect in the middle of the graphene sheet 

(Fig. 12) 

 A single defect in the corner of the graphene sheet 

(Fig. 13) 

 A double-defect at the top of the graphene sheet 

(Fig. 14) 

 A diagonal double-defect on the graphene sheet 

 

 

 

Fig. 3 The flawless graphene sheet with different aspect ratio (Lx/Ly) for a fixed width of 45.44 nm 
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(Fig. 15) 

 A double-defect on the right side of the graphene 

(Fig. 16) 

 

 

 

Fig. 4 The effect of temperature on Young’s modulus 

of graphene sheet in x direction (Ex) 
 

 

 

 

Fig. 5 The effect of temperature on Young’s modulus 

of graphene sheet in y direction (Ey) 
 

 

 

 

Fig. 6 The effect of temperature on shear modulus of 

graphene sheet (Gxy) 
 

 

 

 

Fig. 7 The influence of temperature on the severity of the 

SLGS becoming anisotropic (Lx/Ly = 1.1366) 
 

 

Fig. 8 The influence of temperature on the severity of the 

SLGS becoming anisotropic (Lx/Ly = 2.192) 

 
 

 

 

 

Fig. 9 The influence of temperature on the severity of the 

SLGS becoming anisotropic (Lx/Ly = 3.3017) 

 

 

 

 

 

Fig. 10 The influence of temperature on the severity of the 

SLGS becoming anisotropic (Lx/Ly = 4.4113) 

 

 

 

 

 

Fig. 11 The influence of temperature on the severity of the 

SLGS becoming anisotropic (Lx/Ly=5.5209) 
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Fig. 12 Single-vacancy defect in the middle of the graphene 

sheet 

 

 

 

Fig. 13 Single-vacancy defect in the corner of the graphene 

sheet 

 

 

 

Fig. 14 Double-vacancy defect at the top of the graphene 

sheet 

 

 

 

Fig. 15 Diagonal double-vacancy defect on the graphene 

sheet 
 

 

Fig. 16 Double-vacancy defect on the right-hand side of the 

graphene sheet 

 

 

The effects of site and size of vacancy defects on the 

material properties of graphene sheet in the noted cases are 

assessed using molecular dynamics results. The intensity of 

the structure becoming anisotropic can be studied in the 

above-mentioned cases according to the values of 

Lekhnitskii coefficients. The effects of different defects 

including single- and double vacancy defects on Young’s 

(Ex or Ey) and shear (Gxy) modulus of graphene are 

investigated in the following. According to the Tables 2-6, 

in all cases, Young’s and shear modulus of graphene are 

lower for structures with defect than those without. These 

material properties decrease as the size of the vacancy 

defect increases. It should be taken into account that the 

values of shear modulus is sharply decreasing in 

comparison with Young’s modulus as the number of 

removed atoms increasing. 

Figs. 17-21 are reported to make crystal clear the 

influence of defects on the material properties of single-

layer graphen sheet. Given the results presented in Figs. 17 

 

 

Table 2 The effect of a double-defect at the top of the 

graphene sheet on material properties of imperfect 

graphene (Lx/Ly = 1.1366, T = 300K) 

Vacancy radius (nm) Ex (GPa) Ey (GPa) Gxy (GPa) 

R = 2.84 540.5514 631.8486 294.6542 

R = 3.69 483.9839 549.7311 249.1723 

R = 5.12 518.1459 407.4531 198.8933 

R = 6.15 492.5599 276.8938 88.3804 

R = 7.1 427.4211 329.9827 113.5998 
 

 

 

Table 3 The effect of a diagonal double-defect on the 

material properties of imperfect graphene (Lx/Ly = 

1.1366, T = 300K) 

Vacancy radius (nm) Ex (GPa) Ey (GPa) Gxy (GPa) 

R = 2.84 526.6597 657.5326 342.6375 

R = 3.69 458.5538 530.6295 282.2949 

R = 5.12 489.3881 439.2726 256.4615 

R = 6.15 357.4040 386.1099 171.5974 

R = 7.1 359.2238 350.7509 159.6338 
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Table 4 The effect of a double-defect at the top of the 

graphene on the material properties of imperfect 

graphene (Lx/Ly = 1.1366, T = 300K) 

Vacancy radius (nm) Ex (GPa) Ey (GPa) Gxy (GPa) 

R = 2.84 559.1481 647.4831 327.1364 

R = 3.69 485.0651 581.6308 244.4673 

R = 5.12 440.5191 449.8774 241.8920 

R = 6.15 251.7412 377.6240 104.1642 

R = 7.1 291.6378 418.6821 101.9256 
 

 

 

Table 5 The effect of a single defect in the corner of the 

graphene sheet on the material properties of 

imperfect graphene (Lx/Ly = 1.1366, T = 300K) 

Vacancy radius (nm) Ex (GPa) Ey (GPa) Gxy (GPa) 

R = 2.84 640.8293 608.1403 328.6012 

R = 3.69 512.6069 648.7142 323.7523 

R = 5.12 557.0028 654.0235 278.8591 

R = 6.15 465.6993 488.6363 247.9699 

R = 7.1 411.2072 448.8086 232.6059 

R = 7.515 398.3045 422.7634 197.5615 

R = 8.61 376.2033 439.0035 187.3168 

R = 9.31 383.0660 374.7539 205.8263 

R = 11.07 270.7647 323.6239 151.0142 
 

 

 

and 18, in case of single-vacancy defects including defect in 

the middle and on the corner of the graphene sheets, the 

reduction percentage of Ex, Ey and Gxy sharply increasing 

with the increase of vacancy radius. It is worth nothing that 

with increasing vacancy radius, the difference between 

reduction percentage of Ex and Ey somehow reduced. 

In case of double-vacancy defects (Figs. 19-21) 

including double-vacancy defect at the top, at the right side 

of graphene and diagonal double-vacancy defect in the 

graphene, the reduction percentage of Ex and Ey increasing 

 

 

Table 6 The effect of a single defect in the middle of the 

graphene sheet on the material properties of 

imperfect graphene (Lx/Ly = 1.1366, T - 300K) 

Vacancy radius (nm) Ex (GPa) Ey (GPa) Gxy (GPa) 

R = 2.84 691.3710 540.9188 363.2081 

R = 3.69 540.3232 629.0517 288.0268 

R = 5.12 539.7213 660.3958 289.1454 

R = 6.15 505.8598 508.5937 271.7107 

R = 7.1 500.9569 508.1838 240.1680 

R = 7.515 405.6374 357.6737 201.0596 

R = 8.61 413.8241 426.6777 197.0534 

R = 9.31 343.4435 444.1128 195.5815 

R = 11.07 360.3825 401.9742 112.0520 

R = 11.36 400.9142 362.4770 98.9211 

R = 11.625 275.3987 323.5803 131.2298 

R = 12.38 286.8114 219.4155 110.6566 

R = 13.525 168.3484 303.1303 79.6161 

R = 14.825 206.6496 202.6409 28.5830 

R = 15.62 147.2413 176.7330 37.4021 
 

 

 

with the increase of vacancy radius. It should be taken into 

account that with the increase of vacancy radius, the rate of 

reduction of Ex gets much more than Ey in graphene with 

double-vacancy defect at the top contrary to graphene with 

defects at the right or left side. Figs. 17-21 show somehow 

that the rate of reduction of Gxy is much more than the 

Young’s modulus reduction in the x and y directions. 
 
 

6. Conclusions 
 

The effects of size and site of vacancy defects on the 

material properties of the graphene using the molecular 

dynamic method and equations related to lekhnitskii 

interaction coefficients are investigated in this study. The 

influences of temperature and also length-to-width (Lx/Ly) 

 

 

 

Fig. 17 The effect of single-vacancy defect in the middle of graphene on the Young's and shear modulus 

(Lx/Ly = 1.1366, T = 300K) 
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Fig. 18 The effect of single-vacancy defect in the corner of graphene on the Young's and shear modulus 

(Lx/Ly = 1.1366, T = 300K) 

 

Fig. 19 The effect of double-vacancy defect at the top of graphene on the Young's and shear modulus 

(Lx/Ly = 1.1366, T = 300K) 

 

Fig. 20 The effect of diagonal double-vacancy defect on the Young’s and shear modulus (Lx/Ly = 1.1366, 

T = 300K) 
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aspect ratio on mechanical properties of a single-layer 

graphene sheet are investigated. In the present study, the 

temperature is varing from 100K to 600K and the aspect 

ratio is considered to change from 1.1366 to 5.5209. The 

main purpose of this research is to clarify how imperfect 

graphene has anisotropic properties in certain conditions 

and using the properties of ideal graphene for imperfect 

graphene will cause erroneous results. According to the 

present study, using material properties of flawless 

graphene for imperfect structure can lead to inaccurate 

results. From this study some conclusions can be made as 

following: 
 

 The Lekhnitskii interaction coefficients somehow 

increase with the increase of vacancy radius and the 

material properties of the structure show greater 

tendency to become anisotropic. 

 In all cases with the increase of temperature, the 

structure tends to be more anisotropic and the value 

of parameter Ƞ12,2 somehow increasing. 

 It can be seen that the Young’s modulus both in x 

and y directions strictly decrease with increases in 

temperature. In contract, the shear modulus (Gxy) 

almost remains constant as temperature increases 

from 100K to 600K. 

 In all cases, Young’s and shear modulus of graphene 

are lower for structures with defect than those 

without. These material properties decrease as the 

size of the vacancy defect increases. 

 It should be taken into account that the value of 

shear modulus is sharply decreasing in comparison 

with Young’s modulus as the number of removed 

atoms increasing. 

 Given the results presented in this study, in case of 

single-vacancy defects including defect in the 

middle and on the corner of the graphene sheets, the 

reduction percentage of Ex, Ey and Gxy sharply 

increasing with the increase of vacancy radius. It is 

worth nothing that with increasing vacancy radius, 

the difference between reduction percentage of Ex 

and Ey somehow reduced. 

 In case of double-vacancy defects including double-

vacancy defect at the top, at the right or left side of 

 

 

graphene and diagonal double-vacancy defect in the 

graphene, the reduction percentage of Ex and Ey 

increasing with the increase of vacancy radius. 
 

It should be taken into account that with the increase of 

vacancy radius, the rate of reduction of Ex gets much more 

than Ey in graphene with double-vacancy defect at the top 

contrary to graphene with double-vacancy defect at the right 

side. 
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