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1. Introduction 

 

In recent years, functionally graded materials (FGMs) 

have received a considerable attention in several 

engineering and industries applications such as spacecrafts, 

rocket engines and high temperature instruments, due to its 

high performance and resistance under thermal as well as 

mechanical loading. This type of composite materials is 

characterized by its properties that vary smoothly from one 

surface to the other surface. Generally, FGM are composed 

of metal and ceramic, where the smoothness is performed 

by gradually varying the volume fraction of the constituent 

materials. Such operation results a mixture characterized by 

an excellent mechanical properties under high temperature 

environment. 

Many pieces of research work have been conducted to 

study the buckling behavior of FGM under mechanical and 

thermal loading by adopting different theories and 

assumptions. Zhao et al. (2009), Bourada et al. (2012), 

Zenkour and Sobhy (2010) Mozafari et al. (2010b, 2012a, 

b), Bouazza et al. (2009) carried out a thermal buckling 

behavior of a sigmoid distribution of FGM plates under 

uniform, linear, and sinusoidal temperature rise across the 

thickness based on FSDT. Matsunaga (2009) studied the 

thermal and mechanical analysis of FGM plates based on 

two-dimensional higher-order shear deformation theory 
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(HSDT) through using power series expansion to evaluate 

the displacements and stresses. Zenkour and Mashat (2010) 

analyzed the thermal buckling of FGM plates where they 

proposed a sinusoidal shear deformation plate theory. 

Through the comparison, their results found to be very close 

to that of different HSDT in the literature. Raki et al. (2012) 

proposed a closed-form solution based on HSDT to evaluate 

the critical buckling temperature under uniform and 

gradient temperature through the thickness. They compared 

their results with finite element method. Bouiadjra et al. 

(2012) presented a research work where they analyzed the 

thermal buckling of FGM plates by using a four-variable 

refined plate theory. Fekrar et al. (2013) investigated the 

thermal buckling of FGM plates having sigmoid material 

properties distribution exposed to uniform and sinusoidal 

temperature distribution through the thickness. The 

presented formulation was based on the FSDT. Kettaf et al. 

(2013) proposed in their research work a new hyperbolic 

displacement model to derive the thermal buckling of FGM 

sandwich. The presented formulation results only four 

governing equations. Fazzolari and Carrera (2014) studied 

the thermal stability of FGM sandwich plates under various 

nonlinear temperature distributions using refined quasi-3D 

Equivalent Single Layer and Zig-Zag plate models. Then 

they carried out parametric study to evaluate the effect of 

geometric and material parameters on the thermal buckling 

of FGM plates. Khalfi et al. (2014) presented a closed-form 

solution based on a refined and simple shear deformation 

theory to evaluate the critical buckling temperature of solar 

FGM plate resting on two-parameter Pasternak’s 

foundations. They used the exact neutral surface position as 

reference to derive the stability equations. Similarly, Lee et 

al. (2016) considered that the material is asymmetry in the 

thickness direction. So, they took the neutral surface of 
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structures as reference to evaluate the thermal buckling 

behavior of FGM plates based on FSDT. Han et al. (2017) 

presented a theoretical formulation to study the buckling 

behavior of cylindrical shell structures with FGM coating 

under thermal loading. They used an empirical engineering 

formula in order to simplify the complex formulations that 

characterize the mathematical formulation of such 

structures. Yu et al. (2017) presented a numerical solution 

for buckling analysis of FGM rectangular and skew plates 

under combined thermal and mechanical loads. The 

numerical responses of buckling were computed using 

isogeometric analysis based on the FSDT. In addition, 

parametric studies were conducted to investigating the 

effects of various parameters on the thermo-mechanical 

buckling behavior. Kandasamy et al. (2016) carried a 

theoretical work to study the thermal buckling and vibration 

behavior of FGM structures including plates, cylindrical 

panels and shells in thermal environments by using the 

finite element method. Many examples were presented to 

demonstrate the accuracy of the proposed method and to 

study the effect of different material and geometrical 

parameters on the thermal stability of the FGM structures. 

Recently, many researchers presented more simple and 

refined analytical procedure to study the thermal and 

mechanical stability of FGM plates (El-Hassar et al. 2016, 

Abdelhak et al. 2016, Bousahla et al. 2016, Chikh et al. 

2017, Menasria et al. 2017, El-Haina et al. 2017). These 

pieces of research work focus on simplifying the 

conventional plate theories by reducing the number of 

unknown variables and equations with guarding the same 

level of accuracy. For instance, Elmossouess et al. (2017) 

presented an accurate new HSDT that needs only four 

unknowns to study the thermal buckling of FGM sandwich 

plates with taking into account the variation of the thermal 

expansion coefficient through the thickness. Also, Houari et 

al. (2018) studied mechanical and thermal stability of FGM 

plates resting on elastic foundation using the hyperbolic 

shear deformation theory and stress function concept. Their 

presented procedure was less complicated than existing 

HSDT theories but with the same accuracy as the other high 

order theories. 

According to the previously stated literature review, it 

should be noted that the thermal stability of FGM plates 

with constant thickness have been extensively studied. 

However, FGM plates having variable thickness have also 

attracted the attention of designers and researchers. 

In general, geometrically complex FGM plates such as 

variable thickness plates become common in different 

engineering and industrial fields due to the design 

requirements. In spite of that, pieces of research work 

conducted to study the buckling of FGM plate with variable 

thickness are fewer in number compared to constant plate 

thickness. Rajasekaran and Wilson (2013) used the finite 

difference method to evaluate the exact buckling loads and 

vibration frequencies of variable thickness isotropic plates 

under different combinations of boundary conditions and 

loading. Pouladvand (2009) studied the buckling behavior 

of thin FGM rectangular plates with variable thickness 

exposed to different temperature distributions based on the 

on classical plate theory. Jalali et al. (2011) carried out an 

investigation of mechanical buckling of circular sandwich 

plates under uniform radial compression loading. The plate 

has a homogenous core with variable thickness and FGM 

face sheet. The theoretical formulation was based on the 

FSDT. They solved the evaluated stability equations 

numerically. They found that the thickness variation has a 

significant effect of the critical buckling load. Mozafari et 

al. (Mozafari et al.2010a, Mozafari and Ayob 2012) 

presented a piece of work to investigate the effect of 

thickness variation on the critical buckling temperature 

where the purpose of their studies was to improve the 

buckling resistance of the FGM plates. Ghomshei and 

Abbasi (2013) presented a numerical method by using finite 

element method to analyze the thermal buckling of FGM 

annular plates with variable thickness. Jabbarzadeh et al. 

(2013) presented an investigation on the thermal buckling 

behavior of FGM circular plates having variable thickness 

exposed to uniformly temperature distribution based on the 

FSDT. After evaluating the formulation of stability 

equations, they solved them numerically using pseudo-

spectral method. In addition, they studied the effect of 

linear and parabolic thickness variations on the critical 

buckling temperature. Bouguenina et al. (2015) used a 

numerical solution based on finite difference method to 

investigate the thermal buckling behavior of simply 

supported FGM plates having variable thickness. They 

analyzed the effect of different geometrical and mechanical 

properties to evaluate their effect on the critical buckling of 

FGM plates having linear variable thickness. Le-Manh et al. 

(2017) studied nonlinear bending and buckling behavior of 

composite plates having variable thickness. The presented 

formulation is based on first-order shear deformation theory 

and it was found to be stable and accurate enough to predict 

the behavior of thin to moderately thick laminates plates. 

The main objective of the present piece of research work 

is to study the temperature buckling resistance of FGM 

plates having parabolic-concave thickness variation. To 

attend this objective, the derived governing equation of the 

thermal stability is solved numerically by using the finite 

difference method in order to have the ability to include the 

thickness variation. Noting that such task is complex to be 

performed analytically. A special parabolic-concave 

function is developed to control the intensity of the 

parabolic-variation of the plate thickness but without 

changing its original material volume. A parametric study is 

conducted to investigate the effect of different parameters 

on the loss ratio in the critical buckling temperature. 

 

 

2. Theoretical formulation 
 

2.1 Material constitutive relations 
 

We consider a functionally graded plate, composed of a 

mixture of ceramic and metal. The plate is subjected to a 

thermal load function  𝑇(𝑥,𝑦, 𝑧) . It is assumed that the 

composition properties of FGM vary through the thickness 

of the plate according a simple power-law function. The 

volume fractions of ceramic 𝑉𝑐  and metal 𝑉𝑚  are given as 
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 𝑉𝑐 =  
𝑧

ℎ
+

1

2
 
𝑘

;     −
ℎ

2
≤ 𝑧 ≤

ℎ

2
𝑉𝑚 𝑧 + 𝑉𝑐 𝑧 = 1

  (1) 

 

𝑘 is a parameter that controls the material variation 

profile, where 0 ≤ 𝑘 ≤ ∞. 

The modulus 𝐸  and the coefficient of thermal 

expansion 𝛼  are expressed as follows, noting that the 

Poisson’s ratio is assumed constant 𝑣 = 0.3. 
 

 
𝐸 𝑧 = 𝐸𝑐𝑉𝑐 + 𝐸𝑚(1 − 𝑉𝑐)

𝛼 𝑧 = 𝛼𝑐𝑉𝑐 + 𝛼𝑚(1 − 𝑉𝑐)
  (2) 

 

2.2 Formulation of the stability equations 
 

The displacement of the neutral plane of the FGM plate 

in 𝑥,𝑦, 𝑧 directions denote 𝑢, 𝑣,𝑤 , respectively. 𝜙𝑥  and 

𝜙𝑦  denote the rotations of the mid-plate normals about 𝑥 

and 𝑦 axes. Based on the first order shear deformation 

theory, the strains are given as 

 

 
 
 

 
 
𝜀𝑥 = 𝑢,𝑥 + 𝑧𝜙𝑥 ,𝑥

𝜀𝑦 = 𝑣,𝑦 + 𝑧𝜙𝑦 ,𝑦

𝛾𝑥𝑦 = 𝑢,𝑦 + 𝑣,𝑥 + 𝑧(𝜙𝑥 ,𝑦 + 𝜙𝑦 ,𝑥)

𝛾𝑥𝑧 = 𝜙𝑥 + 𝑤,𝑥

𝛾𝑧𝑦 = 𝜙𝑦 + 𝑤,𝑦

  (3) 

 

The stress-strain relationship according to Hook’s law is 

 

 
 
 
 
 

 
 
 
 𝜎𝑥 =

𝐸

1 − 𝜈2
 𝜀𝑥 + 𝜈𝜀𝑦 −  1 + 𝜈 𝛼𝑇 

𝜎𝑦 =
𝐸

1 − 𝜈2
 𝜀𝑦 + 𝜈𝜀𝑥 −  1 + 𝜈 𝛼𝑇 

𝜎𝑥𝑦 =
𝐸

2(1 + 𝜈)
𝛾𝑥𝑦   ;  𝜎𝑥𝑧 =

𝐸

2(1 + 𝜈)
𝛾𝑥𝑧

𝜎𝑧𝑦 =
𝐸

2(1 + 𝜈)
𝛾𝑧𝑦

  (4) 

 

The forces and moments per unit length are given in 

terms of the stress components through the thickness as 

 

 
 
 
 

 
 
 𝑁𝑖 =  𝜎𝑖  𝑑𝑧

ℎ/2

−ℎ/2

    ;   𝑖 = 𝑥,𝑦, 𝑥𝑦

𝑀𝑖 =  𝜎𝑖  𝑧 𝑑𝑧
ℎ/2

−ℎ/2

 ; 𝑖 = 𝑥,𝑦, 𝑥𝑦

𝑄𝑖 =  𝜎𝑖𝑧  𝑑𝑧
ℎ/2

−ℎ/2

    ;  𝑖 = 𝑥,𝑦

  (5) 

 

Substituting Eqs. (2)-(4) into Eq. (5) results 

 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 𝑁𝑥 =

𝐸1

1 − 𝜈2
 𝑢,𝑥 + 𝜈𝑣,𝑦 +

𝐸2

1 − 𝜈2
 𝜙𝑥 ,𝑥 + 𝜈𝜙𝑦 ,𝑦 −

Φ

1 − 𝜈

𝑁𝑦 =
𝐸1

1 − 𝜈2
 𝜈𝑢,𝑥 + 𝑣,𝑦 +

𝐸2

1 − 𝜈2
 𝜈𝜙𝑥 ,𝑥 + 𝜙𝑦 ,𝑦 −

Φ

1 − 𝜈

𝑁𝑥𝑦 =
𝐸1

2(1 + 𝜈)
 𝑢,𝑦 + 𝑣,𝑥 +

𝐸2

2(1 + 𝜈)
 𝜙𝑥 ,𝑦 + 𝜙𝑦 ,𝑥 

𝑀𝑥 =
𝐸2

1 − 𝜈2
 𝑢,𝑥 + 𝜈𝑣,𝑦 +

𝐸3

1 − 𝜈2
 𝜙𝑥 ,𝑥 + 𝜈𝜙𝑦 ,𝑦 −

Θ

1 − 𝜈

𝑀𝑦 =
𝐸2

1 − 𝜈2
 𝜈𝑢,𝑥 + 𝑣,𝑦 +

𝐸3

1 − 𝜈2
 𝜈𝜙𝑥 ,𝑥 + 𝜙𝑦 ,𝑦 −

Θ

1 − 𝜈

𝑀𝑥𝑦 =
𝐸2

2(1 + 𝜈)
 𝑢,𝑦 + 𝑣,𝑥 +

𝐸3

2(1 + 𝜈)
 𝜙𝑥 ,𝑦 + 𝜙𝑦 ,𝑥 

𝑄𝑥 =
𝐸1

2 1 + 𝜈 
(𝜙𝑥 + 𝑤,𝑥)

𝑄𝑦 =
𝐸1

2 1 + 𝜈 
(𝜙𝑦 + 𝑤,𝑦)

  (6) 

 

Where 
 

 𝐸1,𝐸2,𝐸3 =   1, 𝑧, 𝑧2 𝐸 𝑧  𝑑𝑧
ℎ/2

−ℎ/2

 (7) 

 

(𝛷,Θ) =  𝐸 𝑧 𝛼 𝑧 𝑇 𝑧 (1, 𝑧)𝑑𝑧

ℎ/2

−ℎ/2

 (8) 

 

The nonlinear equations of equilibrium are given 

according to Von Karman’s tensor by 
 

 
 
 

 
 
𝑁𝑥 ,𝑥 + 𝑁𝑥𝑦 ,𝑦 = 0

𝑁𝑦 ,𝑦 + 𝑁𝑥𝑦 ,𝑥 = 0

𝑀𝑥 ,𝑥 + 𝑀𝑥𝑦 ,𝑦 − 𝑄𝑥 = 0

𝑀𝑥𝑦 ,𝑥 + 𝑀𝑦 ,𝑦 − 𝑄𝑦 = 0

𝑄𝑥 ,𝑥 + 𝑄𝑦 ,𝑦 + 𝑞 + 𝑁𝑥𝑤,𝑥𝑥 + 𝑁𝑦𝑤,𝑦𝑦 + 2 𝑁𝑥𝑦𝑤,𝑥𝑦 = 0

  (9) 

 

By eliminating the variables 𝑢, 𝑣,𝜙𝑥 ,𝜙𝑦  through 

manipulating Eqs. (6) and (9), we get 
 

∇4𝑤 +
2 1 + 𝜈 

𝐸1
∇2  

𝑁𝑥𝑤,𝑥𝑥 + 𝑁𝑦𝑤,𝑦𝑦

+2 𝑁𝑥𝑦𝑤,𝑥𝑦 + 𝑞
  

−
𝐸1 1 − 𝜈2 

𝐸1𝐸3 − 𝐸2
2  𝑁𝑥𝑤,𝑥𝑥 + 𝑁𝑦𝑤,𝑦𝑦 + 2 𝑁𝑥𝑦𝑤,𝑥𝑦 + 𝑞 = 0 

(10) 

 

The critical equilibrium method is used to establish the 

stability equations. So, by assuming that the state of stable 

equilibrium of a general plate under thermal load may be 

designated by the deflection 𝑤0. The displacement of the 

neighboring state is given by 
 

∆𝑤 = 𝑤0 + 𝑤1 (11) 
 

where 𝑤1  is an arbitrarily small increment of 

displacement. By substituting Eq. (11) into Eq. (10) and re-

evaluating the original equation, results in the following 

stability equation 
 

𝛻4𝑤1 

+
2 1 + 𝜈 

𝐸1
𝛻2 𝑁𝑥

0𝑤1,𝑥𝑥 + 𝑁𝑦
0𝑤1,𝑦𝑦 + 2 𝑁𝑥𝑦

0 𝑤1,𝑥𝑦   

−
𝐸1 1 − 𝜈2 

𝐸1𝐸3 − 𝐸2
2  𝑁𝑥

0𝑤1,𝑥𝑥 + 𝑁𝑦
0𝑤1,𝑦𝑦 + 2 𝑁𝑥𝑦

0 𝑤1,𝑥𝑦  = 0 

(12) 
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where, 𝑁𝑥
0,   𝑁𝑦

0  and 𝑁𝑥𝑦
0  are the pre-buckling force 

resultants. 

Finally, the critical buckling temperature difference 

 ∆𝑇𝑐𝑟  can be evaluated after determination of the pre-

buckling thermal forces. The latter is found by solving the 

membrane form of equilibrium equations, as 

 

 
 
 

 
 𝑁𝑥

0 = −
𝛷

1 − 𝜈

𝑁𝑦
0 = −

𝛷

1 − 𝜈
𝑁𝑥𝑦

0 = 0

  (13) 

 

Substituting Eq. (13) into Eq. (12), we obtain 

 

𝛻4𝑤1 −
2 1 + 𝜈 

𝐸1

𝛷

1 − 𝜈
𝛻4𝑤1

+
𝐸1(1 − 𝜈2)

𝐸1𝐸3 − 𝐸2
2

𝛷

1 − 𝜈
𝛻2𝑤1 = 0 

(14) 

 

 

3. Finite difference solution 
 

The fourth order differential equation presented by Eq. (14) 

can be solved numerically using finite difference method. 

To do that, we consider a rectangular FGM plate meshed 

into 𝑛 × 𝑚 nodes spaced by Δℎ in 𝑥 and 𝑦 directions, 

as shown in Fig. (1). 

 

 

 

Fig. 1 Finite difference mesh of the plate 
 

 

The governing equation given by Eq. (14) is simplified 

as 
 

∇4𝑤1 1 + 𝐷1Φ + 𝐷2Φ∇
2𝑤1 = 0 (15) 

 

Where 
 

 
 
 

 
 𝐷1 = −

2 1 + 𝜈 

𝐸1 1 − 𝜈 

𝐷2 =
𝐸1 1 − 𝜈2 

(𝐸1𝐸3 − 𝐸2
2)(1 − 𝜈) 

  (16) 

 

In finite difference format, Eq. (14) is written as 

 

 
20

𝛥2
 𝐷1𝛷 + 1 − 4𝐷2𝛷 𝑤1 𝑖 ,𝑗  

 

+  −
8

𝛥2
 𝐷1𝛷 + 1 + 𝐷2𝛷  

𝑤1 𝑖 ,𝑗−1 
+ 𝑤1 𝑖 ,𝑗+1 

+𝑤1 𝑖−1,𝑗  
+ 𝑤1 𝑖+1,𝑗  

  

+ 
2

𝛥2
 𝐷1𝛷 + 1   

𝑤1 𝑖−1,𝑗−1 
+ 𝑤1 𝑖−1,𝑗+1 

+𝑤1 𝑖+1,𝑗−1 
+ 𝑤1 𝑖+1,𝑗+1 

  

+ 
1

𝛥2
 𝐷1𝛷 + 1   

𝑤1 𝑖 ,𝑗−2 
+ 𝑤1 𝑖 ,𝑗+2 

+𝑤1 𝑖−2,𝑗  
+ 𝑤1 𝑖+2,𝑗  

  =  0 

(17) 

 

This mesh is applied at nodes with coordinates 

(𝑖 = 2. .𝑛 − 1, 𝑗 = 2. .𝑚 − 1) . Noting that this operation 

will result virtual nodes along the lines (𝑖 = 2, 𝑖 = 𝑛 −
1, 𝑗 = 2, 𝑗 = 𝑚 − 1). 

Since the plate is simply supported, the boundary 

conditions are given as follows 

 

 
at   𝑥 = ± 𝑎/2:    𝑤1 = 0;   𝑀𝑥1 = 0
at   𝑦 = ± 𝑏/2:    𝑤1 = 0;   𝑀𝑦1 = 0

  (18) 

 

So, the displacements along the edges are equal to zero 

as 

𝑤1 𝑖 ,𝑗  
= 0   at    𝑖 =  1,𝑛 , 𝑗 =  1. .𝑚   

and    𝑖 =  1. .𝑛  , 𝑗 =  1,𝑚   
(19) 

 

In addition, the moments along the edges are nulls. By 

expressing the moments in terms of the deflections  𝑤1 

along the edge, the virtual nodes are simply eliminated 

resulting the following system of simultaneous (𝑛 − 2) ×
(𝑚 − 2) equations 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

18

∆2
 𝐷1𝛷 + 1 

−4𝐷2𝛷
  

−
8

∆2
 𝐷1𝛷 + 1 

+𝐷2𝛷
  

1

∆2
 𝐷1𝛷 + 1  … . . . .

 
−

8

∆2
 𝐷1𝛷 + 1 

+𝐷2𝛷
  

19

∆2
 𝐷1𝛷 + 1 

−4𝐷2𝛷
  

−
8

∆2
 𝐷1𝛷 + 1 

+𝐷2𝛷
 … . . . .

 
1

∆2
 𝐷1𝛷 + 1   

−
8

∆2
 𝐷1𝛷 + 1 

+𝐷2𝛷
  

20

∆2
 𝐷1𝛷 + 1 

−4𝐷2𝛷
 … . . . .

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ .

. . . …  

20

∆2
 𝐷1𝛷 + 1 

−4𝐷2𝛷
  

−
8

∆2
 𝐷1𝛷 + 1 

+𝐷2𝛷
  

1

∆2
 𝐷1𝛷 + 1  …

. . . …  
−

8

∆2
 𝐷1𝛷 + 1 

+𝐷2𝛷
  

20

∆2
 𝐷1𝛷 + 1 

−4𝐷2𝛷
  

−
8

∆2
 𝐷1𝛷 + 1 

+𝐷2𝛷
 …

. . . …  
1

∆2
 𝐷1𝛷 + 1   

−
8

∆2
 𝐷1𝛷 + 1 

+𝐷2𝛷
  

20

∆2
 𝐷1𝛷 + 1 

−4𝐷2𝛷
 …

. . . . ⋮ ⋮ ⋮ ⋱ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

×

 
 
 
 
 
 
 

 
 
 
 
 
 
𝑤1 2,2 

 
𝑤1 3,2 

 
𝑤1 4,2 

⋮
𝑤1 𝑖−1,𝑗  

 
𝑤1 𝑖 ,𝑗  

 
𝑤1 𝑖+1,𝑗  

 
⋮  

 
 
 
 
 
 

 
 
 
 
 
 

=

 
 
 
 
 
 
 

 
 
 
 
 
 

0
 
0
 
0
⋮
0
 
0
 
0
 
⋮ 
 
 
 
 
 
 

 
 
 
 
 
 

 (20) 
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3.1 Determination of the critical temperature 
 

The critical buckling temperature is evaluated for two 

cases of temperature rise; uniform temperature rise and 

gradient temperature rise, the later represents linear and 

non-linear temperature variation through the thickness. 

Case 1: Uniform Temperature Rise: In this case, the 

plate is assumed to have an initial uniform temperature  𝑇𝑖 . 
The temperature is raised uniformly through the thickness 

to a final value 𝑇𝑓  in which the plate buckles. The buckling 

temperature difference is simply defined as 

 

𝑇 𝑧 = 𝑇𝑓 − 𝑇𝑖 = ∆𝑇 (21) 

 

Substituting Eq. (21) into Eq. (8) and Eq. (15) we get 

 

Δ𝑇 = −
𝛻4𝑤1

𝜉0 𝐷1𝛻
4𝑤1 + 𝐷2𝛻

2𝑤1 
 (22) 

 

𝜉0 =  𝛼 𝑧 𝐸 𝑧 𝑑𝑧

ℎ/2

−ℎ/2

 (23) 

 

Case 2: Gradient Temperature Rise: we assume that the 

temperature of top metallic surface is  𝑇𝑚 ,  and the 

temperature varies nonlinearly through the thickness from 

the top metallic surface temperature 𝑇𝑚  to the bottom 

surface ceramic temperature 𝑇𝑐  in which the plate buckles. 

The temperature variation is given by the following 

equation 

𝑇 𝑧 = ∆𝑇.  
𝑧

ℎ
+

1

2
 
𝛽

+ 𝑇𝑚  (24) 

 

Where ∆𝑇  is the buckling temperature difference 

∆𝑇 = 𝑇𝑐 − 𝑇𝑚  and 𝛽  is the exponent of the variation. 

Noting that 𝛽 = 1  represents a linear variation of the 

temperature through the plate thickness. While when 𝛽 > 1 

represents a nonlinear temperature variation. 

By substituting (24) into Eq. (8) and Eq. (15) we get 

 

∆𝑇 =
  −𝐷1𝑇𝑚  𝜉0 − 1 𝛻4𝑤1 − 𝐷2𝑇𝑚  𝜉0𝛻

2𝑤1 

𝜉1 𝐷1 𝛻4𝑤1 + 𝐷2 𝛻2𝑤1 
 (25) 

 

𝜉1 =  𝛼 𝑧 𝐸 𝑧  
𝑧

ℎ
+

1

2
 
𝛽

𝑑𝑧

ℎ/2

−ℎ/2

 (26) 

 

3.2 Evaluation of ∆𝑇𝑐𝑟  
 

The homogeneous simultaneous equations represented 

by Eq. (20) cannot be solved because it contains of the 

unknown temperature distribution 𝑇 𝑧 . This problem is 

solved by using the trial and error technique as follows: 

 

(1) In the first trial, an initial value equals to unity is 

assigned to ∆𝑇 , After solving the system of 

equations, the first mode shape 𝑤1
 1 

 is used to 

 

calculate the critical buckling temperature ∆𝑇𝑐𝑟1
 

using Eq. (22) or Eq. (25). Noting that these 

equations are calculated numerically using their 

finite difference format. 

(2) The obtained ∆𝑇𝑐𝑟1
 is used for another iteration to 

solve the simultaneous equations Eq. (20) where a 

new critical temperature difference ∆𝑇𝑐𝑟2
 is 

obtained. 

(3) Step 2 is repeated successively until the following 

criteria is satisfied 

 
∆𝑇𝑐𝑟𝑖 − ∆𝑇𝑐𝑟𝑖−1

∆𝑇𝑐𝑟𝑖
≤ 10−5 (27) 

 

 

4. Validation of the finite difference method 
 
In order to validate the present numerical method, the 

predicted critical buckling temperature of simply supported 

FG plates under uniform, linear, and nonlinear temperature 

change through the thickness are compared with the 

literature. 

Assuming FGM plate consists of aluminum and alumina 

where The Young’s modulus and the coefficient of thermal 

expansion for alumina are  𝐸𝑐 = 380 GPa,  𝛼𝑐 = 7.4 ×
10−6/°𝐶 and for the aluminum are  𝐸𝑚 = 70𝐺𝑃𝑎, 
𝛼𝑚 = 23 × 10−6/°C, respectively, while Poisson’s ratio is 

assumed to be constant for both metal and ceramic with 

𝜈 = 0.3. For all the analysis, it is assumed that the initial 

temperature 𝑇𝑖 = 5°C  for the uniform temperature rise 

case, while for gradient temperature rise case, the metal-rich 

surface temperature of the plate is assumed to be 𝑇𝑚 =
5°C. 

Tables 1, 2, and 3 summarize the critical thermal 

buckling for simply supported rectangular plate under 

uniform, linear, and nonlinear temperature change, 

respectively, for different values of the material distribution 

parameter k and aspect ratio 𝑎/𝑏. 

The present results in Tables 1-3 are given for different 

mesh sizes  𝑎/Δℎ = 10, 20, 30, 40  to test the 

convergence of the finite difference solution. Additionally, 

to enhance the accuracy of the predicted results, 

Richardson’s extrapolation formula is adopted, which is 

expressed as Szilard (2004) 

 

Δ𝑇𝑐𝑟
 𝑒𝑥 = Δ𝑇𝑐𝑟

 40 +
Δ𝑇𝑐𝑟

 40 − Δ𝑇𝑐𝑟
 20 

2μ − 1
 (28) 

 

Where Δ𝑇𝑐𝑟
 𝑒𝑥 

 is the extrapolated value, Δ𝑇𝑐𝑟
 20 

 and 

Δ𝑇𝑐𝑟
 40 

 are the values of critical temperature obtained by 

using mesh size 𝑎/Δℎ = 20 and 𝑎/Δℎ = 40, respectively. 

𝜇 = 2  is the exponent value which depends on the 

convergence characteristics of the numerical method. 

According to Tables 1-3, it can be observed that the 

present results are in excellent agreement with FSDT theory 

presented by Bouazza et al. (2009) and Zenkour and Mashat 

(2010), which validate the present numerical method. 
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5. FGM plate with parabolic thickness variation 
 

As mentioned previously, the objective of this study 

deals with investigating the thermal buckling resistance 

simply supported FGM plates with parabolic thickness 

variation. The proposed thickness variation function 

changes only the intensity of the parabolic variation while it 

conserves the original material volume of the plate. Two 

types of thickness variation have been studied; parabolic 

variation in one direction, and parabolic variation in both 

directions, as shown in Fig. 2. 

In case of one direction, the plate thickness becomes a 

function in terms of 𝑥 which is derived according to the 

following general parabolic function 
 

𝐻 𝑥 = −
4

𝑎2
 𝑒0 − 𝑒1 𝑥

2 + 𝑒0 (29) 

 

Where 𝑒0  is the thickness at the plate mid center 
 𝑥 = 0 , and 𝑒1 is the thickness at the plate edges i.e., at 

 

 

𝑥 = (−𝑎/2 ,𝑎/2). 

 

Let 𝑉0  be the volume of constant thickness plate 

(original plate) with has a constant thickness ℎ and let 𝑉1 

be the volume of variable-thickness plate, where 

 
𝑉0 = 𝑎.𝑏.ℎ. (30) 

 

𝑉1 = 𝑎. 𝑏  
2

3
 𝑒0 − 𝑒1 + 𝑒1  (31) 

 

By maintaining the same volumes of both plates as 

𝑉0 = 𝑉1, we get 

 

𝑒1 + 2𝑒0 = 3ℎ (32) 

 

Expressing 𝑒0 in terms of 𝑒1 as 

 
𝑒1 = 𝜂. 𝑒0 (33) 

 

Table 1 Critical buckling temperature (°C) of FG plate under uniform temperature rise for different 

values of power law index 𝑘 and aspect ratio 𝑎/𝑏 with 𝑎/ℎ =  100 

  
Mesh 𝑎/∆ℎ 𝑎/𝑏 = 1 𝑎/𝑏 = 2 𝑎/𝑏 = 3 𝑎/𝑏 = 4 

k = 0 

Present 

10 16.952 42.403 84.664 143.654 

20 17.057 42.625 85.140 144.491 

30 17.076 42.667 85.229 144.647 

40 17.083 42.681 85.260 144.701 

Δ𝑇𝑐𝑟
 𝑒𝑥  

 17.092 42.700 85.299 144.771 

Ref. (Bouazza et al. 2009) 17.091 42.698 85.295 144.764 

Ref. (Zenkour and Mashat 2010) 17.089 42.688 85.255 144.649 

k = 1 

Present 

10 7.876 19.703 39.347 66.779 

20 7.925 19.806 39.568 67.169 

30 7.934 19.825 39.609 67.241 

40 7.937 19.832 39.624 67.266 

Δ𝑇𝑐𝑟
 𝑒𝑥  

 7.941 19.841 39.642 67.299 

Ref. (Bouazza et al. 2009) 7.941 19.840 39.640 67.296 

Ref. (Zenkour and Mashat 2010) 7.940 19.836 39.625 67.251 

k = 5 

Present 

10 7.204 18.018 35.976 61.039 

20 7.248 18.113 36.178 61.395 

30 7.257 18.131 36.216 61.461 

40 7.259 18.137 36.229 61.484 

Δ𝑇𝑐𝑟
 𝑒𝑥  

 7.263 18.145 36.246 61.514 

Ref. (Bouazza et al. 2009) 7.262 18.142 36.241 61.506 

Ref. (Zenkour and Mashat 2010) 7.262 18.138 36.224 61.456 

k = 10 

Present 

10 7.406 18.522 36.976 62.723 

20 7.452 18.619 37.184 63.088 

30 7.460 18.637 37.222 63.156 

40 7.463 18.644 37.236 63.179 

Δ𝑇𝑐𝑟
 𝑒𝑥  

 7.467 18.652 37.253 63.210 

Ref. (Bouazza et al. 2009) 7.465 18.648 37.245 63.196 

Ref. (Zenkour and Mashat 2010) 7.464 18.643 37.225 63.138 
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Where 𝜂  represents the plate edge-to-mid center 

thickness ratio. Noting that 𝜂 > 1  corresponds to 

parabolic-concave variation. 

Substituting Eqs. (32) and (33) in Eq. (29); we obtain 

the thickness variation function as 
 

𝐻 𝑥 =
3ℎ

2 + 𝜂
 

4 𝜂 − 1 

𝑎2
𝑥2 + 1  (34) 

 

Thus, the thickness variation function is expressed by 

one parameter 𝜂 that controls the intensity of the parabolic 

variation and keeps the volume of the new plate equal to 

that of the original plate as shown in Fig. 2. 

In case of plate having variable thickness in two 

directions, the thickness function is derived from the 

general parabolic 
 

𝐻 𝑥,𝑦 =
16 𝑒0 − 𝑒1 

𝑎2𝑏2
𝑥2𝑦2 

−
4(𝑒0 − 𝑒1)

𝑎2
𝑥2 −

4(𝑒0 − 𝑒1)

𝑏2
𝑦2 + 𝑒0 

(35) 

 

 

Let 𝑉2 be the volume of this plate which is given as 

follows 

𝑉2 = 𝑎. 𝑏  
4

9
 𝑒0 − 𝑒1 + 𝑒1  (36) 

 

By making 𝑉0 = 𝑉2, we get 

 

5𝑒1 + 4𝑒0 = 9ℎ (37) 

 

Expressing 𝑒0  in terms of 𝑒1  as 

 

𝑒1 = 𝜂. 𝑒0 (38) 

 

Substituting Eqs. (37) and (38) into Eq. (35), the 

function 𝐻 𝑥,𝑦  can be written as follows 

 

𝐻 𝑥, 𝑦 =
9ℎ

4 + 5𝜂
 4 𝜂 − 1  

𝑥2

𝑎2
+
𝑦2

𝑏2
− 4

𝑥2𝑦2

𝑎2𝑏2
 + 1  (39) 

 

Similarly, the intensity parameter 𝜂 controls the 

Table 2 Critical buckling temperature (°C) of FG plate under linear temperature rise for different 

values of power law index 𝑘 and aspect ratio 𝑎/𝑏 with 𝑎/ℎ =  100 

  
Mesh 𝑎/∆ℎ 𝑎/𝑏 = 1 𝑎/𝑏 = 2 𝑎/𝑏 = 3 𝑎/𝑏 = 4 

k = 0 

Present 

10 23.904 74.805 159.327 277.309 

20 24.114 75.251 160.280 278.983 

30 24.153 75.333 160.457 279.294 

40 24.166 75.362 160.519 279.403 

Δ𝑇𝑐𝑟
 𝑒𝑥  

 24.184 75.399 160.599 279.543 

Ref. (Bouazza et al. 2009) 17.091 24.182 75.395 160.590 

Ref. (Zenkour and Mashat 2010) 17.089 24.179 75.375 160.510 

k = 1 

Present 

10 5.394 85.749 64.416 115.865 

20 5.485 27.768 64.831 116.595 

30 5.502 27.804 64.909 116.731 

40 5.508 27.817 64.936 116.778 

Δ𝑇𝑐𝑟
 𝑒𝑥  

 5.516 27.833 64.970 116.839 

Ref. (Bouazza et al. 2009) 7.941 5.515 27.832 64.967 

Ref. (Zenkour and Mashat 2010) 7.940 5.514 27.824 64.938 

k = 5 

Present 

10 3.793 22.409 53.319 96.461 

20 3.870 22.572 53.667 97.073 

30 3.884 22.602 53.732 97.187 

40 3.889 22.612 53.754 97.227 

Δ𝑇𝑐𝑟
 𝑒𝑥  

 3.896 22.626 53.783 97.278 

Ref. (Bouazza et al. 2009) 7.262 3.894 22.622 53.775 

Ref. (Zenkour and Mashat 2010) 7.262 3.893 22.614 53.745 

k = 10 

Present 

10 4.263 23.963 56.664 102.291 

20 4.344 24.135 57.033 102.938 

30 4.360 24.167 57.101 103.059 

40 4.365 24.178 57.125 103.101 

Δ𝑇𝑐𝑟
 𝑒𝑥  

 4.371 24.193 57.156 103.155 

Ref. (Bouazza et al. 2009) 7.465 4.369 24.185 57.140 

Ref. (Zenkour and Mashat 2010) 7.464 4.367 24.176 57.104 
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intensity of the parabolic variation in the two directions and 

keeps the volume of the new plate equal to that of the 

original constant-thickness plate as clarified in Fig. 2. 
 

5.1 Finite difference considerations 
 

In the finite difference idealization in case of variable 

thickness plate, it is assumed that at each discrete 𝑁𝑜𝑑𝑒 𝑖,𝑗   

 

 

 
 

the thickness is constant given by ℎ 𝑖,𝑗   as shown in Fig. 

(3). The value of ℎ 𝑖,𝑗   is simply calculated by substituting 

the Node’s coordinates in the thickness function 𝐻 𝑥  or 

𝐻 𝑥,𝑦  (Eq. (29) or Eq. (34)). In this case, the coordinate 

𝑧(𝑖,𝑗 )  at each 𝑁𝑜𝑑𝑒 𝑖 ,𝑗   varies in its specific domain: 

 −ℎ 𝑖,𝑗  /2,ℎ 𝑖,𝑗  /2 . According to Eq. (1) the material 

distribution profile through the thickness will be the same at 

Table 3 Critical buckling temperature (∆𝑇 × 10−3 °C) of FG plate under uniform temperature rise for different 

values of power law index 𝑘 and aspect ratio 𝑎/𝑏 with 𝑎/ℎ =  10 
  

 
Mesh 

𝑎

∆ℎ
 

𝑎/𝑏 = 1 𝑎/𝑏 = 2 𝑎/𝑏 = 3 

𝛽 = 2 𝛽 = 5 𝛽 = 10 𝛽 = 2 𝛽 = 5 𝛽 = 10 𝛽 = 2 𝛽 = 5 𝛽 = 10 

k 
=

 0
 Present 

10 4.846 9.692 17.766 11.390 22.778 41.753 20.628 41.254 75.620 

20 4.875 9.750 17.871 11.443 22.886 41.950 20.722 41.443 75.966 

30 4.880 9.760 17.891 11.453 22.906 41.987 20.740 41.478 76.030 

40 4.882 9.764 17.898 11.457 22.913 41.999 20.746 41.490 76.052 

Δ𝑇𝑐𝑟
 𝑒𝑥  

 4.885 9.769 17.907 11.461 22.922 42.016 20.754 41.506 76.081 

Ref. (Bouazza et al. 2009) 4.884 9.769 17.910 11.461 22.922 42.024 20.753 41.507 76.095 

Ref. (Zenkour and Mashat 2010) 4.841 9.682 17.750 11.225 22.449 41.157 19.992 39.984 73.304 

k 
=

 1
 Present 

10 2.106 4.316 8.186 5.007 10.263 19.464 9.200 18.857 35.762 

20 2.119 4.342 8.235 5.031 10.312 19.557 9.244 18.946 35.931 

30 2.121 4.347 8.244 5.036 10.322 19.575 9.252 18.963 35.962 

40 2.122 4.349 8.247 5.037 10.325 19.581 9.255 18.969 35.973 

Δ𝑇𝑐𝑟
 𝑒𝑥  

 2.123 4.351 8.251 5.039 10.329 19.589 9.258 18.976 35.987 

Ref. (Bouazza et al. 2009) 2.123 4.351 8.253 5.039 10.329 19.591 9.258 18.976 35.993 

Ref. (Zenkour and Mashat 2010) 2.107 4.318 8.190 4.950 10.146 19.244 8.962 18.368 34.840 

k 
=

 5
 Present 

10 1.616 2.886 5.064 3.802 6.788 11.911 6.875 12.275 21.539 

20 1.626 2.903 5.094 3.820 6.820 11.967 6.907 12.330 21.637 

30 1.628 2.906 5.100 3.823 6.825 11.977 6.913 12.341 21.656 

40 1.628 2.907 5.102 3.824 6.828 11.981 6.915 12.344 21.662 

Δ𝑇𝑐𝑟
 𝑒𝑥  

 1.629 2.909 5.104 3.826 6.830 11.986 6.917 12.349 21.670 

Ref. (Bouazza et al. 2009) 1.629 2.908 5.104 3.825 3.825 11.985 6.916 12.348 21.670 

Ref. (Zenkour and Mashat 2010) 1.614 2.882 5.057 3.744 6.685 11.732 6.657 11.885 20.857 

k 
=

 1
0
 Present 

10 1.702 2.928 4.844 3.972 6.833 11.304 7.105 12.223 20.219 

20 1.712 2.946 4.873 3.990 6.865 11.356 7.136 12.277 20.309 

30 1.714 2.949 4.878 3.994 6.871 11.366 7.142 12.287 20.326 

40 1.715 2.950 4.880 3.995 6.873 11.369 7.144 12.291 20.331 

Δ𝑇𝑐𝑟
 𝑒𝑥  

 1.716 2.951 4.882 3.996 6.876 11.374 7.147 12.295 20.339 

Ref. (Bouazza et al. 2009) 1.715 2.951 4.881 3.995 6.874 11.371 7.145 12.292 20.335 

Ref. (Zenkour and Mashat 2010) 1.697 2.920 4.831 3.902 6.712 11.104 6.851 11.786 19.498 
 

   

Plate with constant thickness variation 

(with V0) 

Plate with parabolic thickness variation 

in one direction (with V1 = V0) 

Plate with parabolic thickness variation 

in two direction (with V2 = V0) 

Fig. 2 plates having parabolic thickness-variation profile 
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each node since the volume fractions of the material 

constituents is dependent on the ratio 𝑧/ℎ , i.e.,  𝑧 𝑖,𝑗  /

ℎ 𝑖,𝑗  = [−1, +1]. 

Based on that, all the equations containing the thickness 

parameters ℎ such as Eq. (7), they are calculated by using 

the constant value ℎ 𝑖,𝑗  . In addition, the integration 

expressions through the thickness are evaluated using 

trapezoidal rule noting that each thickness ℎ 𝑖,𝑗   is divided 

into 2000 layers. 

 

 

Fig. 3 Finite difference idealisation of FGM plate with              

parabolic thickness variation 

 

 

6. Results and discussion 
 

The effect of the parabolic variation intensity parameter 

𝜂 (edge-to-mid thickness ratio) on the thermal buckling of 

FGM plates exposed to uniform, linear, and nonlinear 

temperature rise through the thickness, are shown in Figs. 

4-6. 

The general note that can observed from these figures is 

that varying the thickness geometry of the plate to fit a 

parabolic-concave shape decreases significantly its critical 

thermal buckling temperature especially when the thickness 

variation is applied in the two directions. In addition, the 

critical buckling temperature of FGM plate having 

parabolic-thickness variation is affected by the material 
 

 

 

Fig. 4 Effect of the parabolic intensity variation parameter 

𝜂 on the critical buckling temperature of FGM square 

plate under uniform temperature rise 
 

 

Fig. 5 Effect of the parabolic intensity variation parameter 

𝜂 on the critical buckling temperature of FGM square 

plate under linear temperature rise 

 

 

distribution profile where, as the value of the power law 

index 𝑘  increases the critical buckling temperature 

decreases. This is because plate with high metal content has 

lower stiffness with higher thermal expansion compared to 

the one with high ceramic content. 

Figs. 7 and 8 represent the loss ratio of thermal buckling 

resistance in FGM plates with parabolic thickness variation 

in terms of 𝜂, exposed to uniform and gradient temperature 

rise, respectively. It is meant by the loss ratio of the 

buckling resistance; the degradation ratio of the critical 

buckling load of FGM plate with variable thickness 

(𝜂 > 1) with respect to that of the original constant plate 

thickness (𝜂 = 1). The loss ratio is simply calculated as 

follows 

 

The loss ratio in ∆𝑇𝑐𝑟

=  
∆𝑇𝑐𝑟  constant thickness − ∆𝑇𝑐𝑟  variable thickness 

∆𝑇𝑐𝑟  constant thickness 
  

(40) 

 

Figs. 7 and 8 show that that the loss ratio in the critical 

buckling temperature increases as the parabolic intensity of 

the thickness variation parameter 𝜂  increases. This is 

justified by the fact that the increase in the value of 𝜂 helps 

to the occurrence of buckling since it reduces the thickness 

at the plate-middle where the buckling starts to develop. 

Under uniform temperature rise, as shown in Fig. 7, the 

relationship between the loss ratio of the thermal buckling 

resistance and the parabolic variation intensity 𝜂 is not 

affected by the variation the volume fraction of the 

constituent materials 𝑘, which means that whatever the 

value of 𝑘 is, the loss ratio in the critical buckling 

temperature is the same. In this case where 𝑎/ℎ = 50, it 

can be observed that, the loss ratio in the critical buckling 

temperature in homogenous plate and that in FGM plate 

which has the same geometric properties and thickness 

variation intensity, is the same. In other words, the loss ratio 

under uniform temperature rise is dependent on the 

geometrical properties of the thickness variation but not on 

the material variation profile. However, when the plate is 
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Fig. 6 Effect of the parabolic intensity variation parameter 

𝜂 on the critical buckling temperature of FGM square 

plate under nonlinear temperature rise 

 

 

 

Fig. 7 The loss ratio in the critical buckling temperature 

versus the parabolic intensity variation parameter 

𝜂 in FGM plate exposed to uniform temperature rise 

 

 

 

Fig. 8 The loss ratio in the critical buckling temperature 

versus the parabolic intensity variation parameter 

𝜂 in FGM plate exposed to gradient temperature rise 

exposed to gradient temperature rise through to thickness, 

the loss ratio appears to be affected by the material 

distribution profile (𝑘), as shown in Fig. 8, where the loss 

ratio in the thermal resistance increases as the parabolic 

variation intensity 𝜂  and the material distribution 𝑘 

increase. This relationship is the same for any applied 

gradient temperature distribution profile (linear or 

nonlinear). 

The effect of the side-to-thickness ratio 𝑎/ℎ on the loss 

ratio in the critical buckling temperature of simply 

supported FGM plates having parabolic thickness variation 

with intensity 𝜂 = 2 exposed to uniform temperature rise, 

is presented in Fig. 9. The figure clearly show that the loss 

ratio in the critical buckling temperature is almost constant 

for 𝑎/ℎ < 20. Where it equals to 41% and 32% in case of 

thickness variation in one and two directions, respectively. 

For thick plates with 𝑎/ℎ < 50, the loss ratio becomes 

slightly sensible to the material distribution parameter 𝑘. 

This sensibility increases as the 𝑎/ℎ decreases. 

According to what is stated in Fig. 7, it is concluded that 

plates with side-to-thickness ratio 𝑎/ℎ < 20 exposed to 

uniform temperature rise will loss the same ratio of the 

buckling resistance if they have the same geometric 

properties including the thickness variation intensity. This 

loss ratio is highly independent to the material distribution 

profile. 

The effect of the side-to-thickness ratio 𝑎/ℎ on the loss 

ratio of the critical buckling temperature of simply 

supported FGM plate having parabolic thickness variation 

with intensity 𝜂 = 2 exposed to gradient temperature rise 

(linear and nonlinear) through the thickness, is presented in 

Fig. 10. 

The results indicate that the loss ratio is the same for any 

gradient temperature profile through the thickness. In 

addition, the loss ratio in the critical buckling temperature 

starts to increase as the side-to-thickness ratio increases but 

with high rate for higher values of the material distribution 

parameter 𝑘. This is due to the combined effect of the low 

stiffness in both geometrical and material properties. The 

variation of the loss ratio in the critical buckling 
 

 

 

Fig. 9 Effect of side-to-thickness ratio on the loss ratio in 

the critical buckling temperature of FGM plate with 

parabolic variation intensity 𝜂 = 2 exposed to 

uniform temperature rise 
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Thermal buckling resistance of simply supported FGM plates with parabolic-concave thickness variation 

 

Fig. 10 Effect of side-to-thickness ratio on the loss ratio in 

the critical buckling temperature of FGM plate 

with parabolic variation intensity 𝜂 = 2 exposed 

to gradient temperature rise 

 

 

temperature in thick plates with 𝑎/ℎ < 20 seem to have a 

low sensibility to the variation of the material distribution 

profile. 

 

 

7. Conclusions 
 

An investigation on the thermal stability of FGM plates 

is presented in this research work in order to study the 

degradation in the thermal buckling resistance after varying 

the plate thickness according a parabolic function. The 

derived equations are solved numerically using finite 

difference method to have the ability to include the 

thickness variation. Effect of different geometrical and 

material properties is studied. 

According to the obtained results, applying parabolic 

thickness variation to simply supported FGM plates with 

preserving their original material volume leads to the 

following main conclusions: 

 

 Varying the thickness geometry to a parabolic-

concave shape with preserving its original material 

volume significantly reduces its critical buckling 

temperature especially when the variation is applied 

in the two longitudinal directions. 

 In case of uniform temperature rise, the loss ratio in 

the thermal buckling resistance of homogenous plate 

and that of FGM plate that have the same geometric 

properties and thickness variation intensity, is the 

same. Where, under this case of thermal loading, the 

loss ratio in the thermal buckling resistance is not 

affected by the material distribution profile, except 

for thick plates where a minor effect is observed. 

 Under gradient temperature rise, the volume fraction 

of the constituent materials affects the loss ratio of 

the thermal buckling resistance of thick plates with 

higher impact, compared to thin plates.  

 The loss ratio in the thermal buckling resistance of 

FGM plates having the same material properties due 

to parabolic thickness variation is the same for any 

applied gradient temperature profile through the 

thickness. 
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