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1. Introduction 

 
Due to the great degree appealing properties, carbon 

nanotubes (CNTs) have been progressively viewed as a 
standout material in nanotechnology. The blend of CNTs 
and a polymer material result in nanocomposites of high 
specific strength and stiffness. Such properties make them 
to use in weight critical applications in aerospace and space 
technology. The embedded CNTs in polymer matrix 
specifically influence the mechanical performance of the 
composite structures. Over the last two decade, a wide 
range of investigations on the constitutive and material 
characterization of carbon nanotube reinforced composite 
(CNTRC) materials have been carried out (Kumar and 
Srivastava 2016, Kumar and Srinivas 2014, Seidel and 
Lagoudas 2006). Recent interest of research community 
towards tailor the properties of the matrix with help of fiber 
distribution emphasized on the concept of functionally 
graded composites. In same line, functionally graded carbon 
nanotube reinforced composite (FG-CNTRC) structures are 
required more attention so as to utilize the extraordinary 
properties of CNTs (Udupa et al. 2012). 

FG-CNTRC plate and shell structures are having 
various applications in engineering fields and needs 
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a detailed investigation in terms of static and dynamic 
characteristics under actual loading conditions. Several 
studies reported multitude of static and dynamic analysis 
works related to bending, free vibration and buckling 
behavior of FG-CNTRC structures (Chavan and Lal 2017, 
Wattanasakulpong and Chaikittiratana 2015, Zhang et al. 
2017, Shokravi 2017). 

Multiple references to the transient as well as forced 
analyses of laminated and functionally graded materials 
(FGM) plates can be found in earlier work (Wang et al. 
2001, Kazanci 2009, Ebrahimi and Habibi 2017). A 
nonlinear dynamic study of FGM plates was conducted by 
Hao et al. (2010) to investigate the combined effect of 
transverse and in-plane excitations. Malekzadeh and 
Monajjemzadeh (2013) employed the finite element 
analysis along with Newmark’s time integration to 
investigated the dynamic response of FGM plate under 
moving load and temperature simultaneously. Najafi et al. 
(2016) studied the dynamic response of conventional FG-
plate under low velocity impact and examine the effect of 
nonlinear foundation, impactor’s parameters and thermal 
field. The transient analysis of FG plates is extended for 
FG-CNTRC plate using a numerical strategy by Ansari et 
al. (2015). In this work, Galerkin solution based approach 
was employed to determine the nonlinear response by 
considering von Kármán-type kinematic relations. Lei et al. 
(2015) performed a time history analysis of an elasto-
dynamic problem of FG-CNTRC plate. They found that 
volume fraction of CNT, plate aspect ratio, boundary 
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conditions and CNT distribution highly influenced the 
dynamic response. Guo and Zhang (2016) worked on 
nonlinear resonant response of CNT reinforced plate and 
analyzed the time dependent behavior under combined 
parametric and forcing excitations. Ansari and Gholami 
(2016) predicted the nonlinear primary resonance of FG-
CNTRC plate by employing Reddy’s shear deformation 
theory and generalized differential quadrature technique. 
Moreover, Zhang et al. (2016) presented an elasto-dynamic 
analysis of FG-CNTRC quadrilateral plate using element-
free approach and computed the response under a sudden 
dynamic load in transverse direction. An isogeometric 
model was developed by Phung-Van et al. (2015, 2017a, b) 
and integrated with the higher order shear deformation 
theory to obtain the nonlinear transient response of 
functionally graded nanoplates. Jangam et al. (2016) 
investigated the damping behavior of MWCNT/polymer 
composite and observed that aligned CNT reinforced 
nanocomposite samples show 37% improvement in 
structural damping compared to randomly oriented one. 
Swain et al. (2017) analyzed the impulse and frequency 
response of FG-CNT reinforced hybrid composite shell 
structure by considering Rayleigh damping. Few other 
studies on forced vibration response of FG-CNTRC 
structures were carried out under low velocity impact 
(Bayat et al. 2016) and periodic load (Moradi-Dastjerdi and 
Momeni-Khabisi 2017). Damped and control dynamic 
response of piezo-laminated CNT reinforced composite 
plate instrumented with nonlinear controller was presented 
using finite element method (Sharma et al. 2016). Feng et 
al. (2017) observed that the layer-wise variation of fiber 
volume/weight fraction provides more precise modeling of 
functionally graded moderately thick structure as it 
generates more accurate stress and strain-fields 
representation in discrete layers. In this line, a dynamic 
analysis of graphene platelet-reinforced composite plate is 
conducted using the concept of layer-wise variation of fiber 
weight fraction (Feng et al. 2017, Song et al. 2017). 
Recently, Tahouneh (2017) employed the modified Halpin-
Tsai model to compute the material properties of CNT 
reinforced composite and free vibration characteristics has 
been evaluated for FG-CNT composite plate with various 
distributions. It appears that there is a scope for transient 
analysis of FG-CNT nanocomposite structures modeled 
with layer wise distribution and modified Halpin-Tsai 
model based on available literature. 

In present work, transient vibration analysis of 
functionally graded MWCNT-reinforced polymer 
composite plate with simply-supported boundary condition 
is presented using Reddy’s third-order shear deformation 
theory. The equations of motion for in-plane and out-of-
plane directions are obtained by utilizing the Hamilton’s 
principle. Modified Halpin-Tsai model, which is formulated 
using existing experimental data is employed for estimate 
the material properties. A proportional damping is also 
introduced in governing equations to account the energy 
dissipation. The Navier’s approximate method is employed 
to acquire the time dependent algebraic equations. Further, 
the distributed transient pulse loads on the top face of the 
plate are considered and the central deflection response is 

obtained from Runge-Kutta fourth-order explicit time 
integration method. Effects of parameters such as the 
nanotube weight fraction, length of nanotube, their 
distributions, plate aspect ratio, damping coefficient and 
foundation stiffness parameters on the dynamic 
characteristics of FG-CNTRC plates are illustrated. Time-
domain response characteristics under varying parameters 
are described in detail. The paper is organized as follows: 
section-2 described the layer-wise variation of weight 
fraction and mathematical modeling of the dynamic plate 
problem. Also, solution methodology is explained for 
simply support boundary conditions. Section-3 deals with 
numerical results and discussion and finally conclusions 
drawn from analysis are listed. 

 
 

2. Problem statement and mathematical 
formulation 
 
A multi-walled carbon nanotube reinforced composite 

square plate with thickness h, length a and width b is 
considered and multi-walled carbon nanotube is abbreviated 
as CNT throughout the analysis. The z-coordinate is taken 
along the thickness direction of the plate while x and y 
coordinates are taken along the width and length direction 
respectively, as shown in Fig. 1. A distributed transverse 
load q(x, y, t) is applied to the top surface of composite 
plate to obtain the transient response. Generally, the 
variation of a typical volume/weight fraction of CNT in FG-
CNTRC structures along the thickness direction is 
represented by some explicit formulas. But, in this work, 
the FG-CNT reinforced composite plate is considered to be 
composed of number of layers (NL) with equal thickness 
(Δh = h/NL). The effect of CNT reinforcement on dynamic 
behavior of FG-CNTRC plate is investigated with four 
different weight fraction distributions (WFD) as shown in 
Fig. 1. The distribution-I is obtained by considering uniform 
distribution of weight fraction of CNTs in each layer 
throughout the thickness and each layer behaves like an 
isotropic homogenous plate. In distribution-II weight 
fraction increases from top to mid plane layer and again 
decreases from mid plane to bottom layer; while 
distribution-III is reversed case of distribution-II. 
Distribution-II and distribution-III are symmetric whereas 
distribution-IV is asymmetric in which weight fraction of 
CNTs increases linearly from top to bottom layer. More 
details of these distributions can be found in previous work 
(Kumar and Srinivas 2017). All these distribution patterns 
with linear layer-wise variation of weight fractions of CNTs 
in matrix material are different from the existing formula-
based continuous distributions such as uniformly 
distributed, FG-X etc used earlier. 

 
2.1 Estimation of effective material properties 
 
Basically, multi-walled carbon nanotubes are cylindrical 

tubes filled with equally spaced concentric walls having 
internal diameter in the range of 0.4 nm to 1 nm 
approximately. For nanocomposites, the empirical relations 
and rules of mixture cannot predict the mechanical 
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properties accurately and should be modified as per the 
experimental or molecular dynamics simulation data. 
However, the Halpin-Tsai’s empirical equation has been 
recently used in short-fiber reinforced composites with 
assumption of uniform dispersion and straightness of the 
fiber. 

A modified Halpin-Tsai model is employed here to 
estimate the effective elastic modulus of the nanocomposite 
material. The orientation of fiber in polymer matrix decides 
the effective elastic behavior of composite; despite the 
CNTs exhibiting the transversely isotropic behavior, the 
resulting effective properties of randomly oriented CNT 
reinforced composite are to be considered isotropic. By 
considering CNTs as an effective cylindrical solid tube with 
diameter Dmw, the effective elastic modulus (Ec) of the 
randomly oriented CNT reinforced composite is obtained 
by (Arasteh et al. 2011, Rafiee and Firouzbakht 2014, Yeh 
et al. 2006) 
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Fig. 1 Schematic depict of multi-layer FG-CNT reinforced 
composite plate 

 
 

,2 agg
mw

mw
L k

D

L








   ,2T   11 bmwVa

agg ek   (3)

 
Density (c) and Poisson’s ratio (υc) of nanocomposite 

material are computed by rule of mixtures according to 
 

  pmwcntmwc VV   1  (4)
 

  pmwcntmwc VV   1  (5)
 
The relationship between the volume fraction (Vmw) and 

weight fraction (wmw) can be expressed as 
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Here, ()c, ()mw, ()p

 indicates the properties of composite 
materials, CNTs and matrix respectively. The length of 
CNT (Lmw) is considered as same as to single walled CNT 
(Lcnt). Also, ki, kw and kagg are the factors introduced in 
conventional Halpin-Tsai model to account the effect of 
interfacial interaction, waviness and agglomeration in 
nanocomposites. The constant a1 and b1 are related to 
degree of agglomerates. The effective elastic modulus of 
CNT (Emw) can be estimated as (Kumar and Srinivas 2017) 
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where tcnt , and Ecnt indicate the effective thickness and 
elastic modulus of single walled CNTs. Nw is number of 
walls in CNT and hin indicates the inter layer spacing in 
CNT. The nanotube thickness is considered as 0.141 nm in 
present analysis (Wang and Zhang 2008). The variation of 
elastic modulus of CNTs with number of walls and inter 
layer spacing is depicted in Fig. 2(a) and it is found that Nw 
= 10, hin = 1.05×tcnt gives the comparable results (Emw = 950 
Gpa) as provided by Yeh et al. (2006). The applicability of 
modified Halpin-Tsai model is supported by available 
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experimental data. The effective modulus obtained from 
present model and experimental results reported by Rafiee 
and Firouzbakht (2014) are plotted as a function of CNT 
weight fraction as shown in Fig. 2(b). A similar type of 
trend is observed for CNT/epoxy composite system. The 
constant value of parameters in the modified Halpin-Tsai 
model are obtained from the curve fitting and model 
parameters related to best fit are ki = 0.9694, kw = 0.67, a1 = 
18, b1 = 3.4, Lmw = 75 μm, Dmw = 70 nm. These model 
parameters are further utilized in dynamic solution of 
nanocomposite plate. 

 
2.2 System of governing equations 
 
Based on higher-order shear deformation theory, in-

plane displacement components are linear functions of 
thickness coordinate whereas out-of-plane components are 
constant across the thickness. Accordingly, the displacement 
fields along x, y and z axes is described as 
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where the terms with subscript ()0 indicate the mid surface 
displacements and ϕx and ϕy are transverse normal rotations 
about y and x axes. The term ψ(z) is an appropriate shape 
function in terms of thickness coordinate which can be 
easily adapted in various higher order plate theories. In third 

order shear deformation plate theory  
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strain-displacement relations can be expressed as 
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where  Txyyyxxb    and  Tyzxzs   are the 

bending and shear strain vectors. The expressions for stress 
component of the kth layer can be obtained by constitutive 
relations as 
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where   ,T
xyyyxxb     Tyzxzs    and the 

non-zero bending and shear stiffness components in 
matrices P and Q are 
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To obtain the governing equations of motion of 
composite plate resting on the Pasternak foundation, the 
Hamilton’s principle is employed. That is 
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where δU, δUPf, δW and δK are the virtual variation of 
strain energy, potential energy of Pasternak foundation, 
work done by external forces and kinetic energy 
respectively. Also, t is the time required for integration. 
Detailed expressions of each of the energy functions are 
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where Kw and Ks are the foundation spring constants for 
Winkler and shear layer. They are obtained as 
(Wattanasakulpong and Chaikittiratana 2015) 
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where βw and βs are the foundation stiffness parameters. 
Similarly, the expressions for kinetic energy and work done 
by external force are given by 
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Finally, the system of governing equations is obtained 
by subtitling the above energy expressions into Eq. (13) and 
then applying integration. The resulting coefficients of δu0, 
δv0, δw0, δϕx and δϕy are summarized as 

 

 δu0: x
xyxx I

x

w
IuI

y

N

x

N



 4

0
201 












 (19a)
 

572



 
Transient vibration analysis of FG-MWCNT reinforced composite plate resting on foundation 

δv0: y
xyyy I

y

w
IuI

x

N

y

N



 4

0
201 












 (19b)

 

δw0: 0

2

2

2

2

2

2 wK
yx

M

y

M

x

M
w

xyyyxx 













 





































































yx
I

y

w

x

w
I

y

v

x

u
I

wItyxq
y

w

x

w
K

yx

s

 



52

2

2

2

3
00

2

012
0

2

2
0

2

),,( (19c)

 

δϕx: x
xyxx I

x

w
IuI

y

N

x

N



 4

0
201 












 (19d)

 

δϕy: yyz
xyyy I

y

w
IuIR

x

P

y

P



 6

0
504 












 (19e)

 

where Ii (i = 2,….,6) are the mass inertia terms which are 
defined by 
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in which ρc
k is the mass density of composite in the kth layer. 

The normal forces, shear forces, bending moments and their 
higher order components, which are resulting from 
constitutive relations of stress in the form of material 
stiffness and displacement fields, can be written as follows 
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where Aij, Bij, Cij, Eij, Fij and Hij are the stiffness matrices for 

higher order shear deformation model. The elements of 
stiffness matrices of the FG-CNTRC plate can be defined as 
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2.3 Approximate solution 
 
Navier method is employed to formulate the closed form 

dynamic solution of the composite plate with simply 
supported boundary conditions. By considering the 
following admissible displacement functions (u0, v0, w0, ϕx, 
and ϕy) satisfying the boundary conditions, further analysis 
is taken up. 
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where umn(t), vmn(t), wmn(t), φmn(t) and θmn(t) are the arbitrary 
time dependent constant parameters to be determined. Also, 

α = Mπ/a, β = Nπ/b and i= .1  The mathematical 
representation of distributed load is as follows 
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and F(t) is a time dependent function. The exact value of 
QMN and F(t) for uniformly distributed load in terms of 
pulse duration can be defined as (Kazanci 2009, Wang et al. 
2001) 
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where q0 and tp are the peak value of the distributed load 
and duration of the pulse. It is presumed that peak value of 
the load is q0 = -100 kPa and pulse duration tp is 0.0005 s. 
Also,   is a waveform parameters in blast loading taken 
as 0.35 (Kazanci 2009). 

After substituting Eqs. (27) and (28) into Eq. (19), a set 
of time dependent algebraic equations are derived as 
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where [K], and [M] are the overall stiffness, and mass 
matrices of size 55, Δ(t) is the unknown displacement 
vector while Q(t) is the force vector respectively, which are 
given as 
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In present analysis the damping matrix [C] is computed 

according to as [C] = {2c/ω1}[K] (Ansari and Gholami 
2016, Ansari et al. 2015), where ω1 is the fundamental 
natural frequency of the system and c is a damping 
coefficient. The non-conservative damping forces [C] )(t  

is introduced in Eq. (32) and final governing equation 
becomes 
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3. Numerical illustrations 
 
A detailed numerical study is presented in this work for 

transient vibration analysis of multi-layer functionally 
graded CNT-reinforced polymer composite plate. The 
equations of motion are solved by fourth order Runge-Kutta 
method with zero initial conditions. 

First, the convergence study is carried out by 
considering different number of layers in plate to confirm 
the stability and accuracy of present solution. A 

dimensionless central deflection
 





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bawD
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is obtained under triangular pulse load for the distribution-
III by varying the number of layers in thickness direction. 
Fig. 3(a) shows the consistency in results for 8 to 10 layers 
(NL) in composite plate without elastic foundation. Also, an 
illustration for validate the results and investigate the effect 
of number of terms in the Fourier expression of 
displacement functions is presented. In which, central 
deflection (w) of the isotropic plate under sudden dynamic 
load is computed according to the dimensions and material 
properties of the previous work (Lei et al. 2015). It can be 
observed from Fig. 3(b) that one term solution is sufficient 
to yield converged results. For further analysis, multi-layer 
functionally graded CNT reinforced nanocomposite plate 
with simply supported boundary conditions is considered. 
Table 1 shows the material properties employed in the 
simulations. The weight fraction of CNTs is considered as 
1% and NL = 10 throughout the analysis. A parallel solution 
of composite plate is obtained from finite element analysis 
using ANSYS 15.0 with SHELL-281 elements (8-node, 

 
 

Table 1 Material properties and model parameters for CNT 
reinforced composite 

Polymer (epoxy) CNTs 

Ep = 2.71 GPa 
ρp = 1300 kg/m3 

υp = 0.3 

Emw = 950 GPa, υmw = 0.28, 
ρmw = 1180 kg/m3, Lmw = 75 μm, 

Dmw = 70 nm, ki = 0.9694, kw = 0.67, 
a1 = 18, b1 = 3.4 

 
 
 

 

(a) FG-CNTRC Plate (βw = βs = 0, M = N = 1, a/h = 10, wmw = 1%) (b) Isotropic plate 

Fig. 3 Dimensionless central deflection response of plate 
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6 degree of freedom per node). The plate is assumed to be 
composed of 10 layers with each layer property computed 
according to functional grading concept. After several trails, 
it was found that 20×20 mesh size is enough to get 
converge and reliable results. Fig. 4 shows numerical results 
for simply supported plate without elastic foundation in 

 
 

 
 
comparison with the ANSYS results of pure polymer and 
distribution III. It can be seen that the results are close to 
each other. 

Fig. 5 shows the response of FG-CNT reinforced 
composite plate due to different types of loads. It is 
observed that the responses become steady immediately 

(a) Polymer plate (b) FG-CNTRC plate 

Fig. 4 Comparison for dimensionless central deflection response (βw = βs = 0, a/h = 10, wmw = 1%) 

(a) Triangular pulse (b) Sinusoidal pulse 
 

(c) Rectangular pulse (d) Blast pulse 

Fig. 5 FG-CNT reinforced composite plate under different loading conditions (βw = 100, βs = 0, a/h = 10, wmw = 1%, 
distribution III) 
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Fig. 6 FG-CNTRC plate response for different distributions 
(βw = 0, βs = 0, a/h = 10, wmw = 1%) 

 
 

Fig. 7 FG-CNTRC plate response with elastic foundation 
parameters (a/h = 10, wmw = 1%, distribution III) 

 
 

after the loading duration in first three cases. Most of the 
available work in literature deals with rectangle, sinusoidal, 
decreasing type of triangular and blast loadings. So, in 
present work, further analysis of composite plate behavior 
is carried out with increasing type of triangular loading. Fig. 
6 depicts the behavior of dimensionless central deflection 
response of simply supported FG-CNT reinforced 
composite plate for different types of distributions. Here, 
the triangular pulse load is considered. Distribution-II 
shows the highest central deflection while the distribution-
III gives the minimum central deflection. Fig. 7 depicts the 
effect of elastic foundation stiffness on the response of FG-
CNT reinforced composite plate for distribution- III. 
Increasing the elastic foundation coefficient drastically 
decreases the central deflection.  Now, the effect of weight 
fraction and aspect ratio of CNTs are investigated. Fig. 8 
shows the central response of polymer plate along with that 
of composite plates with two different weight fractions. It is 
discerned from figure that as the weight fraction increases, 
response amplitudes decrease. In other words, stiffening 
effect becomes more pronounced for higher weight 
fractions. It can be understood from Fig. 9 that long CNTs 

Fig. 8 FG-CNTRC plate response with variation of weight 
fraction (βw = 100, βs = 0, a/h = 10, Distribution III)

 
 

Fig. 9 FG-CNTRC plate response with CNT aspect ratio 
(βw = 100, βs = 0, a/h = 10, wmw = 1%, distribution III)

 
 

Fig. 10 FG-CNTRC plate response with plate aspect ratio 
(βw = 100, βs = 0, a/h = 10, wmw = 1%, distribution III)

 
 

provide good reinforcing capability resulting in higher 
stiffness which in turn reduces central deflection amplitude. 
Fig. 10 shows the dimensionless central deflection history 
for three different plate aspect ratios. It is observed that 
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Fig. 11 Effect of damping coefficient on transient response 
of FG-CNTRC plate (βw = 100, βs = 0, distribution 
III, wmw = 1%) 

 
 

Fig. 12 Transient response of FG-CNTRC plate (βw = 100, 
βs = 0, wmw = 1%, a/h = 10, c = 0.01) 

 
 
square plate shows lower central deflections as compared to 
rectangle one. 

In Fig. 11, the effect of damping coefficient on non-
dimensional central deflection is investigated and it is 
observed that increment in the damping coefficient reduces 
the settling time. Fig. 12 shows the effect of weight fraction 
distributions on settling time of nanocomposite plate. It is 
observed from data point that composite plate with 
distribution-III takes minimum time (x-coordinate) to attain 
rest position, while pure polymer plate takes maximum 
time. Despite of distribution II and III are symmetric, 
distribution II shows the opposite behavior to distribution 
III and takes maximum settling time among all 
distributions. 

 
 

4. Conclusions 
 
Transient vibration studies of functionally graded CNTs 

reinforced composite simply-supported plate with Pasternak 
foundation have been presented. Layer-wise theory was 
implemented for analyzing the functionally graded 
distribution in the thickness direction. The plate was viewed 

as an assemblage of perfectly bonded finite thickness thin 
layers and each layer consist of uniform distributed of 
CNTs. The weight fractions of CNTs in layers were varied 
in such a way that it can achieve the CNT distribution as per 
functional grading concept. By considering multi-walled 
carbon nanotube as reinforcement, the elastic properties of 
composite plate were estimated using modified Halpin-Tsai 
model. Equations of motion were derived by considering 
shear deformation effects and proportional damping. The 
transient solution was obtained by employing Navier’s 
solution technique along with the explicit time integration 
scheme. The results showed that composite plate behaves 
differently under various time dependent pulse excitation. 
This may helpful to design the composite structures under 
different loading conditions. In light of the triangular pulse, 
obtained numerical outcomes are presented as some 
important conclusions. 

 

 Slight increase in CNT weight fraction diminishes 
the central vertical deflection of composite plate. 

 Higher aspect ratio of CNTs resulting in to low 
response amplitudes. 

 Distribution-III is relatively better as it gives the 
lowest central deflection. 

 At higher plate aspect ratio, the central deflection 
increases rapidly while a significant decrement is 
observed in central deflection with elastic 
foundation. 

 Minimum settling time is observed for distribution 
III compared to other four distributions. 

 

As a future scope of the work, an experimental analysis 
has to be carried-out to confirm the effects of primary 
factors like weight fractions and plate geometry on the 
transient response behavior. The type of distribution and 
material optimization of CNT reinforced composite is 
another goal. The influence of structural damping may be 
studied under impact loads. 
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