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1. Introduction 
 

Composite thin plates are widely used as structural 

elements of ships, aircrafts and civil engineering 

applications. Applications of composite materials in marine, 

transportation and aerospace industries were given by 

Mouritz et al. (2001), Eric Green Associates (1999) and 

Jones (1999). Ship hull and its supporting structural 

elements have to be designed to avoid from resonance 

vibrations, which are mainly originated from propeller, 

main and auxiliary engines during operating conditions (TL 

Rules 2017). 

Vibration of plates with various geometry (rectangular, 

circular and elliptical) has been studied by hundreds of 

researchers and given in some review articles (Kreja 2011, 

Sayyad and Ghugal 2015, Kumar 2018). A few of them 

were mentioned in this study because of the restriction of 

this paper. Vibration of rectangular laminated composite 

plates has been examined by Bui and Nguyen (2011), 

Singhatanadgid and Wetchayanon (2014) and Sadoune et al. 

(2014). Bui and Nguyen (2011) presented a novel meshfree 

model for buckling and vibration of rectangular orthotropic 

plates. Singhatanadgid and Wetchayanon studied free 

vibration analyses of laminated composite and isotropic 

plate using the extended Kantorovich method and Finite 

Element Method (2014). A novel first order shear 

deformation theory (FSDT) for laminated antisymmetric 

cross-ply and angle-ply composite rectangular plate was 
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developed by Sadoune et al. (2014). One of the 

experimental studies about vibration of composite 

rectangular plates was employed by Mishra and Sahu 

(2012); another was achived by Nayak et al. (2013). Kim 

(2003), Nallim and Grossi (2008) and Afsharmanesh et al. 

(2014) analysed vibration of laminated composite elliptical 

or circular plates. Kim (2003) studied natural frequency of 

elliptical orthotropic (glass/epoxy, boron/epoxy, carbon/ 

epoxy and kevlar/epoxy) plates. Nallim and Grossi (2008) 

investigated natural frequencies of elastically restrained 

solid and annular cross-ply and angle-ply elliptical 

laminated plates based on Rayleigh-Ritz Method. 

Afsharmanesh et al. (2014) dealt with buckling and 

vibration of laminated ange-ply plates on winkler-type 

foundation problem and solved the problem by Ritz Method 

based on CLPT. Ghaheri et al. (2014) analyzed buckling 

and vibration of thin, symmetrically laminated, elliptical 

angle-ply composite plate under initial in-plane edge loads 

and resting on a Winkler-type elastic foundation based on 

CLPT using by Ritz energy method. In this study authors 

indicated that critical buckling load and natural frequencies 

are affected by the aspect ratio, fiber orientation, layup 

sequence, in-plane load and foundation parameter. Authors 

compared their results with FEM and existing results and 

they obtained good convergence. 

Super-elliptical plate has a geometry between an ellipse 

and a rectangle, which enables the structure to diffuse and 

to dilute the stress at the corner of rectangular plates (Liew 

et al. 1998). It is this advantage making them preferred in 

engineering applications such as naval and aerospace 

industries. However, static and dynamic analysis of super-

elliptical plates has been dealt with in academic fields for 
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last few decades. One of the early studies was performed by 

Irie et al. (1983). They studied naturel frequencies of square 

membrane and square isotropic plates with rounded corners. 

A number of researchers studied vibration of super-elliptical 

thin isotropic plates based on Kirchhoff–Love plate theory 

using Rayleigh- Ritz method (Wang et al. 1994, Ç eribaşı 

2009, Zhangh and Zhou 2014). There dimensional free 

vibration analyses of super-elliptical isotropic plates using 

Chebyshev–Ritz Method have been studied by Zhou et al. 

(2004). Liew and Feng (2001) carried out 3-D vibration 

analysis of perforated type super-elliptical isotropic plates 

via p-Ritz method. Ç eribaşı (2012) investigated static and 

dynamic analysis of super-elliptical FGM (functionally 

graded materials) based on Kirchhoff plates by Galerkin 

Method and Ritz Method. 

Altekin (2017) examined free transverse vibration of 

shear deformable super-elliptical moderately thick plates 

based on Mindlin plate theory by Finite Element Method 

(FEM). With this work, the author contributed to the 

literature large amount of data about influence of boundary 

condition, super-elliptical power, aspect ratio and thickness 

of the plate on the frequency parameter of shear deformable 

super-elliptical plates. 

A few studies about special orthotropic, cross-ply and 

angle-ply super-elliptical plates are available in literature 

(Lim et al. 1998, Chen et al. 1999, Altekin 2009, Ghaheri et 

al. 2016). Altekin (2009) investigated free vibration of 

orthotropic super-elliptical plates on intermediate supports 

by Ritz method based on Kirchhoff–Love plate theory. The 

results were compared with those in the open source for 

various plate shapes and different boundary conditions. 

The importance of using the quasi-isotropic plates in 

practice is given by Altunsaray and Bayer (2013). In today's 

maritime industry the composite structure system, which is 

formed by the combination of thermosetting resins and 

multi-axial fibers, is widely applied. Due to the limitations 

in material production, the fibers commonly used in the 

structure are at 0°, + 45°, -45° and 90° angles. In symmetric 

layered structure, the angles of the layers are symmetrical 

with respect to the middle axis and the plate remains flat 

despite the thermal stresses occurring during production. As 

the number of layers increases, the angle between the 

adjacent laminae decreases such that Δθ = 180°/N where N 

is the number of layers. For instance; [-45°/0°/45°/90°] ≡ 

π/4. Shear modulus of the quasi-isotropic plates consisting 

of 0°, +45°,-45° and 90° angles is greater than that of cross-

ply plates. Moreover, it is stated that quasi-isotropic 

structure is preferred with few exceptions in the aircraft in 

NASA [Aran 1990, Jones 1999, Harper 2002]. Therefore, 

the free vibration of the symmetrically laminated quasi-

isotropic super-elliptical plates composed of 24 different 

combinations of 0°, +45°, -45° and 90° angles was 

investigated. Moreover, it is chosen because present 

investigation for this particular configuration of layups has 

not previously been found in the literature. The authors 

investigated deflection and free vibration of symmetrically 

laminated quasi-isotropic thin rectangular plates based on 

Classical Laminated Plate Theory using some weighted 

residual methods and Method of Finite Elements. 

Recently, static deflections of symmetrically laminated 

quasi-isotropic super-elliptical thin plates have been 

presented by using Rayleigh-Ritz method (Altunsaray 

2017). Now this particular study is extended to the free 

vibration of quasi-isotropic super-elliptical plates, because 

it seems that it has not yet been published in the literature. 

The main motivation of this paper is to attempt to fill 

the gap, which is the free vibration of symmetrically 

laminated quasi-isotropic super-elliptical thin plates, in the 

literature. It is also aimed to present practical data for 

designers involved in concept design stage of composite 

ships. In this study, the above named problem based on a 

Classical Laminated Plate Theory was investigated using 

Rayleigh-Ritz method. The effect of some parameters such 

as lamination type, super-elliptical power (n), aspect ratio 

(a/b and b/a) and boundary condition (clamped and simply 

supported) on natural frequencies of symmetrically 

laminated quasi-isotropic super-elliptical thin plates was 

studied. Validation study was performed for isotropic plate 

because it was only available in open literature. 

As mentioned in the above paragraphs, the novelty of 

this paper is the investigation of the free vibration 

frequencies of quasi-isotropic super-elliptical thin plates 

which still seems to be lacking in the literature. By this way, 

at the preliminary design stage of composite ships, which is 

quite complicated because there are a number of parameters 

like different geometries, boundary conditions, thicknesses, 

lamination sequences, etc., possible better alternative design 

options may be obtained. Convergence study of free 

vibrations of LT1 ([-452/02/452/902]s) plate was carried out 

up to 10 terms to obtain reasonable accuracy. In this 

parametric study, some selected results for different 

parameters such as lamination types, boundary conditions, 

super-elliptical powers and aspect ratios were given with 

tables. 
 

 

2. Analysis 
 

2.1 Main parameters 
 

Geometry looking like a rectangular plate with rounded 

corners is named super-elliptical plate (Fig. 1). 
 

 

 

Fig. 1 Geometry of super-elliptical plate in the 

Cartesian co-ordinates 
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a and b are the half lengths of the plate and n is the 

power of the super ellipse. If n is equal to 1, shape is an 

ellipse, while n goes to infinity (∞) the shape becomes a 

rectangle. 

Material properties of carbon/epoxy are given in Table 1 

(Tsai 1988). Aspect ratios are given in Table 2. 

In this study, twenty four different types of lamination 

of plates are shown in Table 3. Each plate consists of four 

different stacking sequences (−45°, 0°, 45° and 90°). 

Thickness of a laminate (t) is equal to 0.2 mm and total 

thickness of a plate is 3.2 mm (each plate contains 16 

laminates). 

 

2.2 Method of solution 
 

Rayleigh-Ritz Method used for calculation based on 

Classical Laminated Plate Theory (CLPT) in this study. The 

use of CLPT for this study is considered appropriate, since 

the ratio of the plate thickness to the length of short edge is 

sufficiently small. Main assumptions of CLPT were given 

in (Altunsaray 2017). 

 

 

Table 1 Material properties of T300-934 coded carbon/ 

epoxy, Tsai (1988) 

Longitudinal Young Modulus (E11) 148×109 (N/m2) 

Transversal Young Modulus (E22) 9.65×109 (N/m2) 

Longitudinal Shear Modulus (G12) 4.55×109 (N/m2) 

Longitudinal Poisson ratio (ν12) 0.3 

Laminate thickness (t) 0.185×10-3 – 0.213×10-3 (m) 

Density (𝜌0) 1.5×103 (kg/m3) 
 

 

 

Table 2 Aspect ratios 

a/b 1 1.2 1.4 1.6 1.8 2 

b/a 1 1.2 1.4 1.6 1.8 2 
 

 

 

Table 3 Symmetrically laminated quasi-isotropic super-

elliptical plate types 

LT1 [-452/02/452/902]s LT13 [452/-452/02/902]s 

LT2 [-452/02/902/452]s LT14 [452/-452/902/02]s 

LT3 [-452/452/02/902]s LT15 [452/02/-452/902]s 

LT4 [-452/452/902/02]s LT16 [452/02/902/-452]s 

LT5 [-452/902/02/452]s LT17 [452/902/-452/02]s 

LT6 [-452/902/452/02]s LT18 [452/902/02/-452]s 

LT7 [02/-452/452/902]s LT19 [902/-452/02/452]s 

LT8 [02/-452/902/452]s LT20 [902/-452/452/02]s 

LT9 [02/452/-452/902]s LT21 [902/02/-452/452]s 

LT10 [02/452/902/-452]s LT22 [902/02/452/-452]s 

LT11 [02/902/-452/452]s LT23 [902/452/-452/02]s 

LT12 [02/902/452/-452]s LT24 [902/452/02/-452]s 
 

The strain energy (U) of the symmetrically laminated 

plate is given below (Eq. (2)) (Reddy 2004) 
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w is deflection function, the elements of bending 

stiffness matrix Dij are calculated as given in (Reddy 2004) 
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The members of transformed reduced stiffness matrix 

(𝑄 𝑖𝑗 ) are calculated for each lamina as given below (Eq. 

(4)). N is the total number of plies in the laminate and zk and 

zk-1 are the distance from the reference plane to the two 

surfaces of the kth lamina (Reddy 2004). Coordinate 

locations of plies in a typical laminated plate is 

demonstrated in Fig. 2. 
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Fig. 2 Coordinate locations of plies in a typical 

laminated plate 
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where s is sine, c is cosine and θ is the angle of the lamina. 

The reduced stiffness matrix elements (𝑄𝑖𝑗 )  are 

determined as follows 

 

),1/( 21121111  EQ  

),1/( 2112111212   EQ  

),1/( 21122222  EQ  

,1266 GQ   

(5) 

 

The kinetic energy (T) of the symmetrically laminated 

plate is given (Reddy 2004) 
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Where ω is natural angular frequency and I0 is mass 

moments of inertia as calculated as given in Eq. (7) (Reddy 

2004). 
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The total potential energy functional is given below (Eq. 

(8)) 

𝐹 = U + T (8) 

 

Substituting Eqs. (2) and (6) into Eq. (8), the total 

potential energy is given below (Eq. (9)) 
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The boundary conditions at the plate edges are given as 

follows 
 

0w   and  0




in

w
   (for clamped) (10) 

 

0w   and  M = 0   (for simply supported) (11) 

 

where M denotes bending moment, ∂ni is the outward 

normal of the boundary. Trial function used is given below 
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where are the unknown coefficients and order of 

polynomial (r) is 6. 

Deflection function which satisfies the boundary 

conditions is given below 
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where p is equal to 1 for simply supported condition, 2 for 

clamped condition. 

In order to find a least upper bound on the frequency, 

Eq. (9) is minimized with respect to the coefficients cij 

 

𝜕𝐹

𝜕𝑐𝑖𝑗
= 0 (14) 

 

Then, the following equation is obtained 

 

 𝐾 − λ2𝑀  𝑐𝑖𝑗  = 0 (15) 

 

where λ2 is the fundamental frequency parameter including 

material properties, characteristic dimensions and natural 

angular frequency of the plate. K is the stiffness matrix 

related with the strain energy and M is the mass matrix 

related to kinetic energy. K and M are symmetric matrices 

both of which are of the order ten (at most) and M is 

positive definite. This is a generalized eigenvalue problem. 

For a non-trivial solution, the determinant of the coefficient 

matrix should be equal to zero 

 

 𝐾 − 𝜆2𝑀 = 0 (16) 

 

Solution of Eq. (16) leads to a characteristic equation 

involving a polynomial of tenth degree in λ2, from which 

the fundamental natural frequency (ω) may be found. 

 

 

Table 4 Comparison of the fundamental frequency 

parameter of super-elliptical isotropic plates         

(𝜆2 = 𝜔𝑏2 𝜌ℎ/𝐷 , ν = 0.3, r = 6) 

n a/b 

Simply Supported Clamped 

Present 
Çeribaşı et al.      

(2009) 
Present 

Çeribaşı et al.   

(2009) 

1 

1 4.93515 4.9351 10.2158 10.2158 

1.2 4.21276 4.2128 8.71781 8.7178 

1.4 3.81495 3.8149 7.89103 7.8910 

1.6 3.57431 3.5743 7.39275 7.3928 

1.8 3.41583 - 7.06884 - 

2 3.30336 3.3034 6.84436 6.8444 

10 

1 5.17031 5.181 9.25884 9.3763 

1.2 4.3798 4.3883 7.90807 8.0022 

1.4 3.90019 3.908 7.17222 7.2459 

1.6 3.58665 3.5933 6.73597 6.7934 

1.8 3.36836 - 6.45755 - 

2 3.21059 3.2158 6.27002 6.3068 
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3. Results and discussion 
 

In this section, natural frequencies of isotropic and 

quasi-isotropic super-elliptical plates computed by 

Rayleigh-Ritz method are given. 

Convergence study, effect of super-elliptical power (n) 

variation, thickness, boundary condition, aspect ratio and 

super elliptical power on natural frequencies are also 

included. 

 

3.1 Validation of the isotropic case 
 

For validation, fundamental natural frequency 

parameters of super-elliptical thin isotropic plates were 

compared with the results of Ç eribaşı et al. (2009) given in 

Table 4. It seems that the results are in good agreement with 

each other. It can be also seen from the results that 

fundamental frequency parameter decreases with the 

increase of the aspect ratio (a/b) and super-elliptical power 

(Selected trial functions were given in Eq. (12).). 

 

3.2 Convergence study of free vibrations of 
symmetrically laminated quasi-isotropic 
super-elliptical plates 

 

Convergence study was carried out for free vibrations of 

simply supported and clamped LT1 ([-452/02/452/902]s) plate 

with different shape function (number of terms from 1 to 

10) and super elliptical power (n = 1 and 10). From the 

results when the number of terms reach 10 (r = 6), accuracy 

seems to be enough for simply supported and clamped 

conditions (Table 5). 

 

3.3 Effect of super-elliptical power (n) variation 
on natural frequencies (Hz) of super-elliptical 
plates 

 

In this study, the natural frequencies of super-elliptical 

plate LT1 ([-452/02/452/902]s) are compared with the natural 

frequencies of circular (n = 1, a/b = 1), elliptical (n = 1, a/b 

 

 

= 1.2, 1.4, 1.6, 1.8 and 2) and super-elliptical plates (n = 2, 

4, 6, 8 and 10) given in Tables 6-7. The natural frequencies 

(ω) decrease with the increase of the aspect ratios (a/b, b/a). 

It can be seen that the natural frequencies for clamped 

boundary conditions cases are higher than the ones for 

simply supported boundary conditions. 

 

3.4 Effect of thickness variation on natural 
frequencies (Hz) of super-elliptical plates 

 

Selected three different thicknesses, aspect ratios (a/b 

and b/a), boundary conditions (simply supported and 

clamped) and super-elliptical powers (n = 1 and 10) on 

natural frequency of super-elliptical plates were examined 

in this section and presented (Tables 8-11). 

From the results natural frequency decreases as the 

 

 
Table 6 Fundamental natural frequencies ω (Hz) of super-

elliptical LT1 ([-452/02/452/902]s) plate (simply 

supported) 

 
Present - Rayleigh-Ritz (r = 6) 

a/b n = 1 n = 2 n = 4 n = 6 n = 8 n = 10 

1.0 469.88 453.51 477.99 490.25 500.23 510.75 

1.2 383.43 371.74 392.85 403.27 411.59 420.23 

1.4 333.70 322.46 340.12 348.92 356.06 363.53 

1.6 302.86 290.50 305.01 312.45 318.67 325.43 

1.8 282.49 268.60 280.40 286.69 292.16 298.42 

2.0 268.30 252.93 262.45 267.78 272.60 278.35 

b/a n = 1 n = 2 n = 4 n = 6 n = 8 n = 10 

1.0 469.88 453.51 477.99 490.25 500.23 510.75 

1.2 415.91 396.75 415.08 424.71 432.95 442.16 

1.4 384.78 362.54 376.03 383.60 390.49 398.73 

1.6 364.91 340.33 350.09 356.09 361.86 369.26 

1.8 351.15 325.08 331.98 336.78 341.62 348.31 

2.0 340.99 314.14 318.85 322.72 326.80 332.80 
 

 

Table 5 Convergence study of free vibrations of LT1 ([-452/02/452/902]s ) plate with increasing terms 

Shape function 

Fundamental natural frequency ω (Hz) 

Simply Supported Clamped 

n = 1 n = 10 n = 1 n = 10 

00c  533.190 8371.87 979.911 10152.500 

2

2000 xcc   495.309 4796.28 975.220 5910.770 

2

02

2

2000 ycxcc   470.594 2444.73 968.730 3435.320 

22

22

2

02

2

2000 yxcycxcc   470.098 789.967 968.704 1602.380 

4

40

22

22

2

02

2

2000 xcyxcycxcc   470.010 716.840 968.673 1367.940 

4

04

4

40

22

22

2

02

2

2000 ycxcyxcycxcc   469.882 645.946 968.601 1215.490 

4

04

4

40

42

24

22

22

2

02

2

2000 ycxcyxcyxcycxcc   469.882 619.138 968.601 1144.540 

24

42

4

04

4

40

42

24

22

22

2

20

2

0200 yxcycxcyxcyxcycxcc   469.881 516.067 968.601 873.786 

6

60

24

42

4

04

4

40

42

24

22

22

2

20

2

0200 xcyxcycxcyxcyxcycxcc   469.881 512.302 968.601 870.714 

6

06

6

60

24

42

4

04

4

40

42

24

22

22

2

20

2

0200 ycxcyxcycxcyxcyxcycxcc   469.880 510.757 968.601 869.746 
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Table 7 Fundamental natural frequencies ω (Hz) of super-

elliptical LT1 ([-452/02/452/902]s) plate (clamped) 

 
Present - Rayleigh-Ritz (r = 6) 

a/b n = 1 n = 2 n = 4 n = 6 n = 8 n = 10 

1.0 968.60 859.53 852.43 857.13 863.08 869.75 

1.2 790.48 700.28 694.67 698.57 703.54 709.08 

1.4 687.90 610.15 605.16 608.51 612.76 617.54 

1.6 624.26 555.33 550.56 553.49 557.19 561.34 

1.8 582.32 520.01 515.27 517.86 521.10 524.74 

2.0 553.22 496.15 491.35 493.65 496.48 499.65 

b/a n = 1 n = 2 n = 4 n = 6 n = 8 n = 10 

1.0 968.60 859.53 852.43 857.13 863.08 869.75 

1.2 857.30 764.43 757.61 761.51 766.41 771.92 

1.4 793.42 711.79 704.88 708.16 712.20 716.73 

1.6 753.19 680.05 672.96 675.72 679.02 682.70 

1.8 725.93 659.58 652.30 654.64 657.33 660.28 

2.0 706.35 645.66 638.22 640.22 642.40 644.75 
 

 

 

Table 8 Fundamental natural frequency ω (Hz) of different 

thinner or thicker super-elliptical plates (simply 

supported, r = 6, n = 1) 

a/b 

Fundamental natural frequency ω (Hz) 

[-452/02/452/902]s [-453/03/453/903]s [-454/04/454/904]s 

t = 3.2 mm t = 4.8 mm t = 6.4 mm 

1 469.880 704.820 939.701 

1.2 383.432 575.148 766.815 

1.4 333.700 500.551 667.358 

1.6 302.860 454.29 605.681 

1.8 282.494 423.741 564.951 

2 268.297 402.445 536.557 

b/a 

Fundamental natural frequency ω (Hz) 

[-452/02/452/902]s [-453/03/453/903]s [-454/04/454/904]s 

t = 3.2 mm t = 4.8 mm t = 6.4 mm 

1 469.880 704.820 939.701 

1.2 415.912 623.868 831.77 

1.4 384.775 577.163 769.499 

1.6 364.908 547.362 729.763 

1.8 351.151 526.726 702.249 

2 340.986 511.478 681.917 
 

 

 

aspect ratio increases, while it increases with the increase in 

thickness. It seems that the natural frequencies for simply 

supported plates are lower than clamped plates at all aspect 

ratios. Natural frequencies increase with the increase of the 

super-elliptical power (n). 
 

3.5 Effect of lamination types, aspect ratios and 
boundary conditions on natural frequencies 
(Hz) of super-elliptical plates 

 

Fundamental natural frequencies (Hz) of super-elliptical 

quasi-isotropic plates for clamped and simply supported 

boundary condition with the periphery of the plates for r = 

6, n = 10 and 24 different lamination types are presented in 

Tables 12-15. 

It seems that the fundamental natural frequencies 

depend on lamination types. It can be seen from the results 

the fundamental natural frequencies decrease with the 

increase of the aspect ratios (a/b and b/a). Another 

important parameter is the selection of the short edge of the 

plate in x or y direction (a or b). It corresponds to 

longitudinal or lateral framing system in ship construction. 

The fundamental natural frequencies for clamped boundary 

conditions are higher than those for the simply supported 

boundary conditions. The results of plates having different 

super-elliptical powers (n = 1 and 4) are given in Appendix 

B. From the results that natural frequencies increase as the 

super elliptical powers (n) increases for simply supported 

boundary condition. On the contrary natural frequencies 

decrease as the super elliptical power (n) increases for 

clamped boundary condition. 

From Table 8 (simply supported case) LT3 ([-452/452/ 

02/902]s), LT4 ([-452/452/902/02]s), LT13 ([452/-452/02/902]s) 

and LT14 ([452/-452/902/02]s) have the highest natural 

frequencies for aspect ratio a/b = 1. 

For aspect ratio a/b = 2, LT20 ([902/-452/452/02]s) and 

LT23 ([902/452/-452/02]s) have the highest natural 

frequencies. 

From Table 9 (simply supported case) LT3 ([-

452/452/02/902]s), LT4 ([-452/452/902/02]s), LT13 ([452/-

452/02/902]s) and LT14 [452/-452/902/02]s have the highest 

natural frequencies for aspect ratio b/a = 1. For aspect ratio 

b/a = 2, LT7 ([02/-452/452/902]s) and LT9 ([02/452/-452/902]s) 

have the highest natural frequencies. 

 

 

Table 9 Fundamental natural frequency ω (Hz) of different 

thinner or thicker super-elliptical plates (clamped,  

r = 6, n = 1) 

a/b 

Fundamental natural frequency ω (Hz) 

[-452/02/452/902]s [-453/03/453/903]s [-454/04/454/904]s 

   

1 968.601 1452.900 1936.650 

1.2 790.475 1185.71 1580.480 

1.4 687.898 1031.85 1375.400 

1.6 624.263 936.394 1248.190 

1.8 582.315 873.473 1164.350 

2 553.219 829.828 1106.19 

b/a 

Fundamental natural frequency ω (Hz) 

[-452/02/452/902]s [-453/03/453/903]s [-454/04/454/904]s 

t = 3.2 mm t = 4.8 mm t = 6.4 mm 

1 968.601 1452.9 1936.65 

1.2 857.296 1285.94 1714.16 

1.4 793.42 1190.13 1586.49 

1.6 753.193 1129.79 1506.1 

1.8 725.931 1088.9 1451.62 

2 706.353 1059.53 1412.5 
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Table 10 Fundamental natural frequency ω (Hz) of different 

thinner or thicker super-elliptical plates (simply 

supported, r = 6, n = 10) 

a/b 

Fundamental natural frequency ω (Hz) 

[-452/02/452/902]s [-453/03/453/903]s [-454/04/454/904]s 

t = 3.2 mm t = 4.8 mm t = 6.4 mm 

1 510.747 766.152 1021.02 

1.2 420.234 630.335 840.053 

1.4 363.531 545.266 726.724 

1.6 325.428 488.059 650.593 

1.8 298.419 447.6 596.351 

2 278.347 417.515 556.452 

b/a 

Fundamental natural frequency ω (Hz) 

[-452/02/452/902]s [-453/03/453/903]s [-454/04/454/904]s 

t = 3.2 mm t = 4.8 mm t = 6.4 mm 

1 510.747 766.152 1021.02 

1.2 442.155 663.209 883.86 

1.4 398.730 598.061 797.09 

1.6 369.262 553.893 738.281 

1.8 348.313 522.444 696.379 

2 332.804 499.23F 665.439 
 

 

 

 

Table 11 Fundamental natural frequency ω (Hz) of different 

thinner or thicker super-elliptical plates (clamped, 

r = 6, n = 10) 

a/b 

Fundamental natural frequency ω (Hz) 

[-452/02/452/902]s [-453/03/453/903]s [-454/04/454/904]s 

   

1 869.749 1304.63 1739.11 

1.2 709.082 1063.64 1417.81 

1.4 617.537 926.292 1234.77 

1.6 561.342 842.024 1122.43 

1.8 524.743 787.111 1049.28 

2 499.649 749.502 999.124 

b/a 

Fundamental natural frequency ω (Hz) 

[-452/02/452/902]s [-453/03/453/903]s [-454/04/454/904]s 

t = 3.2 mm t = 4.8 mm t = 6.4 mm 

1 869.749 1304.63 1739.11 

1.2 771.921 1157.88 1543.52 

1.4 716.729 1075.1 1433.22 

1.6 682.696 1024.05 1365.2 

1.8 660.279 990.412 1320.41 

2 644.750 967.125 1289.36 
 

 

Table 12 Fundamental natural frequencies ω (Hz) of super-elliptical plates (simply supported) r = 6, 

n = 10 

Plate types 
Aspect ratios (a/b). Short half side, b, is on y direction 

1 1.2 1.4 1.6 1.8 2 

LT1 510.747 420.234 363.531 325.428 298.419 278.347 

LT2 500.939 416.080 363.847 329.111 304.812 286.946 

LT3 531.118 443.923 388.027 349.523 321.792 301.040 

LT4 531.123 450.921 399.278 363.748 338.044 318.847 

LT5 500.938 431.022 387.733 358.778 338.418 323.496 

LT6 510.804 442.138 398.710 369.183 348.308 332.818 

LT7 477.525 380.824 322.328 284.214 258.013 239.201 

LT8 467.479 376.504 322.782 288.706 265.728 249.611 

LT9 477.525 380.824 322.328 284.214 258.013 239.201 

LT10 467.479 376.504 322.782 288.706 265.728 249.611 

LT11 445.277 366.967 323.293 297.208 280.202 268.629 

LT12 445.277 366.967 323.293 297.208 280.202 268.629 

LT13 531.118 443.923 388.027 349.523 321.792 301.040 

LT14 531.123 450.921 399.278 363.748 338.044 318.847 

LT15 510.747 420.234 363.531 325.428 298.419 278.347 

LT16 500.939 416.080 363.847 329.111 304.812 286.946 

LT17 510.804 442.138 398.710 369.183 348.308 332.818 

LT18 500.938 431.022 387.733 358.778 338.418 323.496 

LT19 467.495 416.712 386.525 366.969 353.156 343.425 

LT20 477.637 427.667 397.042 376.510 362.397 351.907 

LT21 445.288 392.548 363.351 345.565 333.463 324.969 

LT22 445.288 392.548 363.351 345.565 333.463 324.969 

LT23 477.637 427.667 397.042 376.510 362.397 351.907 

LT24 467.495 416.712 386.525 366.969 353.156 343.425 
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Table 13 Fundamental natural frequencies ω (Hz) of super-elliptical plates (simply supported) r = 6, 

n = 10 

Plate types 
Aspect ratios (b/a). Short half side, a, is on x direction 

1 1.2 1.4 1.6 1.8 2 

LT1 510.747 442.155 398.730 369.262 348.313 332.804 

LT2 500.939 431.053 387.736 358.784 338.377 323.399 

LT3 531.118 450.935 399.270 363.703 338.056 318.882 

LT4 531.123 443.945 387.987 349.544 321.792 301.022 

LT5 500.938 416.047 363.782 329.095 304.774 286.978 

LT6 510.804 420.249 363.534 325.423 298.361 278.356 

LT7 477.525 427.709 396.961 376.556 362.250 351.922 

LT8 467.479 416.789 386.547 366.862 353.269 343.411 

LT9 477.525 427.709 396.961 376.556 362.250 351.922 

LT10 467.479 416.789 386.547 366.862 353.269 343.411 

LT11 445.277 392.651 363.437 345.545 333.556 325.124 

LT12 445.277 392.651 363.437 345.545 333.556 325.124 

LT13 531.118 450.935 399.270 363.703 338.056 318.882 

LT14 531.123 443.945 387.987 349.544 321.792 301.022 

LT15 510.747 442.155 398.730 369.262 348.313 332.804 

LT16 500.939 431.053 387.736 358.784 338.377 323.399 

LT17 510.804 420.249 363.534 325.423 298.361 278.356 

LT18 500.938 416.047 363.782 329.095 304.774 286.978 

LT19 467.495 376.538 322.823 288.729 265.756 249.543 

LT20 477.637 380.858 322.307 284.193 258.023 239.193 

LT21 445.288 366.924 323.361 297.150 280.234 268.650 

LT22 445.288 366.924 323.361 297.150 280.234 268.650 

LT23 477.637 380.858 322.307 284.193 258.023 239.193 

LT24 467.495 376.538 322.823 288.729 265.756 249.543 
 

Table 14 Fundamental natural frequencies ω (Hz) of super-elliptical plates (clamped) r = 6, n = 10 

Plate types 
Aspect ratios (a/b). Short half side, b, is on y direction 

1 1.2 1.4 1.6 1.8 2 

LT1 869.749 709.082 617.537 561.342 524.743 499.649 

LT2 874.358 724.780 641.255 590.929 558.557 536.613 

LT3 862.603 722.896 642.068 591.518 557.879 534.409 

LT4 862.602 743.963 675.434 632.470 603.808 583.742 

LT5 874.333 766.580 707.021 670.954 647.568 631.575 

LT6 869.743 771.894 716.705 682.707 660.269 644.786 

LT7 878.296 685.819 576.588 510.523 468.407 440.319 

LT8 883.395 702.303 602.211 543.195 506.399 482.274 

LT9 878.296 685.819 576.588 510.523 468.407 440.319 

LT10 883.395 702.303 602.211 543.195 506.399 482.274 

LT11 891.338 732.860 649.577 602.628 574.334 556.259 

LT12 891.338 732.860 649.577 602.628 574.334 556.259 

LT13 862.603 722.896 642.068 591.518 557.879 534.409 

LT14 862.602 743.963 675.434 632.470 603.808 583.742 

LT15 869.749 709.082 617.537 561.342 524.743 499.649 

LT16 874.358 724.780 641.255 590.929 558.557 536.613 

LT17 869.743 771.894 716.705 682.707 660.269 644.786 
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From Table 10 (clamped case) LT11 ([02/902/-452/452]s), 

LT12 ([02/902/452/-452]s), LT21 ([902/02/-452/452]s) and 

LT22 ([902/02/452/-452]s) have the highest natural 

frequencies for aspect ratio a/b = 1. For aspect ratio a/b = 2, 

LT20 ([902/-452/452/02]s) and LT23 ([902/452/-452/02]s) have 

the highest natural frequencies. 

From Table 11 (clamped case) LT11 ([02/902/-452/452]s), 

LT12 ([02/902/452/-452]s), LT21 ([902/02/-452/452]s) and 

LT22 ([902/02/452/-452]s) have the highest natural 

frequencies for aspect ratio b/a = 1. For aspect ratio b/a = 2, 

LT7 ([02/-452/452/902]s) and LT9 ([02/452/-452/902]s) have 

the highest natural frequencies. 
 

 

 

 

These results are similar to those obtained by 

(Altunsaray and Bayer 2013), which was about the 

deflection and free vibration of symmetrically laminated 

quasi-isotropic thin rectangular plates. 
 

 

4. Conclusions 
 

Within this parametric study free vibration analysis of 

super-elliptical quasi-isotropic plates has been examined. 

Plates are considered as simply supported and clamped 

around the periphery. Effect of the lamination types, aspect 
 

 

Table 14 Continued 

Plate types 
Aspect ratios (a/b). Short half side, b, is on y direction 

1 1.2 1.4 1.6 1.8 2 

LT18 874.333 766.580 707.021 670.954 647.568 631.575 

LT19 883.392 806.059 764.916 740.601 725.163 714.772 

LT20 878.302 810.420 773.184 750.611 736.109 726.038 

LT21 891.347 794.951 746.031 718.529 701.600 690.605 

LT22 891.347 794.951 746.031 718.529 701.600 690.605 

LT23 878.302 810.420 773.184 750.611 736.109 726.038 

LT24 883.392 806.059 764.916 740.601 725.163 714.772 
 

Table 15 Fundamental natural frequencies ω (Hz) of super-elliptical plates (clamped) r = 6, n = 10 

Plate types 
Aspect ratios (b/a). Short half side, a, is on x direction 

1 1.2 1.4 1.6 1.8 2 

LT1 869.749 771.921 716.729 682.696 660.279 644.750 

LT2 874.358 766.572 706.997 670.962 647.569 631.553 

LT3 862.603 743.959 675.427 632.478 603.813 583.760 

LT4 862.602 722.887 642.070 591.518 557.892 534.405 

LT5 874.333 724.766 641.248 590.919 558.571 536.614 

LT6 869.743 709.100 617.527 561.353 524.741 499.666 

LT7 878.296 810.413 773.169 750.620 735.991 726.012 

LT8 883.395 806.042 764.891 740.624 725.177 714.758 

LT9 878.296 810.413 773.169 750.620 735.991 726.012 

LT10 883.395 806.042 764.891 740.624 725.177 714.758 

LT11 891.338 794.897 746.016 718.484 701.609 690.596 

LT12 891.338 794.897 746.016 718.484 701.609 690.596 

LT13 862.603 743.959 675.427 632.478 603.813 583.760 

LT14 862.602 722.887 642.070 591.518 557.892 534.405 

LT15 869.749 771.921 716.729 682.696 660.279 644.750 

LT16 874.358 766.572 706.997 670.962 647.569 631.553 

LT17 869.743 709.100 617.527 561.353 524.741 499.666 

LT18 874.333 724.766 641.248 590.919 558.571 536.614 

LT19 883.392 702.316 602.211 543.220 506.418 482.286 

LT20 878.302 685.817 576.581 510.524 468.410 440.296 

LT21 891.347 732.875 649.549 602.608 574.333 556.245 

LT22 891.347 732.875 649.549 602.608 574.333 556.245 

LT23 878.302 685.817 576.581 510.524 468.410 440.296 

LT24 883.392 702.316 602.211 543.220 506.418 482.286 
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ratios, thicknesses and super-elliptical power (n) on natural 

frequencies of super-elliptical plates has been investigated 

by Rayleigh-Ritz Method based on Classical Lamination 

Plate Theory (CLPT). 
 

 Validation study was performed with the isotropic 

case only available in open literature. Results are in 

good agreement with each other. From the 

convergence study of LT1 [-452/02/452/902]s plate 

that when the number of terms in trial function is 10, 

the accuracy obtained seems to be appropriate. From 

the results natural frequency of symmetrically 

laminated quasi-isotropic super-elliptical plates is 

influenced by the boundary conditions, thickness, 

aspect ratios, lamination types and super-elliptical 

power. Natural frequency for simply supported 

plates is less than clamped plates. Fundamental 

natural frequency increases with the increase in 

thickness. Some lamination types are more favorable 

than others given in Chapter 3. 

 In ship structures, plates and shells are generally 

supported with primary and secondary structural 

members. The construction system is named 

transverse or longitudinal depending on the position 

of secondary supporting members mainly called as 

stiffeners. The use of different aspect ratios (a/b or 

b/a) actually corresponds to the different 

constructional systems either transverse or 

longitudinal. Many different parameters play a part 

in complicated composite ship design process such 

as constructional systems, plate thickness, 

lamination types, boundary conditions etc. It can be 

deduced that Rayleigh-Ritz method is one of the 

suitable calculation methods for such problems as 

avoiding from resonance at the preliminary design 

process of composite ship structures. The effect of 

different super-elliptical powers (n = 1 and n = 4) on 

fundamental natural frequency of composite plate is 

presented with tables for the use of ship designers in 

Appendix A. 
 

 

Acknowledgments 
 

Author thanks to Koray Başeğmez and SEISLAB 

(Dokuz Eylul University, http://web.deu.edu.tr/seislab/) for 

using workstation and valuable help. 
 

 

References 
 

Afsharmanesh, B., Ghaheri, A. and Taheri-Behrooz, F. (2014), 

“Buckling and vibration of laminated composite circular plate 

on winkler-type foundation”, Steel Compos. Struct., Int. J., 

17(1), 1-19. 

Altekin, M. (2009), “Free vibration of orthotropic super-elliptical 

plates on intermediate supports”, Nucl. Eng. and Design, 239, 

981–999. 

Altekin, M. (2017), “Free transverse vibration of shear deformable 

super-elliptical plates”, Wind Struct., Int. J., 24(4), 307-331. 

Altunsaray, E. (2017), “Static deflection of symmetrically 

laminated quasi-isotropic super-elliptical thin plates”, Ocean 

Eng., 141, 337-350. 

Altunsaray, E. and Bayer, İ. (2013) “Deflection and free vibration 

of symmetrically laminated quasi-isotropic thin rectangular 

plates for different boundary conditions”, Ocean Eng., 57, 197-

222. 

Aran, A. (1990), Elyaf takviyeli karma malzemeler, İTU. 

[In Turkish] 

Bui, T.Q. and Nguyen, M.N. (2011), “A novel meshfree model for 

buckling and vibration analysis of rectangular orthotropic 

plates”, Struct. Eng. Mech., Int. J., 39(4), 579-598. 

Çeribaşı, C. (2012), “Static and dynamic analyses of thin 

uniformly loaded super elliptical FGM plates”, Mech. Adv. Mat. 

Struct., 19(5), 323-335. 

Çeribaşı, S. and Altay, G. (2009), “Free vibration of super 

elliptical plates with constant and variable thickness by Ritz 

method”, J. Sound Vib, 319(1-2), 668-680. 

Chen, C.C., Lim, C.W. and Kitipornchai, S. (1999), “Vibration of 

symmetrically laminated thick super elliptical plates”, J. Sound 

Vib., 220(4), 659-682. 

Eric Green Associates, Inc. (1999), Marine Composites. 

http://www.ericgreeneassociates.com/images/MARINE_COMP

OSITES.pdf 

Ghaheri, A., Keshmiri, A. and Taheri-Behrooz, F. (2014), 

“Buckling and vibration of symmetrically laminated composite 

elliptical plates on an elastic foundation subjected to uniform in-

plane force”, J. Eng. Mech., 140(7), 04014049. 

Ghaheri, A., Nosier, A. and Keshmiri, A. (2016), “Parametric 

stability of symmetrically laminated composite super‐elliptical 

plates”, J. Comp. Mater., 50(28), 3935‐3951. 

Harper, C.A. (2002), Handbook of Plastics, Elastomers & 

Composites, (4th Edition), McGraw-Hill, NY, USA. 

Irie, T., Yamada, G. and Sonoda, M. (1983), “Natural frequencies 

of square membrane and square plate with rounded corners”, J. 

Sound Vib., 86(3), 442-448. 

Jones, R.M. (1999), Mechanics of composite materials, (2nd 

Edition), Brunner-Routledge, New York - London. 

Kim, C.S. (2003), “Natural frequencies of orthotropic, elliptical 

and circular plates”, J. Sound Vib., 259(3), 733-745. 

Kreja, I. (2011), “A literature review on computational models for 

laminated composite and sandwich panels”, Cent. Eur. J. Eng., 

1(1), 59-80. 

Kumar, Y. (2018), “The Rayleigh–Ritz method for linear dynamic, 

static and buckling behavior of beams, shells and plates: A 

literature review”, J. Vib. Cont., 24(7), 1205-1227. 

Liew, K.M. and Feng, Z.C. (2001), “Three-dimensional free 

vibration analysis of perforated super elliptical plates via the p-

Ritz method”, Int. J. Mec. Sci., 43, 2613-2630. 

Liew, K.M., Kitipornchai, S. and Lim, C.W. (1998), “Free 

vibration analysis of thick superelliptical plates”, J. Eng. Mech., 

124(2), 137-145. 

Lim, C.M., Kitipornchai, S. and Liew, K.M. (1998), “A free- 

vibration analysis of doubly connected super-elliptical 

laminated composite plates”, Compos. Sci. Tech., 58, 435-445. 

Mishra, I. and Sahu, S.K. (2012), “An experimental approach to 

free vibration response of woven fiber composite plates under 

free-free boundary condition”, Int. J. Adv. Tech. Civ. Eng., 1(2), 

67-72. 

Mouritz, A.P., Gellert, E., Burchill, P. and Challis, K. (2001), 

“Review of advanced composite structures for naval ships and 

submarines”, Compos. Struct., 53(1), 21-41. 

Nallim, L.G. and Grossi, R.O. (2008), “Natural frequencies of 

symmetrically laminated elliptical and circular plates”, Int. J. 

Mech. Sci., 50, 1153-1167. 

Nayak, N., Meher, S. and Sahu, S.K. (2013), “Experimental and 

numerical study on vibration and buckling characteristics of 

glass-carbon-epoxy hybrid composite plates”, Proceedings of 

International Conference on Advances in Civil Engineering, 

502



 

Free vibration of symmetrically laminated quasi-isotropic super-elliptical thin plates 

AETACE, Elsevier, pp. 888-895. 

Reddy, J.N. (2004), Mechanics of Laminated Composite Plates 

and Shells: Theory and Analysis, (2nd Ed.), CRC Press, Boca 

Raton, FL, USA. 

Sadoune, M., Tounsi, A., Houari, M.S.A. and Bedia, E.A.A. 

(2014), “A novel first-order shear deformation theory for 

laminated composite plates”, Steel Compos. Struct., Int. J., 

17(3), 321-338. 

Sayyad, A.S. and Ghugal, Y.M. (2015), “On the free vibration 

analysis of laminated composite and sandwich plates- A review 

of recent literature with some numerical results”, Compos. 

Struct., 129, 177-201. 

Singhatanadgid, P. and Wetchayanon, T. (2014), “Vibration 

analysis of laminated plates with various boundary conditions 

using extended Kantorovich method”, Struct. Eng. Mech., Int. 

J., 52(1), 115-136. 

Tsai, S.W. (1988), Composites Design, (4th Edition), Think 

Composites. 

Turk Loydu Rules (2017), Part A, Chapter 1 – Hull. 

http://www.turkloydu.org/pdf-files/turk-loydu-kurallari/cilt-

a/chapter-1-hull-2017-JULY.pdf 

Wang, C.M., Wang, L. and Liew, K.M. (1994), “Vibration and 

buckling of super elliptical plates”, J. Sound Vib., 171(3), 301-

314. 

Zhangh, D. and Zhou, H. (2014), “Nonlinear symmetric free 

vibration analysis of super elliptical isotropic thin plates”, 

Compos. Mater. Continua, 40(1), 21-34 

Zhou, D., Lo, S.H., Cheung, Y.K. and Au, F.T.K. (2004), “3-D 

vibration analysis of generalized super elliptical plates using 

Chebyshev-Ritz method”, Int. J. Sol. Struct., 41, 4697-4712. 

 

 

CC 

 

  

503



 

Erkin Altunsaray 

Appendix A 
 

 

 

 

 

Table A1 Fundamental natural frequencies ω (Hz) of super-elliptical plates (simply supported) r = 6, 

n = 1 

Plate types 
Aspect ratios (a/b). Short half side, b, is on y direction 

1 1.2 1.4 1.6 1.8 2 

LT1 469.880 383.432 333.700 302.860 282.494 268.297 

LT2 470.245 389.866 344.528 316.824 298.670 286.016 

LT3 469.859 393.654 349.056 320.792 301.689 288.071 

LT4 469.859 404.572 366.316 341.895 325.191 313.100 

LT5 470.245 411.460 378.314 357.623 343.546 333.271 

LT6 469.880 415.912 384.775 364.908 351.151 340.986 

LT7 468.591 366.743 308.531 273.075 250.279 234.885 

LT8 469.210 373.564 320.323 288.674 268.689 255.313 

LT9 468.591 366.743 308.531 273.075 250.279 234.885 

LT10 469.210 373.564 320.323 288.674 268.689 255.313 

LT11 469.572 386.199 342.024 316.733 301.020 290.396 

LT12 469.572 386.199 342.024 316.733 301.020 290.396 

LT13 469.859 393.654 349.056 320.792 301.689 288.071 

LT14 469.859 404.572 366.316 341.895 325.191 313.100 

LT15 469.880 383.432 333.700 302.860 282.494 268.297 

LT16 470.245 389.866 344.528 316.824 298.670 286.016 

LT17 469.880 415.912 384.775 364.908 351.151 340.986 

LT18 470.245 411.460 378.314 357.623 343.546 333.271 

LT19 469.210 426.658 402.837 387.485 376.456 367.938 

LT20 468.591 430.504 408.326 393.604 382.864 374.527 

LT21 469.572 417.958 390.804 374.311 362.887 354.164 

LT22 469.572 417.958 390.804 374.311 362.887 354.164 

LT23 468.591 430.504 408.326 393.604 382.864 374.527 

LT24 469.210 426.658 402.837 387.485 376.456 367.938 
 

Table A2 Fundamental natural frequencies ω (Hz) of super-elliptical plates (simply supported) r = 6, 

n = 1 

Plate types 
Aspect ratios (b/a). Short half side, a, is on x direction 

1 1.2 1.4 1.6 1.8 2 

LT1 469.880 415.912 384.775 364.908 351.151 340.986 

LT2 470.245 411.460 378.314 357.623 343.546 333.271 

LT3 469.859 404.572 366.316 341.895 325.191 313.100 

LT4 469.859 393.654 349.056 320.792 301.689 288.071 

LT5 470.245 389.866 344.528 316.824 298.670 286.016 

LT6 469.880 383.432 333.700 302.860 282.494 268.297 

LT7 468.591 430.504 408.326 393.604 382.864 374.527 

LT8 469.210 426.658 402.837 387.485 376.456 367.938 

LT9 468.591 430.504 408.326 393.604 382.864 374.527 

LT10 469.210 426.658 402.837 387.485 376.456 367.938 

LT11 469.572 417.958 390.804 374.311 362.887 354.164 

LT12 469.572 417.958 390.804 374.311 362.887 354.164 

LT13 469.859 404.572 366.316 341.895 325.191 313.100 

LT14 469.859 393.654 349.056 320.792 301.689 288.071 

LT15 469.880 415.912 384.775 364.908 351.151 340.986 
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Table A2 Continued 

Plate types 
Aspect ratios (b/a). Short half side, a, is on x direction 

1 1.2 1.4 1.6 1.8 2 

LT16 470.245 411.460 378.314 357.623 343.546 333.271 

LT17 469.880 383.432 333.700 302.860 282.494 268.297 

LT18 470.245 389.866 344.528 316.824 298.670 286.016 

LT19 469.210 373.564 320.323 288.674 268.689 255.313 

LT20 468.591 366.743 308.531 273.075 250.279 234.885 

LT21 469.572 386.199 342.024 316.733 301.020 290.396 

LT22 469.572 386.199 342.024 316.733 301.020 290.396 

LT23 468.591 366.743 308.531 273.075 250.279 234.885 

LT24 469.210 373.564 320.323 288.674 268.689 255.313 
 

Table A3 Fundamental natural frequencies ω (Hz) of super-elliptical plates (simply supported) r = 6, 

n = 4 

Plate types 
Aspect ratios (a/b). Short half side, b, is on y direction 

1 1.2 1.4 1.6 1.8 2 

LT1 477.985 392.854 340.116 305.009 280.397 262.454 

LT2 468.662 389.168 340.771 309.092 287.225 271.503 

LT3 496.290 414.935 363.275 328.185 303.181 284.706 

LT4 496.290 422.064 374.862 342.838 320.072 303.296 

LT5 468.662 404.276 365.077 339.457 321.806 309.135 

LT6 477.985 415.083 376.025 350.087 331.983 318.849 

LT7 448.452 356.498 301.442 265.963 241.813 224.661 

LT8 438.307 352.270 302.038 270.507 249.581 235.062 

LT9 448.452 356.498 301.442 265.963 241.813 224.661 

LT10 438.307 352.270 302.038 270.507 249.581 235.062 

LT11 416.639 343.162 302.858 279.096 264.220 254.422 

LT12 416.639 343.162 302.858 279.096 264.220 254.422 

LT13 496.290 414.935 363.275 328.185 303.181 284.706 

LT14 496.290 422.064 374.862 342.838 320.072 303.296 

LT15 477.985 392.854 340.116 305.009 280.397 262.454 

LT16 468.662 389.168 340.771 309.092 287.225 271.503 

LT17 477.985 415.083 376.025 350.087 331.983 318.849 

LT18 468.662 404.276 365.077 339.457 321.806 309.135 

LT19 438.307 392.662 366.397 349.999 339.105 331.506 

LT20 448.452 403.940 377.441 360.428 348.866 340.652 

LT21 416.639 368.580 342.893 327.904 318.517 312.292 

LT22 416.639 368.580 342.893 327.904 318.517 312.292 

LT23 448.452 403.940 377.441 360.428 348.866 340.652 

LT24 438.307 392.662 366.397 349.999 339.105 331.506 
 

Table A4 Fundamental natural frequencies ω (Hz) of super-elliptical plates (simply supported) r = 6, 

n = 4 

Plate types 
Aspect ratios (b/a). Short half side, a, is on x direction 

1 1.2 1.4 1.6 1.8 2 

LT1 477.985 415.083 376.025 350.087 331.983 318.849 

LT2 468.662 404.276 365.077 339.457 321.806 309.135 
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Table A4 Continued 

Plate types 
Aspect ratios (b/a). Short half side, a, is on x direction 

1 1.2 1.4 1.6 1.8 2 

LT3 496.290 422.064 374.862 342.838 320.072 303.296 

LT4 496.290 414.935 363.275 328.185 303.181 284.706 

LT5 468.662 389.168 340.771 309.092 287.225 271.503 

LT6 477.985 392.854 340.116 305.009 280.397 262.454 

LT7 448.452 403.940 377.441 360.428 348.866 340.652 

LT8 438.307 392.662 366.397 349.999 339.105 331.506 

LT9 448.452 403.940 377.441 360.428 348.866 340.652 

LT10 438.307 392.662 366.397 349.999 339.105 331.506 

LT11 416.639 368.580 342.893 327.904 318.518 312.292 

LT12 416.639 368.580 342.893 327.904 318.518 312.292 

LT13 496.290 422.064 374.862 342.838 320.072 303.296 

LT14 496.290 414.935 363.275 328.185 303.181 284.706 

LT15 477.985 415.083 376.025 350.087 331.983 318.849 

LT16 468.662 404.276 365.077 339.457 321.806 309.135 

LT17 477.985 392.854 340.116 305.009 280.397 262.454 

LT18 468.662 389.168 340.771 309.092 287.225 271.503 

LT19 438.307 352.270 302.038 270.507 249.581 235.062 

LT20 448.452 356.498 301.442 265.963 241.813 224.661 

LT21 416.639 343.163 302.858 279.096 264.220 254.422 

LT22 416.639 343.163 302.858 279.096 264.220 254.422 

LT23 448.452 356.498 301.442 265.963 241.813 224.661 

LT24 438.307 352.270 302.038 270.507 249.581 235.062 
 

Table A5 Fundamental natural frequencies ω (Hz) of super-elliptical plates (clamped) r = 6, n = 1 

Plate types 
Aspect ratios (a/b). Short half side, b, is on y direction 

1 1.2 1.4 1.6 1.8 2 

LT1 968.601 790.475 687.898 624.263 582.315 553.219 

LT2 968.992 803.375 709.908 652.877 615.712 590.090 

LT3 969.195 811.974 719.855 661.501 622.188 594.347 

LT4 969.195 834.366 755.375 705.132 671.040 646.678 

LT5 968.992 847.831 779.795 737.829 709.876 690.071 

LT6 968.601 857.296 793.420 753.193 725.931 706.353 

LT7 966.307 756.266 636.269 563.124 516.084 484.375 

LT8 967.435 770.201 660.430 595.179 554.069 526.744 

LT9 966.307 756.266 636.269 563.124 516.084 484.375 

LT10 967.435 770.201 660.430 595.179 554.069 526.744 

LT11 968.706 796.689 705.630 653.730 621.911 600.971 

LT12 968.706 796.689 705.630 653.730 621.911 600.971 

LT13 969.195 811.974 719.855 661.501 622.188 594.347 

LT14 969.195 834.366 755.375 705.132 671.040 646.678 

LT15 968.601 790.475 687.898 624.263 582.315 553.219 

LT16 968.992 803.375 709.908 652.877 615.712 590.090 

LT17 968.601 857.296 793.420 753.193 725.931 706.353 

LT18 968.992 847.831 779.795 737.829 709.876 690.071 

LT19 967.435 880.278 832.590 803.177 783.275 768.869 
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Table A5 Continued 

Plate types 
Aspect ratios (a/b). Short half side, b, is on y direction 

1 1.2 1.4 1.6 1.8 2 

LT20 966.307 888.504 844.401 816.402 797.072 782.894 

LT21 968.706 862.565 807.561 775.398 754.495 739.754 

LT22 968.706 862.565 807.561 775.398 754.495 739.754 

LT23 966.307 888.504 844.401 816.402 797.072 782.894 

LT24 967.435 880.278 832.590 803.177 783.275 768.869 
 

Table A6 Fundamental natural frequencies ω (Hz) of super-elliptical plates (clamped) r = 6, n = 1 

Plate types 
Aspect ratios (b/a). Short half side, a, is on x direction 

1 1.2 1.4 1.6 1.8 2 

LT1 968.601 857.296 793.420 753.193 725.931 706.353 

LT2 968.992 847.831 779.795 737.829 709.876 690.071 

LT3 969.195 834.366 755.375 705.132 671.040 646.678 

LT4 969.195 811.974 719.855 661.501 622.188 594.347 

LT5 968.992 803.375 709.908 652.877 615.712 590.090 

LT6 968.601 790.475 687.898 624.263 582.315 553.219 

LT7 966.307 888.504 844.401 816.402 797.072 782.894 

LT8 967.435 880.278 832.590 803.177 783.275 768.869 

LT9 966.307 888.504 844.401 816.402 797.072 782.894 

LT10 967.435 880.278 832.590 803.177 783.275 768.869 

LT11 968.706 862.565 807.561 775.398 754.495 739.754 

LT12 968.706 862.565 807.561 775.398 754.495 739.754 

LT13 969.195 834.366 755.375 705.132 671.040 646.678 

LT14 969.195 811.974 719.855 661.501 622.188 594.347 

LT15 968.601 857.296 793.420 753.193 725.931 706.353 

LT16 968.992 847.831 779.795 737.829 709.876 690.071 

LT17 968.601 790.475 687.898 624.263 582.315 553.219 

LT18 968.992 803.375 709.908 652.877 615.712 590.090 

LT19 967.435 770.201 660.430 595.179 554.069 526.744 

LT20 966.307 756.266 636.269 563.124 516.084 484.375 

LT21 968.706 796.689 705.630 653.730 621.911 600.971 

LT22 968.706 796.689 705.630 653.730 621.911 600.971 

LT23 966.307 756.266 636.269 563.124 516.084 484.375 

LT24 967.435 770.201 660.430 595.179 554.069 526.744 
 

Table A7 Fundamental natural frequencies ω (Hz) of super-elliptical plates (clamped) r = 6, n = 4 

Plate types 
Aspect ratios (a/b). Short half side, b, is on y direction 

1 1.2 1.4 1.6 1.8 2 

LT1 852.434 694.672 605.158 550.555 515.267 491.353 

LT2 855.746 709.253 627.962 579.376 548.519 527.907 

LT3 846.372 709.363 630.492 581.517 549.265 527.007 

LT4 846.372 730.428 663.999 622.827 595.715 576.985 

LT5 855.746 751.095 694.006 660.090 638.524 624.044 

LT6 852.434 757.610 704.884 672.955 652.298 638.219 

LT7 860.223 670.663 563.618 499.167 458.316 431.266 

LT8 863.278 685.534 587.843 530.628 495.283 472.398 
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Table A7 Continued 

Plate types 
Aspect ratios (a/b). Short half side, b, is on y direction 

1 1.2 1.4 1.6 1.8 2 

LT9 860.223 670.663 563.618 499.167 458.316 431.266 

LT10 863.278 685.534 587.843 530.628 495.283 472.398 

LT11 868.148 713.545 632.980 588.153 561.700 545.236 

LT12 868.148 713.545 632.980 588.153 561.700 545.236 

LT13 846.372 709.363 630.492 581.517 549.265 527.007 

LT14 846.372 730.428 663.999 622.827 595.715 576.985 

LT15 852.434 694.672 605.158 550.555 515.267 491.353 

LT16 855.746 709.253 627.962 579.376 548.519 527.907 

LT17 852.434 757.610 704.884 672.955 652.298 638.219 

LT18 855.746 751.095 694.006 660.090 638.524 624.044 

LT19 863.278 789.589 751.522 729.821 716.444 707.672 

LT20 860.223 795.926 761.655 741.516 728.764 720.209 

LT21 868.148 775.605 729.814 704.993 690.448 681.349 

LT22 868.148 775.605 729.814 704.993 690.448 681.349 

LT23 860.223 795.926 761.655 741.516 728.764 720.209 

LT24 863.278 789.589 751.522 729.821 716.444 707.672 

LT20 860.223 795.926 761.655 741.516 728.764 720.209 
 

Table A8 Fundamental natural frequencies ω (Hz) of super-elliptical plates (clamped) r = 6, n = 4 

Plate types 
Aspect ratios (b/a). Short half side, a, is on x direction 

1 1.2 1.4 1.6 1.8 2 

LT1 852.434 757.610 704.884 672.955 652.298 638.219 

LT2 855.746 751.095 694.006 660.090 638.524 624.044 

LT3 846.372 730.428 663.999 622.827 595.715 576.985 

LT4 846.372 709.363 630.492 581.517 549.265 527.007 

LT5 855.746 709.253 627.962 579.376 548.519 527.907 

LT6 852.434 694.672 605.158 550.555 515.267 491.353 

LT7 860.223 795.926 761.655 741.516 728.764 720.209 

LT8 863.278 789.589 751.522 729.821 716.444 707.672 

LT9 860.223 795.926 761.655 741.516 728.764 720.209 

LT10 863.278 789.589 751.522 729.821 716.444 707.672 

LT11 868.148 775.605 729.814 704.993 690.448 681.349 

LT12 868.148 775.605 729.814 704.993 690.448 681.349 

LT13 846.372 730.428 663.999 622.827 595.715 576.985 

LT14 846.372 709.363 630.492 581.517 549.265 527.007 

LT15 852.434 757.610 704.884 672.955 652.298 638.219 

LT16 855.746 751.095 694.006 660.090 638.524 624.044 

LT17 852.434 694.672 605.158 550.555 515.267 491.353 

LT18 855.746 709.253 627.962 579.376 548.519 527.907 

LT19 863.278 685.534 587.843 530.628 495.283 472.398 

LT20 860.223 670.663 563.618 499.167 458.316 431.266 

LT21 868.148 713.545 632.980 588.153 561.700 545.236 

LT22 868.148 713.545 632.980 588.153 561.700 548.236 

LT23 860.223 670.663 563.618 499.167 458.316 431.266 

LT24 863.278 685.534 587.843 530.628 495.283 472.398 
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