Free vibration of symmetrically laminated quasi-isotropic super-elliptical thin plates

Erkin Altunsaray*

Institute of Marine Science and Technology, Dokuz Eylul University, Baku Bulvari 100, TR-35340, İzmir, Turkey

(Received April 4, 2018, Revised November 5, 2018, Accepted November 9, 2018)

Abstract. Free vibration analysis of super-elliptical composite thin plates was investigated. Plate is formed by symmetrical quasi-isotropic laminates. Rayleigh-Ritz method was used for parametric analysis based on the governing differential equations of Classical Laminated Plate Theory (CLPT). Simply supported and clamped boundary conditions at the periphery of plates were considered. Parametric study was performed for the effect of different lamination type, aspect ratio, thickness and super-elliptical power on natural frequencies. Convergence study and validation of isotropic case were achieved. A number of design parameters like different dimensions, structure systems, panel sizes, panel thicknesses, lamination sequences, boundary conditions and loading conditions must be considered in the production of composite ships. The number of possible combinations practically may be so high that a parametric study should be carried out in order to determine the optimum design parameters rapidly during the preliminary design stage. The use of Rayleigh-Ritz method could make this parametric study possible. Thereby it might be decreasing the consumption of time, material and labor. Certain results for some different super-elliptical powers presented in tabulated form in Appendix for designers as well.

Keywords: super-elliptical composite thin plates; free vibration; parametric study; Rayleigh-Ritz method

1. Introduction

Composite thin plates are widely used as structural elements of ships, aircrafts and civil engineering applications. Applications of composite materials in marine, transportation and aerospace industries were given by Mouritz *et al.* (2001), Eric Green Associates (1999) and Jones (1999). Ship hull and its supporting structural elements have to be designed to avoid from resonance vibrations, which are mainly originated from propeller, main and auxiliary engines during operating conditions (TL Rules 2017).

Vibration of plates with various geometry (rectangular, circular and elliptical) has been studied by hundreds of researchers and given in some review articles (Kreja 2011, Sayyad and Ghugal 2015, Kumar 2018). A few of them were mentioned in this study because of the restriction of this paper. Vibration of rectangular laminated composite plates has been examined by Bui and Nguyen (2011). Singhatanadgid and Wetchayanon (2014) and Sadoune et al. (2014). Bui and Nguyen (2011) presented a novel meshfree model for buckling and vibration of rectangular orthotropic plates. Singhatanadgid and Wetchayanon studied free vibration analyses of laminated composite and isotropic plate using the extended Kantorovich method and Finite Element Method (2014). A novel first order shear deformation theory (FSDT) for laminated antisymmetric cross-ply and angle-ply composite rectangular plate was

E-mail: erkin.altunsaray@deu.edu.tr

developed by Sadoune et al. (2014). One of the experimental studies about vibration of composite rectangular plates was employed by Mishra and Sahu (2012); another was achived by Nayak et al. (2013). Kim (2003), Nallim and Grossi (2008) and Afsharmanesh et al. (2014) analysed vibration of laminated composite elliptical or circular plates. Kim (2003) studied natural frequency of elliptical orthotropic (glass/epoxy, boron/epoxy, carbon/ epoxy and kevlar/epoxy) plates. Nallim and Grossi (2008) investigated natural frequencies of elastically restrained solid and annular cross-ply and angle-ply elliptical laminated plates based on Rayleigh-Ritz Method. Afsharmanesh et al. (2014) dealt with buckling and vibration of laminated ange-ply plates on winkler-type foundation problem and solved the problem by Ritz Method based on CLPT. Ghaheri et al. (2014) analyzed buckling and vibration of thin, symmetrically laminated, elliptical angle-ply composite plate under initial in-plane edge loads and resting on a Winkler-type elastic foundation based on CLPT using by Ritz energy method. In this study authors indicated that critical buckling load and natural frequencies are affected by the aspect ratio, fiber orientation, layup sequence, in-plane load and foundation parameter. Authors compared their results with FEM and existing results and they obtained good convergence.

Super-elliptical plate has a geometry between an ellipse and a rectangle, which enables the structure to diffuse and to dilute the stress at the corner of rectangular plates (Liew *et al.* 1998). It is this advantage making them preferred in engineering applications such as naval and aerospace industries. However, static and dynamic analysis of superelliptical plates has been dealt with in academic fields for

^{*}Corresponding author, Ph.D.,

last few decades. One of the early studies was performed by Irie *et al.* (1983). They studied naturel frequencies of square membrane and square isotropic plates with rounded corners. A number of researchers studied vibration of super-elliptical thin isotropic plates based on Kirchhoff–Love plate theory using Rayleigh- Ritz method (Wang *et al.* 1994, Çeribaşı 2009, Zhangh and Zhou 2014). There dimensional free vibration analyses of super-elliptical isotropic plates using Chebyshev–Ritz Method have been studied by Zhou *et al.* (2004). Liew and Feng (2001) carried out 3-D vibration analysis of perforated type super-elliptical isotropic plates via p-Ritz method. Çeribaşı (2012) investigated static and dynamic analysis of super-elliptical FGM (functionally graded materials) based on Kirchhoff plates by Galerkin Method and Ritz Method.

Altekin (2017) examined free transverse vibration of shear deformable super-elliptical moderately thick plates based on Mindlin plate theory by Finite Element Method (FEM). With this work, the author contributed to the literature large amount of data about influence of boundary condition, super-elliptical power, aspect ratio and thickness of the plate on the frequency parameter of shear deformable super-elliptical plates.

A few studies about special orthotropic, cross-ply and angle-ply super-elliptical plates are available in literature (Lim *et al.* 1998, Chen *et al.* 1999, Altekin 2009, Ghaheri *et al.* 2016). Altekin (2009) investigated free vibration of orthotropic super-elliptical plates on intermediate supports by Ritz method based on Kirchhoff–Love plate theory. The results were compared with those in the open source for various plate shapes and different boundary conditions.

The importance of using the quasi-isotropic plates in practice is given by Altunsaray and Bayer (2013). In today's maritime industry the composite structure system, which is formed by the combination of thermosetting resins and multi-axial fibers, is widely applied. Due to the limitations in material production, the fibers commonly used in the structure are at 0° , + 45°, -45° and 90° angles. In symmetric layered structure, the angles of the layers are symmetrical with respect to the middle axis and the plate remains flat despite the thermal stresses occurring during production. As the number of layers increases, the angle between the adjacent laminae decreases such that $\Delta \theta = 180^{\circ}/N$ where N is the number of layers. For instance; $[-45^{\circ}/0^{\circ}/45^{\circ}/90^{\circ}] \equiv$ $\pi/4$. Shear modulus of the quasi-isotropic plates consisting of 0° , +45°,-45° and 90° angles is greater than that of crossply plates. Moreover, it is stated that quasi-isotropic structure is preferred with few exceptions in the aircraft in NASA [Aran 1990, Jones 1999, Harper 2002]. Therefore, the free vibration of the symmetrically laminated quasiisotropic super-elliptical plates composed of 24 different combinations of 0°, $+45^{\circ}$, -45° and 90° angles was investigated. Moreover, it is chosen because present investigation for this particular configuration of layups has not previously been found in the literature. The authors investigated deflection and free vibration of symmetrically laminated quasi-isotropic thin rectangular plates based on Classical Laminated Plate Theory using some weighted residual methods and Method of Finite Elements.

Recently, static deflections of symmetrically laminated

quasi-isotropic super-elliptical thin plates have been presented by using Rayleigh-Ritz method (Altunsaray 2017). Now this particular study is extended to the free vibration of quasi-isotropic super-elliptical plates, because it seems that it has not yet been published in the literature.

The main motivation of this paper is to attempt to fill the gap, which is the free vibration of symmetrically laminated quasi-isotropic super-elliptical thin plates, in the literature. It is also aimed to present practical data for designers involved in concept design stage of composite ships. In this study, the above named problem based on a Classical Laminated Plate Theory was investigated using Rayleigh-Ritz method. The effect of some parameters such as lamination type, super-elliptical power (n), aspect ratio (a/b and b/a) and boundary condition (clamped and simply supported) on natural frequencies of symmetrically laminated quasi-isotropic super-elliptical thin plates was studied. Validation study was performed for isotropic plate because it was only available in open literature.

As mentioned in the above paragraphs, the novelty of this paper is the investigation of the free vibration frequencies of quasi-isotropic super-elliptical thin plates which still seems to be lacking in the literature. By this way, at the preliminary design stage of composite ships, which is quite complicated because there are a number of parameters like different geometries, boundary conditions, thicknesses, lamination sequences, etc., possible better alternative design options may be obtained. Convergence study of free vibrations of LT1 ([- $45_2/0_2/45_2/90_2$]s) plate was carried out up to 10 terms to obtain reasonable accuracy. In this parameteric study, some selected results for different parameters such as lamination types, boundary conditions, super-elliptical powers and aspect ratios were given with tables.

2. Analysis

2.1 Main parameters

Geometry looking like a rectangular plate with rounded corners is named super-elliptical plate (Fig. 1).

Fig. 1 Geometry of super-elliptical plate in the Cartesian co-ordinates

$$\frac{x^{2n}}{a^{2n}} + \frac{y^{2n}}{b^{2n}} = 1, \qquad n = 1, 2..\infty$$
(1)

a and *b* are the half lengths of the plate and *n* is the power of the super ellipse. If *n* is equal to 1, shape is an ellipse, while n goes to infinity (∞) the shape becomes a rectangle.

Material properties of carbon/epoxy are given in Table 1 (Tsai 1988). Aspect ratios are given in Table 2.

In this study, twenty four different types of lamination of plates are shown in Table 3. Each plate consists of four different stacking sequences (-45° , 0° , 45° and 90°). Thickness of a laminate (*t*) is equal to 0.2 mm and total thickness of a plate is 3.2 mm (each plate contains 16 laminates).

2.2 Method of solution

Rayleigh-Ritz Method used for calculation based on Classical Laminated Plate Theory (CLPT) in this study. The use of CLPT for this study is considered appropriate, since the ratio of the plate thickness to the length of short edge is sufficiently small. Main assumptions of CLPT were given in (Altunsaray 2017).

Table 1 Material properties of T300-934 coded carbon/ epoxy, Tsai (1988)

Longitudinal Young Modulus (E_{11})	148×10 ⁹ (N/m ²)
Transversal Young Modulus (E_{22})	9.65×10 ⁹ (N/m ²)
Longitudinal Shear Modulus (G_{12})	4.55×10 ⁹ (N/m ²)
Longitudinal Poisson ratio (v_{12})	0.3
Laminate thickness (t)	$0.185 \times 10^{-3} - 0.213 \times 10^{-3}$ (m)
Density (ρ_0)	$1.5 \times 10^3 (\text{kg/m}^3)$

Table 2 Aspect ratios

a/b	1	1.2	1.4	1.6	1.8	2
b/a	1	1.2	1.4	1.6	1.8	2

Table 3 Symmetrically laminated quasi-isotropic superelliptical plate types

	1 1 11		
LT1	$[-45_2/0_2/45_2/90_2]_s$	LT13	$[45_2/-45_2/0_2/90_2]_s$
LT2	$[-45_2/0_2/90_2/45_2]_s$	LT14	$[45_2/-45_2/90_2/0_2]_s$
LT3	$[-45_2/45_2/0_2/90_2]_s$	LT15	$[45_2/0_2/-45_2/90_2]_s$
LT4	$[-45_2/45_2/90_2/0_2]_s$	LT16	$[45_2/0_2/90_2/-45_2]_s$
LT5	$[-45_2/90_2/0_2/45_2]_s$	LT17	$[45_2/9_{02}/-45_2/0_2]_s$
LT6	$[-45_2/90_2/45_2/0_2]_s$	LT18	$[45_2/90_2/0_2/-45_2]_s$
LT7	$[0_2/-45_2/45_2/90_2]_s$	LT19	$[90_2/-45_2/0_2/45_2]_s$
LT8	$[0_2/-45_2/90_2/45_2]_s$	LT20	$[90_2/-45_2/45_2/0_2]_s$
LT9	$[0_2/45_2/-45_2/90_2]_s$	LT21	$[90_2/0_2/-45_2/45_2]_s$
LT10	$[0_2/45_2/90_2/-45_2]_s$	LT22	$[90_2/0_2/45_2/-45_2]_s$
LT11	$[0_2/90_2/-45_2/45_2]_s$	LT23	$[90_2/45_2/-45_2/0_2]_s$
LT12	$[0_2/90_2/45_2/-45_2]_s$	LT24	$[90_2/45_2/0_2/-45_2]_s$

The strain energy (U) of the symmetrically laminated plate is given below (Eq. (2)) (Reddy 2004)

$$U = \frac{1}{2} \int_{-a}^{a} \int_{-b^{2} \sqrt[n]{1-\frac{x^{2n}}{a^{2n}}}}^{b^{2} \sqrt[n]{1-\frac{x^{2n}}{a^{2n}}}} \left[\begin{array}{c} D_{11}(\frac{\partial^{2} w}{\partial x^{2}})^{2} + 2D_{12}(\frac{\partial^{2} w}{\partial x^{2}})(\frac{\partial^{2} w}{\partial y^{2}}) \\ + 4D_{66}(\frac{\partial^{2} w}{\partial x \partial y})^{2} + D_{22}(\frac{\partial^{2} w}{\partial y^{2}})^{2} \\ + 4D_{16}(\frac{\partial^{2} w}{\partial x^{2}})(\frac{\partial^{2} w}{\partial x \partial y}) \\ + 4D_{26}(\frac{\partial^{2} w}{\partial y^{2}})(\frac{\partial^{2} w}{\partial x \partial y}) \end{array} \right] dxdy \quad (2)$$

w is deflection function, the elements of bending stiffness matrix D_{ij} are calculated as given in (Reddy 2004)

$$D_{ij} = \frac{1}{3} \sum_{k=1}^{N} \overline{Q}_{ij}^{k} (z_{k+1}^{3} - z_{k}^{3})$$
(3)

The members of transformed reduced stiffness matrix (\bar{Q}_{ij}) are calculated for each lamina as given below (Eq. (4)). *N* is the total number of plies in the laminate and z_k and z_{k-1} are the distance from the reference plane to the two surfaces of the k_{th} lamina (Reddy 2004). Coordinate locations of plies in a typical laminated plate is demonstrated in Fig. 2.

$$\begin{aligned} Q_{11} &= Q_{11}c^{4}(\theta) + 2(\theta_{12} + 2\theta_{66})s^{2}(\theta)c^{2}(\theta) \\ &+ Q_{22}s^{4}(\theta) \\ \overline{Q}_{12} &= (Q_{11} + Q_{22} - 4Q_{66}s^{2}(\theta) + c^{2}(\theta) \\ &+ Q_{12}(s^{4}\theta) + c^{4}(\theta)) \\ \overline{Q}_{22} &= Q_{11}s^{4}(\theta) + 2(Q_{12} + 2Q_{66})s^{2}(\theta)c^{2}(\theta) \\ &+ Q_{22}c^{4}(\theta) \\ \overline{Q}_{16} &= (Q_{11} - Q_{12} - 2Q_{66})s(\theta)c^{3}(\theta) \\ &+ (Q_{11} - Q_{22} + 2Q_{66})s^{3}(\theta)c(\theta) \\ \overline{Q}_{26} &= (Q_{11} - Q_{12} - 2Q_{66})s^{3}(\theta)\cos(\theta) \\ &+ (Q_{11} - Q_{22} + 2Q_{66})s(\theta)c^{3}(\theta) \\ \overline{Q}_{66} &= (Q_{11} + Q_{22} - 2Q_{12} - 2Q_{66})s^{2}(\theta)c^{2}(\theta) \\ &+ Q_{66}(s^{4}(\theta)c^{4}(\theta)) \end{aligned}$$
(4)

Fig. 2 Coordinate locations of plies in a typical laminated plate

where s is sine, c is cosine and θ is the angle of the lamina. The reduced stiffness matrix elements (Q_{ij}) are determined as follows

$$Q_{11} = E_{11} / (1 - v_{12} v_{21}),$$

$$Q_{12} = v_{12} E_{11} / (1 - v_{12} v_{21}),$$

$$Q_{22} = E_{22} / (1 - v_{12} v_{21}),$$

$$Q_{66} = G_{12},$$
(5)

The kinetic energy (T) of the symmetrically laminated plate is given (Reddy 2004)

$$T = \frac{1}{2} \omega^2 \int_{-a}^{a} \int_{-b^2 \eta}^{b^2 \eta \left[1 - \frac{x^{2n}}{a^{2n}} \right]} I_0 w^2 dx dy$$
(6)

Where ω is natural angular frequency and I0 is mass moments of inertia as calculated as given in Eq. (7) (Reddy 2004).

$$I_0 = \sum_{k=1}^{N} \rho_0^{(k)} (z_{k+1} - z_k)$$
(7)

The total potential energy functional is given below (Eq. (8))

$$F = U + T \tag{8}$$

Substituting Eqs. (2) and (6) into Eq. (8), the total potential energy is given below (Eq. (9))

$$F = \frac{1}{2} \int_{-a}^{a} \int_{-b2\eta}^{b2\eta} \frac{\left[\sum_{a=1}^{2} \left(\frac{\partial^{2}w}{\partial^{2}x}\right)^{2} + 2D_{12}\left(\frac{\partial^{2}w}{\partial^{2}x}\right)\left(\frac{\partial^{2}w}{\partial^{2}y}\right)\right]}{\left(\frac{\partial^{2}w}{\partial x\partial y}\right)^{2} + D_{22}\left(\frac{\partial^{2}w}{\partial^{2}y}\right)^{2}} + 4D_{66}\left(\frac{\partial^{2}w}{\partial x\partial y}\right)^{2} + D_{22}\left(\frac{\partial^{2}w}{\partial^{2}y}\right)^{2}}{\left(\frac{\partial^{2}w}{\partial x\partial y}\right)} + 4D_{16}\left(\frac{\partial w}{\partial x}\right)^{2}\left(\frac{\partial^{2}w}{\partial x\partial y}\right)} + 4D_{26}\left(\frac{\partial w}{\partial y}\right)^{2}\left(\frac{\partial^{2}w}{\partial x\partial y}\right)} + 4D_{26}\left(\frac{\partial w}{\partial y}\right)^{2}\left(\frac{\partial^{2}w}{\partial x\partial y}\right) = dxdy$$

$$\left(9\right)$$

$$-\frac{1}{2}\omega^{2}\int_{-a}^{a}\int_{-b2\eta}^{b2\eta} \frac{\left(\frac{x^{2}n}{a^{2}n}\right)}{\left(\frac{x^{2}n}{a^{2}n}\right)} I_{0}w^{2}dxdy$$

The boundary conditions at the plate edges are given as follows

$$w = 0$$
 and $\frac{\partial w}{\partial n_i} = 0$ (for clamped) (10)

w = 0 and M = 0 (for simply supported) (11)

where *M* denotes bending moment, ∂n_i is the outward normal of the boundary. Trial function used is given below

$$\phi_{nn} = \begin{pmatrix} c_{00} + c_{02}y^2 + c_{20}x^2 + c_{22}x^2y^2 + c_{24}x^2y^4 \\ + c_{04}y^4 + c_{40}x^4 + c_{42}x^4y^2 + c_{06}y^6 + c_{60}x^6 \end{pmatrix}$$
(12)

where are the unknown coefficients and order of polynomial (r) is 6.

Deflection function which satisfies the boundary conditions is given below

$$w(x, y) = \left(\frac{x^{2n}}{a^{2n}} + \frac{y^{2n}}{b^{2n}} - 1\right)^p \phi_{nm}$$
(13)

where p is equal to 1 for simply supported condition, 2 for clamped condition.

In order to find a least upper bound on the frequency, Eq. (9) is minimized with respect to the coefficients c_{ii}

$$\frac{\partial F}{\partial c_{ij}} = 0 \tag{14}$$

Then, the following equation is obtained

$$[K - \lambda^2 M] \{c_{ij}\} = 0 \tag{15}$$

where λ^2 is the fundamental frequency parameter including material properties, characteristic dimensions and natural angular frequency of the plate. *K* is the stiffness matrix related with the strain energy and *M* is the mass matrix related to kinetic energy. *K* and *M* are symmetric matrices both of which are of the order ten (at most) and *M* is positive definite. This is a generalized eigenvalue problem. For a non-trivial solution, the determinant of the coefficient matrix should be equal to zero

$$|K - \lambda^2 M| = 0 \tag{16}$$

Solution of Eq. (16) leads to a characteristic equation involving a polynomial of tenth degree in λ^2 , from which the fundamental natural frequency (ω) may be found.

Table 4 Comparison of the fundamental frequency parameter of super-elliptical isotropic plates $(\lambda^2 = \omega b^2 \sqrt{\rho h/D}, v = 0.3, r = 6)$

		Simply	Supported	Clamped		
п	a/b	Present	Çeribaşı <i>et al.</i> (2009)	Present	Çeribaşı <i>et al.</i> (2009)	
	1	4.93515	4.9351	10.2158	10.2158	
	1.2	4.21276	4.2128	8.71781	8.7178	
1	1.4	3.81495	3.8149	7.89103	7.8910	
1	1.6	3.57431	3.5743	7.39275	7.3928	
	1.8	3.41583	-	7.06884	-	
	2	3.30336	3.3034	6.84436	6.8444	
	1	5.17031	5.181	9.25884	9.3763	
	1.2	4.3798	4.3883	7.90807	8.0022	
10	1.4	3.90019	3.908	7.17222	7.2459	
10	1.6	3.58665	3.5933	6.73597	6.7934	
	1.8	3.36836	-	6.45755	-	
	2	3.21059	3.2158	6.27002	6.3068	

	Fundamental natural frequency ω (Hz)			
Shape function	Simply Supported		Clamped	
	<i>n</i> = 1	<i>n</i> = 10	<i>n</i> = 1	<i>n</i> = 10
$c_{_{00}}$	533.190	8371.87	979.911	10152.500
$c_{00} + c_{20}x^2$	495.309	4796.28	975.220	5910.770
$c_{00} + c_{20}x^2 + c_{02}y^2$	470.594	2444.73	968.730	3435.320
$c_{00} + c_{20}x^2 + c_{02}y^2 + c_{22}x^2y^2$	470.098	789.967	968.704	1602.380
$c_{00} + c_{20}x^2 + c_{02}y^2 + c_{22}x^2y^2 + c_{40}x^4$	470.010	716.840	968.673	1367.940
$c_{00} + c_{20}x^2 + c_{02}y^2 + c_{22}x^2y^2 + c_{40}x^4 + c_{04}y^4$	469.882	645.946	968.601	1215.490
$c_{00} + c_{20}x^2 + c_{02}y^2 + c_{22}x^2y^2 + c_{24}x^2y^4 + c_{40}x^4 + c_{04}y^4$	469.882	619.138	968.601	1144.540
$c_{00} + c_{02}x^2 + c_{20}y^2 + c_{22}x^2y^2 + c_{24}x^2y^4 + c_{40}x^4 + c_{04}y^4 + c_{42}x^4y^2$	469.881	516.067	968.601	873.786
$c_{00} + c_{02}x^2 + c_{20}y^2 + c_{22}x^2y^2 + c_{24}x^2y^4 + c_{40}x^4 + c_{04}y^4 + c_{42}x^4y^2 + c_{60}x^6$	469.881	512.302	968.601	870.714
$c_{00} + c_{02}x^2 + c_{20}y^2 + c_{22}x^2y^2 + c_{24}x^2y^4 + c_{40}x^4 + c_{04}y^4 + c_{42}x^4y^2 + c_{60}x^6 + c_{06}y^6$	469.880	510.757	968.601	869.746

Table 5 Convergence study of free vibrations of LT1 ($[-45_2/0_2/45_2/90_2]_s$) plate with increasing terms

3. Results and discussion

In this section, natural frequencies of isotropic and quasi-isotropic super-elliptical plates computed by Rayleigh-Ritz method are given.

Convergence study, effect of super-elliptical power (n) variation, thickness, boundary condition, aspect ratio and super elliptical power on natural frequencies are also included.

3.1 Validation of the isotropic case

For validation, fundamental natural frequency parameters of super-elliptical thin isotropic plates were compared with the results of Çeribaşı *et al.* (2009) given in Table 4. It seems that the results are in good agreement with each other. It can be also seen from the results that fundamental frequency parameter decreases with the increase of the aspect ratio (a/b) and super-elliptical power (Selected trial functions were given in Eq. (12).).

3.2 Convergence study of free vibrations of symmetrically laminated quasi-isotropic super-elliptical plates

Convergence study was carried out for free vibrations of simply supported and clamped LT1 ($[-45_2/0_2/45_2/90_2]_s$) plate with different shape function (number of terms from 1 to 10) and super elliptical power (n = 1 and 10). From the results when the number of terms reach 10 (r = 6), accuracy seems to be enough for simply supported and clamped conditions (Table 5).

3.3 Effect of super-elliptical power (n) variation on natural frequencies (Hz) of super-elliptical plates

In this study, the natural frequencies of super-elliptical plate LT1 ($[-45_2/0_2/45_2/90_2]_s$) are compared with the natural frequencies of circular (n = 1, a/b = 1), elliptical (n = 1, a/b

= 1.2, 1.4, 1.6, 1.8 and 2) and super-elliptical plates (n = 2, 4, 6, 8 and 10) given in Tables 6-7. The natural frequencies (ω) decrease with the increase of the aspect ratios (a/b, b/a). It can be seen that the natural frequencies for clamped boundary conditions cases are higher than the ones for simply supported boundary conditions.

3.4 Effect of thickness variation on natural frequencies (Hz) of super-elliptical plates

Selected three different thicknesses, aspect ratios (a/b) and b/a, boundary conditions (simply supported and clamped) and super-elliptical powers (n = 1 and 10) on natural frequency of super-elliptical plates were examined in this section and presented (Tables 8-11).

From the results natural frequency decreases as the

Table 6 Fundamental natural frequencies ω (Hz) of superelliptical LT1 ([-45₂/0₂/45₂/90₂]_s) plate (simply supported)

	Present - Rayleigh-Ritz ($r = 6$)						
a/b	<i>n</i> = 1	<i>n</i> = 2	<i>n</i> = 4	<i>n</i> = 6	<i>n</i> = 8	<i>n</i> = 10	
1.0	469.88	453.51	477.99	490.25	500.23	510.75	
1.2	383.43	371.74	392.85	403.27	411.59	420.23	
1.4	333.70	322.46	340.12	348.92	356.06	363.53	
1.6	302.86	290.50	305.01	312.45	318.67	325.43	
1.8	282.49	268.60	280.40	286.69	292.16	298.42	
2.0	268.30	252.93	262.45	267.78	272.60	278.35	
b/a	<i>n</i> = 1	<i>n</i> = 2	<i>n</i> = 4	<i>n</i> = 6	<i>n</i> = 8	<i>n</i> = 10	
1.0	469.88	453.51	477.99	490.25	500.23	510.75	
1.2	415.91	396.75	415.08	424.71	432.95	442.16	
1.4	384.78	362.54	376.03	383.60	390.49	398.73	
1.6	364.91	340.33	350.09	356.09	361.86	369.26	
1.8	351.15	325.08	331.98	336.78	341.62	348.31	
2.0	340.99	314.14	318.85	322.72	326.80	332.80	

Table 7 Fundamental natural frequencies ω (Hz) of superelliptical LT1 ([-45₂/0₂/45₂/90₂]_s) plate (clamped)

	Present - Rayleigh-Ritz $(r = 6)$								
a/b	n = 1	<i>n</i> = 2	<i>n</i> = 4	<i>n</i> = 6	<i>n</i> = 8	<i>n</i> = 10			
1.0	968.60	859.53	852.43	857.13	863.08	869.75			
1.2	790.48	700.28	694.67	698.57	703.54	709.08			
1.4	687.90	610.15	605.16	608.51	612.76	617.54			
1.6	624.26	555.33	550.56	553.49	557.19	561.34			
1.8	582.32	520.01	515.27	517.86	521.10	524.74			
2.0	553.22	496.15	491.35	493.65	496.48	499.65			
b/a	<i>n</i> = 1	<i>n</i> = 2	<i>n</i> = 4	<i>n</i> = 6	<i>n</i> = 8	<i>n</i> = 10			
1.0	968.60	859.53	852.43	857.13	863.08	869.75			
1.2	857.30	764.43	757.61	761.51	766.41	771.92			
1.4	793.42	711.79	704.88	708.16	712.20	716.73			
1.6	753.19	680.05	672.96	675.72	679.02	682.70			
1.8	725.93	659.58	652.30	654.64	657.33	660.28			
2.0	706.35	645.66	638.22	640.22	642.40	644.75			

Table 8 Fundamental natural frequency ω (Hz) of different thinner or thicker super-elliptical plates (simply supported, r = 6, n = 1)

	Fundame	ental natural frequen	cy ω (Hz)	
a/b	$[-45_2/0_2/45_2/90_2]_s$	$[-45_3/0_3/45_3/90_3]_s$	$[-45_4/0_4/45_4/90_4]_s$	
	t = 3.2 mm	t = 4.8 mm	t = 6.4 mm	
1	469.880	704.820	939.701	
1.2	383.432	575.148	766.815	
1.4	333.700	500.551	667.358	
1.6	302.860	454.29	605.681	
1.8	282.494	423.741	564.951	
2	268.297	402.445	536.557	
	Fundame	ental natural frequen	cy ω (Hz)	
b/a	$[-45_2/0_2/45_2/90_2]_s$	$[-45_3/0_3/45_3/90_3]_s$	$[-45_4/0_4/45_4/90_4]_s$	
	t = 3.2 mm	t = 4.8 mm	t = 6.4 mm	
1	469.880	704.820	939.701	
1.2	415.912	623.868	831.77	
1.4	384.775	577.163	769.499	
1.6	364.908	547.362	729.763	
1.8	351.151	526.726	702.249	
2	340.986	511.478	681.917	

aspect ratio increases, while it increases with the increase in thickness. It seems that the natural frequencies for simply supported plates are lower than clamped plates at all aspect ratios. Natural frequencies increase with the increase of the super-elliptical power (n).

3.5 Effect of lamination types, aspect ratios and boundary conditions on natural frequencies (Hz) of super-elliptical plates

Fundamental natural frequencies (Hz) of super-elliptical

quasi-isotropic plates for clamped and simply supported boundary condition with the periphery of the plates for r = 6, n = 10 and 24 different lamination types are presented in Tables 12-15.

It seems that the fundamental natural frequencies depend on lamination types. It can be seen from the results the fundamental natural frequencies decrease with the increase of the aspect ratios (a/b) and b/a). Another important parameter is the selection of the short edge of the plate in x or y direction (a or b). It corresponds to longitudinal or lateral framing system in ship construction. The fundamental natural frequencies for clamped boundary conditions are higher than those for the simply supported boundary conditions. The results of plates having different super-elliptical powers (n = 1 and 4) are given in Appendix B. From the results that natural frequencies increase as the super elliptical powers (n) increases for simply supported boundary condition. On the contrary natural frequencies decrease as the super elliptical power (n) increases for clamped boundary condition.

From Table 8 (simply supported case) LT3 ($[-45_2/45_2/0_2/90_2]_s$), LT4 ($[-45_2/45_2/90_2/0_2]_s$), LT13 ($[45_2/-45_2/90_2/9_2]_s$) and LT14 ($[45_2/-45_2/90_2/0_2]_s$) have the highest natural frequencies for aspect ratio a/b = 1.

For aspect ratio a/b = 2, LT20 ($[90_2/-45_2/45_2/0_2]_s$) and LT23 ($[90_2/45_2/-45_2/0_2]_s$) have the highest natural frequencies.

From Table 9 (simply supported case) LT3 ([- $45_2/45_2/0_2/90_2$]_s), LT4 ([- $45_2/45_2/90_2/0_2$]_s), LT13 ([$45_2/-45_2/90_2/0_2$]_s) and LT14 [$45_2/-45_2/90_2/0_2$]_s have the highest natural frequencies for aspect ratio b/a = 1. For aspect ratio b/a = 2, LT7 ([$0_2/-45_2/45_2/90_2$]_s) and LT9 ([$0_2/45_2/-45_2/90_2$]_s) have the highest natural frequencies.

Table 9 Fundamental natural frequency ω (Hz) of different thinner or thicker super-elliptical plates (clamped, r = 6, n = 1)

	r = 6, n = 1)		
	Fundame	ntal natural frequen	cy ω (Hz)
a/b	$[-45_2/0_2/45_2/90_2]_s$	$[-45_3/0_3/45_3/90_3]_s$	$[-45_4/0_4/45_4/90_4]_s$
1	968.601	1452.900	1936.650
1.2	790.475	1185.71	1580.480
1.4	687.898	1031.85	1375.400
1.6	1.6 624.263 936.39		1248.190
1.8	582.315	873.473	1164.350
2	553.219	829.828	1106.19
	Fundame	ntal natural frequen	cy ω (Hz)
b/a	$[-45_2/0_2/45_2/90_2]_s$	$[-45_3/0_3/45_3/90_3]_s$	$[-45_4/0_4/45_4/90_4]_s$
	t = 3.2 mm	t = 4.8 mm	t = 6.4 mm
1	968.601	1452.9	1936.65
1.2	857.296	1285.94	1714.16
1.4	793.42	1190.13	1586.49
1.6	753.193	1129.79	1506.1
1.8	725.931	1088.9	1451.62
2	706.353	1059.53	1412.5

	supported, $r = 6$, $n = 10$)						
	Fundamental natural frequency ω (Hz)						
a/b	$[-45_2/0_2/45_2/90_2]_s$	$[-45_3/0_3/45_3/90_3]_s$	$[-45_4/0_4/45_4/90_4]_s$				
	t = 3.2 mm	t = 4.8 mm	t = 6.4 mm				
1	510.747	766.152	1021.02				
1.2	420.234	630.335	840.053				
1.4	363.531	545.266	726.724				
1.6	325.428	488.059	650.593				
1.8	298.419	447.6	596.351				
2	278.347	417.515	556.452				
	Fundame	ntal natural frequen	cy ω (Hz)				
b/a	$[-45_2/0_2/45_2/90_2]_s$	$[-45_3/0_3/45_3/90_3]_s$	$[-45_4/0_4/45_4/90_4]_s$				
	t = 3.2 mm	t = 4.8 mm	t = 6.4 mm				
1	510.747	766.152	1021.02				
1.2	442.155	663.209	883.86				
1.4	398.730	598.061	797.09				
1.6	369.262	553.893	738.281				
1.8	348.313	522.444	696.379				
2	332.804	499.23F	665.439				

Table 10 Fundamental natural frequency ω (Hz) of different thinner or thicker super-elliptical plates (simply supported, r = 6, n = 10)

Table 11 Fundamental natural frequency ω (Hz) of different thinner or thicker super-elliptical plates (clamped, r = 6, n = 10)

		T = 0, n = 10)						
-		Fundamer	ntal natural frequence	cy ω (Hz)				
	a/b	$[-45_2/0_2/45_2/90_2]_s$	$[-45_3/0_3/45_3/90_3]_s$	$[-45_4/0_4/45_4/90_4]_s$				
_								
	1	869.749	1304.63	1739.11				
	1.2	709.082	1063.64	1417.81				
	1.4	617.537	926.292	1234.77				
	1.6	561.342	842.024	1122.43				
	1.8	524.743	787.111	1049.28				
	2	499.649	749.502	999.124				
-		Fundamer	Fundamental natural frequency ω (Hz)					
	b/a	$[-45_2/0_2/45_2/90_2]_s$	$[-45_3/0_3/45_3/90_3]_s$	$[-45_4/0_4/45_4/90_4]_s$				
_		t = 3.2 mm	t = 4.8 mm	t = 6.4 mm				
-	1	869.749	1304.63	1739.11				
	1.2	771.921	1157.88	1543.52				
	1.4	716.729	1075.1	1433.22				
	1.6	682.696	1024.05	1365.2				
	1.8	660.279	990.412	1320.41				
_	2	644.750	967.125	1289.36				

Table 12 Fundamental natural frequencies ω (Hz) of super-elliptical plates (simply supported) r = 6, n = 10

Dista taur ar		Aspect rati	os (a/b). Short h	alf side, <i>b</i> , is on	y direction		
	1	1.2	1.4	1.6	1.8	2	
LT1	510.747	420.234	363.531	325.428	298.419	278.347	
LT2	500.939	416.080	363.847	329.111	304.812	286.946	
LT3	531.118	443.923	388.027	349.523	321.792	301.040	
LT4	531.123	450.921	399.278	363.748	338.044	318.847	
LT5	500.938	431.022	387.733	358.778	338.418	323.496	
LT6	510.804	442.138	398.710	369.183	348.308	332.818	
LT7	477.525	380.824	322.328	284.214	258.013	239.201	
LT8	467.479	376.504	322.782	288.706	265.728	249.611	
LT9	477.525	380.824	322.328	284.214	258.013	239.201	
LT10	467.479	376.504	322.782	288.706	265.728	249.611	
LT11	445.277	366.967	323.293	297.208	280.202	268.629	
LT12	445.277	366.967	323.293	297.208	280.202	268.629	
LT13	531.118	443.923	388.027	349.523	321.792	301.040	
LT14	531.123	450.921	399.278	363.748	338.044	318.847	
LT15	510.747	420.234	363.531	325.428	298.419	278.347	
LT16	500.939	416.080	363.847	329.111	304.812	286.946	
LT17	510.804	442.138	398.710	369.183	348.308	332.818	
LT18	500.938	431.022	387.733	358.778	338.418	323.496	
LT19	467.495	416.712	386.525	366.969	353.156	343.425	
LT20	477.637	427.667	397.042	376.510	362.397	351.907	
LT21	445.288	392.548	363.351	345.565	333.463	324.969	
LT22	445.288	392.548	363.351	345.565	333.463	324.969	
LT23	477.637	427.667	397.042	376.510	362.397	351.907	
LT24	467.495	416.712	386.525	366.969	353.156	343.425	

	Aspect ratios (b/a) . Short half side, <i>a</i> , is on <i>x</i> direction							
Plate types	1	1.2	1.4	1.6	1.8	2		
LT1	510.747	442.155	398.730	369.262	348.313	332.804		
LT2	500.939	431.053	387.736	358.784	338.377	323.399		
LT3	531.118	450.935	399.270	363.703	338.056	318.882		
LT4	531.123	443.945	387.987	349.544	321.792	301.022		
LT5	500.938	416.047	363.782	329.095	304.774	286.978		
LT6	510.804	420.249	363.534	325.423	298.361	278.356		
LT7	477.525	427.709	396.961	376.556	362.250	351.922		
LT8	467.479	416.789	386.547	366.862	353.269	343.411		
LT9	477.525	427.709	396.961	376.556	362.250	351.922		
LT10	467.479	416.789	386.547	366.862	353.269	343.411		
LT11	445.277	392.651	363.437	345.545	333.556	325.124		
LT12	445.277	392.651	363.437	345.545	333.556	325.124		
LT13	531.118	450.935	399.270	363.703	338.056	318.882		
LT14	531.123	443.945	387.987	349.544	321.792	301.022		
LT15	510.747	442.155	398.730	369.262	348.313	332.804		
LT16	500.939	431.053	387.736	358.784	338.377	323.399		
LT17	510.804	420.249	363.534	325.423	298.361	278.356		
LT18	500.938	416.047	363.782	329.095	304.774	286.978		
LT19	467.495	376.538	322.823	288.729	265.756	249.543		
LT20	477.637	380.858	322.307	284.193	258.023	239.193		
LT21	445.288	366.924	323.361	297.150	280.234	268.650		
LT22	445.288	366.924	323.361	297.150	280.234	268.650		
LT23	477.637	380.858	322.307	284.193	258.023	239.193		
LT24	467.495	376.538	322.823	288.729	265.756	249.543		

Table 13 Fundamental natural frequencies ω (Hz) of super-elliptical plates (simply supported) r = 6, n = 10

Table 14 Fundamental natural frequencies ω (Hz) of super-elliptical plates (clamped) r = 6, n = 10

	Aspect ratios (a/b) . Short half side, b, is on y direction								
Plate types	1	1.2	1.4	1.6	1.8	2			
LT1	869.749	709.082	617.537	561.342	524.743	499.649			
LT2	874.358	724.780	641.255	590.929	558.557	536.613			
LT3	862.603	722.896	642.068	591.518	557.879	534.409			
LT4	862.602	743.963	675.434	632.470	603.808	583.742			
LT5	874.333	766.580	707.021	670.954	647.568	631.575			
LT6	869.743	771.894	716.705	682.707	660.269	644.786			
LT7	878.296	685.819	576.588	510.523	468.407	440.319			
LT8	883.395	702.303	602.211	543.195	506.399	482.274			
LT9	878.296	685.819	576.588	510.523	468.407	440.319			
LT10	883.395	702.303	602.211	543.195	506.399	482.274			
LT11	891.338	732.860	649.577	602.628	574.334	556.259			
LT12	891.338	732.860	649.577	602.628	574.334	556.259			
LT13	862.603	722.896	642.068	591.518	557.879	534.409			
LT14	862.602	743.963	675.434	632.470	603.808	583.742			
LT15	869.749	709.082	617.537	561.342	524.743	499.649			
LT16	874.358	724.780	641.255	590.929	558.557	536.613			
LT17	869.743	771.894	716.705	682.707	660.269	644.786			

		Aspect rati	os (a/b) . Short h	alf side, b, is on	y direction	
Plate types	1	1.2	1.4	1.6	1.8	2
LT18	874.333	766.580	707.021	670.954	647.568	631.575
LT19	883.392	806.059	764.916	740.601	725.163	714.772
LT20	878.302	810.420	773.184	750.611	736.109	726.038
LT21	891.347	794.951	746.031	718.529	701.600	690.605
LT22	891.347	794.951	746.031	718.529	701.600	690.605
LT23	878.302	810.420	773.184	750.611	736.109	726.038
LT24	883.392	806.059	764.916	740.601	725.163	714.772

Table	14	Continu	ed
raute	1	Continu	υu

From Table 10 (clamped case) LT11 ($[0_2/90_2/-45_2/45_2]_s$), LT12 ($[0_2/90_2/45_2/-45_2]_s$), LT21 ($[90_2/0_2/-45_2/45_2]_s$) and LT22 ($[90_2/0_2/45_2/-45_2]_s$) have the highest natural frequencies for aspect ratio a/b = 1. For aspect ratio a/b = 2, LT20 ($[90_2/-45_2/45_2/0_2]_s$) and LT23 ($[90_2/45_2/-45_2/0_2]_s$) have the highest natural frequencies.

From Table 11 (clamped case) LT11 ($[0_2/90_2/-45_2/45_2]_s$), LT12 ($[0_2/90_2/45_2/-45_2]_s$), LT21 ($[90_2/0_2/-45_2/45_2]_s$) and LT22 ($[90_2/0_2/45_2/-45_2]_s$) have the highest natural frequencies for aspect ratio b/a = 1. For aspect ratio b/a = 2, LT7 ($[0_2/-45_2/45_2/90_2]_s$) and LT9 ($[0_2/45_2/-45_2/90_2]_s$) have the highest natural frequencies. These results are similar to those obtained by (Altunsaray and Bayer 2013), which was about the deflection and free vibration of symmetrically laminated quasi-isotropic thin rectangular plates.

4. Conclusions

Within this parametric study free vibration analysis of super-elliptical quasi-isotropic plates has been examined. Plates are considered as simply supported and clamped around the periphery. Effect of the lamination types, aspect

Table 15 Fundamental natural free	quencies ω (Hz) of	Super-elliptical plates	(clamped) $r = 6, n = 10$
-----------------------------------	--------------------	-------------------------	---------------------------

Diata tunas	Aspect ratios (b/a) . Short half side, <i>a</i> , is on <i>x</i> direction							
Flate types	1	1.2	1.4	1.6	1.8	2		
LT1	869.749	771.921	716.729	682.696	660.279	644.750		
LT2	874.358	766.572	706.997	670.962	647.569	631.553		
LT3	862.603	743.959	675.427	632.478	603.813	583.760		
LT4	862.602	722.887	642.070	591.518	557.892	534.405		
LT5	874.333	724.766	641.248	590.919	558.571	536.614		
LT6	869.743	709.100	617.527	561.353	524.741	499.666		
LT7	878.296	810.413	773.169	750.620	735.991	726.012		
LT8	883.395	806.042	764.891	740.624	725.177	714.758		
LT9	878.296	810.413	773.169	750.620	735.991	726.012		
LT10	883.395	806.042	764.891	740.624	725.177	714.758		
LT11	891.338	794.897	746.016	718.484	701.609	690.596		
LT12	891.338	794.897	746.016	718.484	701.609	690.596		
LT13	862.603	743.959	675.427	632.478	603.813	583.760		
LT14	862.602	722.887	642.070	591.518	557.892	534.405		
LT15	869.749	771.921	716.729	682.696	660.279	644.750		
LT16	874.358	766.572	706.997	670.962	647.569	631.553		
LT17	869.743	709.100	617.527	561.353	524.741	499.666		
LT18	874.333	724.766	641.248	590.919	558.571	536.614		
LT19	883.392	702.316	602.211	543.220	506.418	482.286		
LT20	878.302	685.817	576.581	510.524	468.410	440.296		
LT21	891.347	732.875	649.549	602.608	574.333	556.245		
LT22	891.347	732.875	649.549	602.608	574.333	556.245		
LT23	878.302	685.817	576.581	510.524	468.410	440.296		
LT24	883.392	702.316	602.211	543.220	506.418	482.286		

ratios, thicknesses and super-elliptical power (n) on natural frequencies of super-elliptical plates has been investigated by Rayleigh-Ritz Method based on Classical Lamination Plate Theory (CLPT).

- Validation study was performed with the isotropic case only available in open literature. Results are in good agreement with each other. From the convergence study of LT1 [-45₂/0₂/45₂/90₂]_s plate that when the number of terms in trial function is 10, the accuracy obtained seems to be appropriate. From the results natural frequency of symmetrically laminated quasi-isotropic super-elliptical plates is influenced by the boundary conditions, thickness, aspect ratios, lamination types and super-elliptical power. Natural frequency for simply supported plates is less than clamped plates. Fundamental natural frequency increases with the increase in thickness. Some lamination types are more favorable than others given in Chapter 3.
- In ship structures, plates and shells are generally supported with primary and secondary structural members. The construction system is named transverse or longitudinal depending on the position of secondary supporting members mainly called as stiffeners. The use of different aspect ratios (a/b or actually corresponds to the different b/aconstructional systems either transverse or longitudinal. Many different parameters play a part in complicated composite ship design process such as constructional systems, plate thickness, lamination types, boundary conditions etc. It can be deduced that Rayleigh-Ritz method is one of the suitable calculation methods for such problems as avoiding from resonance at the preliminary design process of composite ship structures. The effect of different super-elliptical powers (n = 1 and n = 4) on fundamental natural frequency of composite plate is presented with tables for the use of ship designers in Appendix A.

Acknowledgments

Author thanks to Koray Başeğmez and SEISLAB (Dokuz Eylul University, http://web.deu.edu.tr/seislab/) for using workstation and valuable help.

References

- Afsharmanesh, B., Ghaheri, A. and Taheri-Behrooz, F. (2014), "Buckling and vibration of laminated composite circular plate on winkler-type foundation", *Steel Compos. Struct.*, *Int. J.*, **17**(1), 1-19.
- Altekin, M. (2009), "Free vibration of orthotropic super-elliptical plates on intermediate supports", *Nucl. Eng. and Design*, 239, 981–999.
- Altekin, M. (2017), "Free transverse vibration of shear deformable super-elliptical plates", Wind Struct., Int. J., 24(4), 307-331.
- Altunsaray, E. (2017), "Static deflection of symmetrically laminated quasi-isotropic super-elliptical thin plates", Ocean

Eng., 141, 337-350.

- Altunsaray, E. and Bayer, İ. (2013) "Deflection and free vibration of symmetrically laminated quasi-isotropic thin rectangular plates for different boundary conditions", *Ocean Eng.*, 57, 197-222.
- Aran, A. (1990), Elyaf takviyeli karma malzemeler, İTU. [In Turkish]
- Bui, T.Q. and Nguyen, M.N. (2011), "A novel meshfree model for buckling and vibration analysis of rectangular orthotropic plates", *Struct. Eng. Mech.*, *Int. J.*, **39**(4), 579-598.
- Çeribaşı, C. (2012), "Static and dynamic analyses of thin uniformly loaded super elliptical FGM plates", *Mech. Adv. Mat. Struct.*, **19**(5), 323-335.
- Çeribaşı, S. and Altay, G. (2009), "Free vibration of super elliptical plates with constant and variable thickness by Ritz method", *J. Sound Vib*, **319**(1-2), 668-680.
- Chen, C.C., Lim, C.W. and Kitipornchai, S. (1999), "Vibration of symmetrically laminated thick super elliptical plates", J. Sound Vib., 220(4), 659-682.
- Eric Green Associates, Inc. (1999), *Marine Composites*. http://www.ericgreeneassociates.com/images/MARINE_COMP OSITES.pdf
- Ghaheri, A., Keshmiri, A. and Taheri-Behrooz, F. (2014), "Buckling and vibration of symmetrically laminated composite elliptical plates on an elastic foundation subjected to uniform inplane force", J. Eng. Mech., 140(7), 04014049.
- Ghaheri, A., Nosier, A. and Keshmiri, A. (2016), "Parametric stability of symmetrically laminated composite super-elliptical plates", J. Comp. Mater., 50(28), 3935-3951.
- Harper, C.A. (2002), Handbook of Plastics, Elastomers & Composites, (4th Edition), McGraw-Hill, NY, USA.
- Irie, T., Yamada, G. and Sonoda, M. (1983), "Natural frequencies of square membrane and square plate with rounded corners", J. Sound Vib., 86(3), 442-448.
- Jones, R.M. (1999), *Mechanics of composite materials*, (2nd Edition), Brunner-Routledge, New York London.
- Kim, C.S. (2003), "Natural frequencies of orthotropic, elliptical and circular plates", J. Sound Vib., 259(3), 733-745.
- Kreja, I. (2011), "A literature review on computational models for laminated composite and sandwich panels", *Cent. Eur. J. Eng.*, 1(1), 59-80.
- Kumar, Y. (2018), "The Rayleigh–Ritz method for linear dynamic, static and buckling behavior of beams, shells and plates: A literature review", J. Vib. Cont., 24(7), 1205-1227.
- Liew, K.M. and Feng, Z.C. (2001), "Three-dimensional free vibration analysis of perforated super elliptical plates via the p-Ritz method", *Int. J. Mec. Sci.*, **43**, 2613-2630.
- Liew, K.M., Kitipornchai, S. and Lim, C.W. (1998), "Free vibration analysis of thick superelliptical plates", J. Eng. Mech., 124(2), 137-145.
- Lim, C.M., Kitipornchai, S. and Liew, K.M. (1998), "A freevibration analysis of doubly connected super-elliptical laminated composite plates", *Compos. Sci. Tech.*, 58, 435-445.
- Mishra, I. and Sahu, S.K. (2012), "An experimental approach to free vibration response of woven fiber composite plates under free-free boundary condition", *Int. J. Adv. Tech. Civ. Eng.*, 1(2), 67-72.
- Mouritz, A.P., Gellert, E., Burchill, P. and Challis, K. (2001), "Review of advanced composite structures for naval ships and submarines", *Compos. Struct.*, 53(1), 21-41.
- Nallim, L.G. and Grossi, R.O. (2008), "Natural frequencies of symmetrically laminated elliptical and circular plates", *Int. J. Mech. Sci.*, **50**, 1153-1167.
- Nayak, N., Meher, S. and Sahu, S.K. (2013), "Experimental and numerical study on vibration and buckling characteristics of glass-carbon-epoxy hybrid composite plates", *Proceedings of International Conference on Advances in Civil Engineering*,

AETACE, Elsevier, pp. 888-895.

- Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, (2nd Ed.), CRC Press, Boca Raton, FL, USA.
- Sadoune, M., Tounsi, A., Houari, M.S.A. and Bedia, E.A.A. (2014), "A novel first-order shear deformation theory for laminated composite plates", *Steel Compos. Struct.*, *Int. J.*, **17**(3), 321-338.
- Sayyad, A.S. and Ghugal, Y.M. (2015), "On the free vibration analysis of laminated composite and sandwich plates- A review of recent literature with some numerical results", *Compos. Struct.*, **129**, 177-201.
- Singhatanadgid, P. and Wetchayanon, T. (2014), "Vibration analysis of laminated plates with various boundary conditions using extended Kantorovich method", *Struct. Eng. Mech., Int. J.*, **52**(1), 115-136.
- Tsai, S.W. (1988), *Composites Design*, (4th Edition), Think Composites.
- Turk Loydu Rules (2017), Part A, Chapter 1 Hull.

http://www.turkloydu.org/pdf-files/turk-loydu-kurallari/cilta/chapter-1-hull-2017-JULY.pdf

- Wang, C.M., Wang, L. and Liew, K.M. (1994), "Vibration and buckling of super elliptical plates", J. Sound Vib., 171(3), 301-314.
- Zhangh, D. and Zhou, H. (2014), "Nonlinear symmetric free vibration analysis of super elliptical isotropic thin plates", *Compos. Mater. Continua*, 40(1), 21-34
- Zhou, D., Lo, S.H., Cheung, Y.K. and Au, F.T.K. (2004), "3-D vibration analysis of generalized super elliptical plates using Chebyshev-Ritz method", *Int. J. Sol. Struct.*, **41**, 4697-4712.

CC

Appendix A

Table A1 Fundamental natural frequencies ω (Hz) of super-elliptical plates (simply supported) r = 6, n = 1

Dista taus a	Aspect ratios (a/b) . Short half side, b, is on y direction						
Plate types	1	1.2	1.4	1.6	1.8	2	
LT1	469.880	383.432	333.700	302.860	282.494	268.297	
LT2	470.245	389.866	344.528	316.824	298.670	286.016	
LT3	469.859	393.654	349.056	320.792	301.689	288.071	
LT4	469.859	404.572	366.316	341.895	325.191	313.100	
LT5	470.245	411.460	378.314	357.623	343.546	333.271	
LT6	469.880	415.912	384.775	364.908	351.151	340.986	
LT7	468.591	366.743	308.531	273.075	250.279	234.885	
LT8	469.210	373.564	320.323	288.674	268.689	255.313	
LT9	468.591	366.743	308.531	273.075	250.279	234.885	
LT10	469.210	373.564	320.323	288.674	268.689	255.313	
LT11	469.572	386.199	342.024	316.733	301.020	290.396	
LT12	469.572	386.199	342.024	316.733	301.020	290.396	
LT13	469.859	393.654	349.056	320.792	301.689	288.071	
LT14	469.859	404.572	366.316	341.895	325.191	313.100	
LT15	469.880	383.432	333.700	302.860	282.494	268.297	
LT16	470.245	389.866	344.528	316.824	298.670	286.016	
LT17	469.880	415.912	384.775	364.908	351.151	340.986	
LT18	470.245	411.460	378.314	357.623	343.546	333.271	
LT19	469.210	426.658	402.837	387.485	376.456	367.938	
LT20	468.591	430.504	408.326	393.604	382.864	374.527	
LT21	469.572	417.958	390.804	374.311	362.887	354.164	
LT22	469.572	417.958	390.804	374.311	362.887	354.164	
LT23	468.591	430.504	408.326	393.604	382.864	374.527	
LT24	469.210	426.658	402.837	387.485	376.456	367.938	

Table A2 Fundamental natural frequencies ω (Hz) of super-elliptical plates (simply supported) r = 6, n = 1

Dista tura a	Aspect ratios (b/a) . Short half side, a, is on x direction								
Plate types	1	1.2	1.4	1.6	1.8	2			
LT1	469.880	415.912	384.775	364.908	351.151	340.986			
LT2	470.245	411.460	378.314	357.623	343.546	333.271			
LT3	469.859	404.572	366.316	341.895	325.191	313.100			
LT4	469.859	393.654	349.056	320.792	301.689	288.071			
LT5	470.245	389.866	344.528	316.824	298.670	286.016			
LT6	469.880	383.432	333.700	302.860	282.494	268.297			
LT7	468.591	430.504	408.326	393.604	382.864	374.527			
LT8	469.210	426.658	402.837	387.485	376.456	367.938			
LT9	468.591	430.504	408.326	393.604	382.864	374.527			
LT10	469.210	426.658	402.837	387.485	376.456	367.938			
LT11	469.572	417.958	390.804	374.311	362.887	354.164			
LT12	469.572	417.958	390.804	374.311	362.887	354.164			
LT13	469.859	404.572	366.316	341.895	325.191	313.100			
LT14	469.859	393.654	349.056	320.792	301.689	288.071			
LT15	469.880	415.912	384.775	364.908	351.151	340.986			

Diata tupas	Aspect ratios (b/a) . Short half side, <i>a</i> , is on <i>x</i> direction							
Flate types	1	1.2	1.4	1.6	1.8	2		
LT16	470.245	411.460	378.314	357.623	343.546	333.271		
LT17	469.880	383.432	333.700	302.860	282.494	268.297		
LT18	470.245	389.866	344.528	316.824	298.670	286.016		
LT19	469.210	373.564	320.323	288.674	268.689	255.313		
LT20	468.591	366.743	308.531	273.075	250.279	234.885		
LT21	469.572	386.199	342.024	316.733	301.020	290.396		
LT22	469.572	386.199	342.024	316.733	301.020	290.396		
LT23	468.591	366.743	308.531	273.075	250.279	234.885		
LT24	469.210	373.564	320.323	288.674	268.689	255.313		

Table	Α2	Continued
raute	<u>n</u> 2	Commucu

Table A3 Fundamental natural frequencies ω (Hz) of super-elliptical plates (simply supported) r = 6, n = 4

	Aspect ratios (a/b) . Short half side, b, is on y direction						
Plate types	1	1.2	1.4	1.6	1.8	2	
LT1	477.985	392.854	340.116	305.009	280.397	262.454	
LT2	468.662	389.168	340.771	309.092	287.225	271.503	
LT3	496.290	414.935	363.275	328.185	303.181	284.706	
LT4	496.290	422.064	374.862	342.838	320.072	303.296	
LT5	468.662	404.276	365.077	339.457	321.806	309.135	
LT6	477.985	415.083	376.025	350.087	331.983	318.849	
LT7	448.452	356.498	301.442	265.963	241.813	224.661	
LT8	438.307	352.270	302.038	270.507	249.581	235.062	
LT9	448.452	356.498	301.442	265.963	241.813	224.661	
LT10	438.307	352.270	302.038	270.507	249.581	235.062	
LT11	416.639	343.162	302.858	279.096	264.220	254.422	
LT12	416.639	343.162	302.858	279.096	264.220	254.422	
LT13	496.290	414.935	363.275	328.185	303.181	284.706	
LT14	496.290	422.064	374.862	342.838	320.072	303.296	
LT15	477.985	392.854	340.116	305.009	280.397	262.454	
LT16	468.662	389.168	340.771	309.092	287.225	271.503	
LT17	477.985	415.083	376.025	350.087	331.983	318.849	
LT18	468.662	404.276	365.077	339.457	321.806	309.135	
LT19	438.307	392.662	366.397	349.999	339.105	331.506	
LT20	448.452	403.940	377.441	360.428	348.866	340.652	
LT21	416.639	368.580	342.893	327.904	318.517	312.292	
LT22	416.639	368.580	342.893	327.904	318.517	312.292	
LT23	448.452	403.940	377.441	360.428	348.866	340.652	
LT24	438.307	392.662	366.397	349.999	339.105	331.506	

Table A4 Fundamental natural frequencies ω (Hz) of super-elliptical plates (simply supported) r = 6, n = 4

Dista tupos	Aspect ratios (b/a) . Short half side, <i>a</i> , is on <i>x</i> direction								
Flate types	1	1.2	1.4	1.6	1.8	2			
LT1	477.985	415.083	376.025	350.087	331.983	318.849			
LT2	468.662	404.276	365.077	339.457	321.806	309.135			

Dioto trimos	Aspect ratios (b/a) . Short half side, <i>a</i> , is on <i>x</i> direction						
Plate types	1	1.2	1.4	1.6	1.8	2	
LT3	496.290	422.064	374.862	342.838	320.072	303.296	
LT4	496.290	414.935	363.275	328.185	303.181	284.706	
LT5	468.662	389.168	340.771	309.092	287.225	271.503	
LT6	477.985	392.854	340.116	305.009	280.397	262.454	
LT7	448.452	403.940	377.441	360.428	348.866	340.652	
LT8	438.307	392.662	366.397	349.999	339.105	331.506	
LT9	448.452	403.940	377.441	360.428	348.866	340.652	
LT10	438.307	392.662	366.397	349.999	339.105	331.506	
LT11	416.639	368.580	342.893	327.904	318.518	312.292	
LT12	416.639	368.580	342.893	327.904	318.518	312.292	
LT13	496.290	422.064	374.862	342.838	320.072	303.296	
LT14	496.290	414.935	363.275	328.185	303.181	284.706	
LT15	477.985	415.083	376.025	350.087	331.983	318.849	
LT16	468.662	404.276	365.077	339.457	321.806	309.135	
LT17	477.985	392.854	340.116	305.009	280.397	262.454	
LT18	468.662	389.168	340.771	309.092	287.225	271.503	
LT19	438.307	352.270	302.038	270.507	249.581	235.062	
LT20	448.452	356.498	301.442	265.963	241.813	224.661	
LT21	416.639	343.163	302.858	279.096	264.220	254.422	
LT22	416.639	343.163	302.858	279.096	264.220	254.422	
LT23	448.452	356.498	301.442	265.963	241.813	224.661	
LT24	438.307	352.270	302.038	270.507	249.581	235.062	

Table A4 Continued

Table A5 Fundamental natural frequencies ω (Hz) of super-elliptical plates (clamped) r = 6, n = 1

Dista tumas	Aspect ratios (a/b) . Short half side, b, is on y direction						
Plate types	1	1.2	1.4	1.6	1.8	2	
LT1	968.601	790.475	687.898	624.263	582.315	553.219	
LT2	968.992	803.375	709.908	652.877	615.712	590.090	
LT3	969.195	811.974	719.855	661.501	622.188	594.347	
LT4	969.195	834.366	755.375	705.132	671.040	646.678	
LT5	968.992	847.831	779.795	737.829	709.876	690.071	
LT6	968.601	857.296	793.420	753.193	725.931	706.353	
LT7	966.307	756.266	636.269	563.124	516.084	484.375	
LT8	967.435	770.201	660.430	595.179	554.069	526.744	
LT9	966.307	756.266	636.269	563.124	516.084	484.375	
LT10	967.435	770.201	660.430	595.179	554.069	526.744	
LT11	968.706	796.689	705.630	653.730	621.911	600.971	
LT12	968.706	796.689	705.630	653.730	621.911	600.971	
LT13	969.195	811.974	719.855	661.501	622.188	594.347	
LT14	969.195	834.366	755.375	705.132	671.040	646.678	
LT15	968.601	790.475	687.898	624.263	582.315	553.219	
LT16	968.992	803.375	709.908	652.877	615.712	590.090	
LT17	968.601	857.296	793.420	753.193	725.931	706.353	
LT18	968.992	847.831	779.795	737.829	709.876	690.071	
LT19	967.435	880.278	832.590	803.177	783.275	768.869	

Plate types	Aspect ratios (a/b) . Short half side, b, is on y direction						
	1	1.2	1.4	1.6	1.8	2	
LT20	966.307	888.504	844.401	816.402	797.072	782.894	
LT21	968.706	862.565	807.561	775.398	754.495	739.754	
LT22	968.706	862.565	807.561	775.398	754.495	739.754	
LT23	966.307	888.504	844.401	816.402	797.072	782.894	
LT24	967.435	880.278	832.590	803.177	783.275	768.869	

Table A6 Fundamental natural frequencies ω (Hz) of super-elliptical plates (clamped) r = 6, n = 1

Diata types	Aspect ratios (b/a) . Short half side, <i>a</i> , is on <i>x</i> direction						
Flate types	1	1.2	1.4	1.6	1.8	2	
LT1	968.601	857.296	793.420	753.193	725.931	706.353	
LT2	968.992	847.831	779.795	737.829	709.876	690.071	
LT3	969.195	834.366	755.375	705.132	671.040	646.678	
LT4	969.195	811.974	719.855	661.501	622.188	594.347	
LT5	968.992	803.375	709.908	652.877	615.712	590.090	
LT6	968.601	790.475	687.898	624.263	582.315	553.219	
LT7	966.307	888.504	844.401	816.402	797.072	782.894	
LT8	967.435	880.278	832.590	803.177	783.275	768.869	
LT9	966.307	888.504	844.401	816.402	797.072	782.894	
LT10	967.435	880.278	832.590	803.177	783.275	768.869	
LT11	968.706	862.565	807.561	775.398	754.495	739.754	
LT12	968.706	862.565	807.561	775.398	754.495	739.754	
LT13	969.195	834.366	755.375	705.132	671.040	646.678	
LT14	969.195	811.974	719.855	661.501	622.188	594.347	
LT15	968.601	857.296	793.420	753.193	725.931	706.353	
LT16	968.992	847.831	779.795	737.829	709.876	690.071	
LT17	968.601	790.475	687.898	624.263	582.315	553.219	
LT18	968.992	803.375	709.908	652.877	615.712	590.090	
LT19	967.435	770.201	660.430	595.179	554.069	526.744	
LT20	966.307	756.266	636.269	563.124	516.084	484.375	
LT21	968.706	796.689	705.630	653.730	621.911	600.971	
LT22	968.706	796.689	705.630	653.730	621.911	600.971	
LT23	966.307	756.266	636.269	563.124	516.084	484.375	
LT24	967.435	770.201	660.430	595.179	554.069	526.744	

Table A7 Fundamental natural frequent	cies ω (Hz) of s	uper-elliptical pla	ates (clamped) $r = 6, n$	n = 4
---------------------------------------	-------------------------	---------------------	---------------------------	-------

Plate types	Aspect ratios (a/b) . Short half side, b, is on y direction						
	1	1.2	1.4	1.6	1.8	2	
LT1	852.434	694.672	605.158	550.555	515.267	491.353	
LT2	855.746	709.253	627.962	579.376	548.519	527.907	
LT3	846.372	709.363	630.492	581.517	549.265	527.007	
LT4	846.372	730.428	663.999	622.827	595.715	576.985	
LT5	855.746	751.095	694.006	660.090	638.524	624.044	
LT6	852.434	757.610	704.884	672.955	652.298	638.219	
LT7	860.223	670.663	563.618	499.167	458.316	431.266	
LT8	863.278	685.534	587.843	530.628	495.283	472.398	

Diata tupos	Aspect ratios (a/b) . Short half side, b, is on y direction					
Thate types	1	1.2	1.4	1.6	1.8	2
LT9	860.223	670.663	563.618	499.167	458.316	431.266
LT10	863.278	685.534	587.843	530.628	495.283	472.398
LT11	868.148	713.545	632.980	588.153	561.700	545.236
LT12	868.148	713.545	632.980	588.153	561.700	545.236
LT13	846.372	709.363	630.492	581.517	549.265	527.007
LT14	846.372	730.428	663.999	622.827	595.715	576.985
LT15	852.434	694.672	605.158	550.555	515.267	491.353
LT16	855.746	709.253	627.962	579.376	548.519	527.907
LT17	852.434	757.610	704.884	672.955	652.298	638.219
LT18	855.746	751.095	694.006	660.090	638.524	624.044
LT19	863.278	789.589	751.522	729.821	716.444	707.672
LT20	860.223	795.926	761.655	741.516	728.764	720.209
LT21	868.148	775.605	729.814	704.993	690.448	681.349
LT22	868.148	775.605	729.814	704.993	690.448	681.349
LT23	860.223	795.926	761.655	741.516	728.764	720.209
LT24	863.278	789.589	751.522	729.821	716.444	707.672
LT20	860.223	795.926	761.655	741.516	728.764	720.209

Table A7 Continued

Table A8 Fundamental natural frequencies ω (Hz) of super-elliptical plates (clamped) r = 6, n = 4

	Aspect ratios (b/a) . Short half side, a, is on x direction						
Plate types -	1	1.2	1.4	1.6	1.8	2	
LT1	852.434	757.610	704.884	672.955	652.298	638.219	
LT2	855.746	751.095	694.006	660.090	638.524	624.044	
LT3	846.372	730.428	663.999	622.827	595.715	576.985	
LT4	846.372	709.363	630.492	581.517	549.265	527.007	
LT5	855.746	709.253	627.962	579.376	548.519	527.907	
LT6	852.434	694.672	605.158	550.555	515.267	491.353	
LT7	860.223	795.926	761.655	741.516	728.764	720.209	
LT8	863.278	789.589	751.522	729.821	716.444	707.672	
LT9	860.223	795.926	761.655	741.516	728.764	720.209	
LT10	863.278	789.589	751.522	729.821	716.444	707.672	
LT11	868.148	775.605	729.814	704.993	690.448	681.349	
LT12	868.148	775.605	729.814	704.993	690.448	681.349	
LT13	846.372	730.428	663.999	622.827	595.715	576.985	
LT14	846.372	709.363	630.492	581.517	549.265	527.007	
LT15	852.434	757.610	704.884	672.955	652.298	638.219	
LT16	855.746	751.095	694.006	660.090	638.524	624.044	
LT17	852.434	694.672	605.158	550.555	515.267	491.353	
LT18	855.746	709.253	627.962	579.376	548.519	527.907	
LT19	863.278	685.534	587.843	530.628	495.283	472.398	
LT20	860.223	670.663	563.618	499.167	458.316	431.266	
LT21	868.148	713.545	632.980	588.153	561.700	545.236	
LT22	868.148	713.545	632.980	588.153	561.700	548.236	
LT23	860.223	670.663	563.618	499.167	458.316	431.266	
LT24	863.278	685.534	587.843	530.628	495.283	472.398	