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1. Introduction 

 

Fiber reinforced composites are widely used in 

aerospace structures due to their outstanding properties such 

as high strength and stiffness to weight ratios compared to 

traditional materials. In order to use the potential benefits of 

composite materials, new design methods need to be 

developed for strength and buckling of critical structures. 

For designing cylinders against buckling, some knock-down 

factors which rely on lower-bound curve are presented like 

as NASA SP-8007. But, this guideline is based on isotropic 

test results and for composite materials give conservative 

results that make structures heavier. So, new analysis 

procedures are under investigation by taking into account 

the properties of composite materials. So far, many 

analytical solutions have been developed to predict 

buckling load of the circular cylindrical shell with taking 

into account the effect of initial geometric imperfections 

such as Flugge (1932), Donnell (1934) and Koiter (1945). 

Ravenhall (1964) offered a correction factor to resolve the 

discrepancy between experiment and theory in circular 
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cylindrical shells. For giving more information, Readers are 

referred to Tennyson (1975). Khayat et al. (2016) employed 

semi analytical Finite Strip Method (FSM) to investigate 

buckling and post buckling behavior of composite 

cylindrical shells. In 1960 NASA published a guideline 

curve Fig. 1 based on many tests which were performed and 

reported as NASA SP-8007. This guideline curve was 

introduced as a knock-down factor denoted by ρ in the term 

of radius to thickness ratio (R/t) for the isotropic cylindrical 

shell. It does not take into account the effect of boundary 

condition and ply sequence of orthotropic materials. The 

knock-down factor ρ for an isotropic materials was 

proposed by Seide et al. (1960) and then modified by 

Weingarten (1965) for orthotropic cylinders which is 

presented in Eq. (1). 
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Hutchinson and Koiter (1970) investigated the effect of 

imperfections on buckling of the circular cylindrical shell. 
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Abstract.  Cylindrical shell structures buckle at service loads which are much lower than their associated theoretical buckling 

loads. The main source of this discrepancy is the presence of various imperfections which are created on the cylinder body 

during different processes as manufacturing, handling, assembling and machining. Many cylindrical shell structures are still 

designed against buckling based on the experimental data introduced by NASA SP-8007 as conservative lower bound curves. 

This study employed the numerical based Linear Buckling mode shape Imperfection (LBMI) method and modified it using a 

stochastic method to assess the effect of geometrical imperfections in more details on the buckling of cylindrical shells with and 

without the cutout. The comparison of results with those obtained from the numerical Simcple Perturbation Load Imperfection 

(SPLI) method for cylinders with and without cutout revealed a good correlation. The effect of two parameters of size and 

number of cutouts on the buckling load was investigated using the linear buckling and Modified LBMI methods. Results 

confirmed that in cylinders with a small cutout inserting geometrical imperfection using either SPLI or modified LBMI methods 

significantly reduced the value of the predicted buckling load. However, in cylinders with larger cutouts, the effect of the cutout 

is dominant, thus considering geometrical imperfection had a minor effect on the buckling loads predicted by both SPLI and 

modified LBMI methods. Furthermore, the modified LBMI method was employed to evaluate the combination effect of cutout 

numbers and size on the buckling load. It is shown that in small cutouts, an increasing in the cutout size up to a certain value 

resulted in a remarkable reduction of the buckling load, and beyond that limit, the buckling loads were constant against D/R 

ratios. In addition, the cutout number shows a more significant effect on decreasing the buckling load at small D/R ratios than 

large D/R ratios. 
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Fig. 1 NASA SP-8007 guideline curve 

 

 

Khot (1968) employed the non-linear Donnell‟s theory and 

Card (Donnell 1969) used Koiter‟s theory along with the 

energy method to take into account the effect of 

imperfection on buckling load‟s capacity of composite 

cylindrical shells. They defined imperfection as an initial 

displacement in their procedures. The method of Linear 

Buckling Mode Imperfections (LBMI) was proposed by 

Khot and Venkayya (1970), they used the axially symmetric 

mode shapes obtained through linear eigenvalue buckling 

analysis as the initial imperfections in a cylindrical shell. 

However, selecting a suitable mode shape from linear 

analysis and appropriate coefficient magnitude are still 

under investigation. 

Hilburger et al. (2006) examined geometric imperfec-

tions due to manufacturing signature and compared his 

results with LBMI method. Huhne et al. (2008) proposed a 

method to obtain buckling load by considering a local 

distortion in a local area of the shell structure. In their 

procedure, local perturbation was simulated by applying a 

lateral load and buckling was continued by applying the 

axial load. They found that after reaching to a certain lateral 

load, say P1, cylinder lost sensitivity to lateral load, the 

corresponding axial load to P1 was assigned the buckling 

load of the cylinder. This method is called Simple 

Perturbation Load Imperfections (SPLI) by Winterstetter 

and Schmidt (2002). Degenhardt et al. (2010) proposed a 

probabilistic stability analysis via Monte Carlo simulation 

and examined various imperfections such as geometrical, 

loading and material properties. They found that 

geometrical imperfections had the most important effect on 

axially buckling loads. In a comprehensive numerical 

investigation performed by Castro et al. (2014), several 

imperfections modeling methods are simulated numerically 

and results are compared and discussed.  Shakouri et al. 

(2016) examined the effect of imperfection shapes on the 

buckling behavior of conical shells. Imperfection sensitivity 

to elastic buckling of wind loaded open cylindrical tanks 

was investigated by Godoy and Flores (2002). Buckling 

analysis of filament wound composite cylindrical shell for 

considering the filament undulation and crossover was 

examined by Guo et al. (2015). Effect of different length to 

radius ratio of cylinder (L/R) on knock-down factor was 

examined by Wagner et al. (2017). They proposed a 

numerical method of Single Boundary Perturbation 

Approach (SBPA) and compare their results with 

experiments and NASA SP-8007 guideline. 

Hilburger et al. (1998, 1999) developed an analytical 

solution to predict buckling load of a composite cylinder 

with cutout. His predictions were in a good agreement with 

STAGS 1  (a finite element code for general-purpose 

nonlinear analysis of solid mechanic.) software and 

experimental data. Later Tafreshi (2002) showed 

Hilburger‟s results are well matched with ABAQUS 

software results. Orifici and Bisagni (2013) used the SPLI 

method to predict buckling load of composite cylinders with 

various size of square cutouts and stacking sequences. 

Arbelo et al. (2015) examined the effect of imperfections 

caused by SPLI method and cutout on composite cylindrical 

shells. They concluded that for small cutouts the effect of 

imperfections on buckling load is significant, whereas 

beyond a specified cutout size the knockdown effect due to 

imperfections is negligible compared to the effect of cutout 

itself. Moreover, in large cutouts combination of both 

effects are responsible for buckling load. Response of 

perforated glass/epoxy composite tubes subjected to axial 

compressive loading was investigated using numerical and 

experimental methods by Taheri-Behrooz et al. (2012). 

This study have employed the numerical based Linear 

Buckling Mode shape Imperfection (LBMI) method to 

assess the effect of geometrical imperfections in more 

details on the buckling of cylindrical shells with and 

without cutouts. Furthermore, a stochastic linear mode 

shape selection criterian is coupled with well-known LBMI 

method to predict nonlinear buckling load of perforated and 

sound composite cylinders. Finally, the modified LBMI (M-

LBMI) and the linear buckling analysis were employed to 

investigate a combination effect of cutout size and number 

on the cylindrical shell buckling behavior. 

 

 

2. Finite element model preparation 
 

The material used in this research is glass/epoxy, S2-

449/SP 381, in the form of unidirectional tape with a 

thickness of one layer of 0.55 mm, stacking sequence of 

[90/23/-23/90] and a total wall thickness of 2.2 mm. The 

inner radius of the cylinder is 189 mm with 700 mm total 

length and 5 mm from both end of the cylinder is clamped, 

thus free length is 690 mm. Material properties of the 

composite layers are as: E11 = 47.1 GPa, E22 = 13.3 GPa, 

𝜗12 = 0.24, G12 = G13 = G23 = 4.75 GPa according to 

Composite Materials Handbook (2002). Linear and non-

linear solver of Abaqus-6.12 (Simulia 2012) were used to 

evaluate buckling behavior of the cylindrical shell 

numerically. Linear solver was used to calculate the 

buckling loads and their corresponding mode shapes. Non-

linear solver in standard implicit with Newton-Raphson 

algorithm was used to obtain the load-end shortening 

response curves. The element type was standard shell with 

linear order and reduced integration, S4R. A mesh 

convergence analysis was performed with 92 elements in 

circumferential direction and 56 elements in axial direction 

so the mesh convergence study led to 5152 elements. 

                                          
1 Structural Analysis of General Shells 
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Boundary conditions were clamped at both ends and 

loading condition was axial compression. Fig. 2(a) shows 

dimensions and boundary conditions in both ends of the 

cylinder and Fig. 2(b) shows a detailed view of the clamped 

end. 
 

 

3. Buckling of the cylinder without cutout 
 

There are several geometrical imperfections modeling 

methods which are used to predict buckling load of 

composite cylindrical shells (Castro et al. 2014). In this 

research  Linear Buckling Mode shape Imperfections 

(LBMI) and Single Perturbation Load Imperfections (SPLI) 

are presented in details. A modified version of LBMI 

method is presented and compared with SPLI method 

predictions for the perfect composite cylinders. 

 

3.1 Modified LBMI method for cylinders without 
cutout 

 

Linear buckling analysis is a typical eigenvalue problem 

and gives mode shapes and buckling loads with linear 

analysis. These mode shapes which are appeared in the 

cylinder wall can be used as initial geometric imperfections. 

In LBMI method, mode shapes are tuned by applying a 

scaling factor and then are applied to the perfect cylinder as 

an initial imperfection to trigger buckling. To the best 

knowledge of the authors, it is not investigated which one 

of those mode shapes are dominant and more responsible 

for buckling of the cylinder under question. For composite 

cylinders, as shown in Table 1, different mode shapes have 

close buckling loads so that dominant mode shape cannot 

be selected solely due to the minimum buckling load of the 

structure. Moreover, it is not cleared what percentage of the 

selected mode shape would resulted in a realistic buckling 

load. Thus, there are two questions in the LBMI method 

which should be addressed, first: what eigenmode pattern is 

suitable? and second: what scaling factor of imperfections is 

acceptable?  Table 1 illustrates the 30 first buckling mode 

shapes with associated buckling loads of the cylindrical 

shell. As, the buckling load of each even and its following 

odd mode shapes are almost the same so only the odd ones 

are presented in Table 1. 

 

 

Fig. 3 shows buckling load with different eigenmode 

patterns as the initial imperfection at a constant scaling 

factor magnitude of 𝛿/𝑡 = 0.2. Moreover, buckling load with 

various scaling factor at first eigenmode pattern (selection 

of mode shape to study the effect of scaling factor is 

arbitrary) is shown. As shown in Table 1, linear buckling 

loads are close together for different mode shapes, for this 

reason predicted buckling loads by the LBMI method in a 

constant scaling factor shows small variation (Fig. 3). 

However, as shown in Fig. 3, the scaling factor at a constant 

modeshape (modeshape 1) had an important effect on the 

buckling load up to a certain limit of 0.6, beyond that limit 

the buckling load is constant. Worth to mention, by 

approaching the scaling factor to unity, applied mode shape 

as initial imperfection cease to be an imperfection and acts 

more like as a structural feature that changes the structure 

from a smooth cylinder to a corrugated cylinder which is 

out of the scope of this research. 

Fig. 4 shows a variation of cylinder stiffness before 

buckling with different eigenmode patterns at a constant 

scaling factor of 𝛿/𝑡 = 0.2, and with various scaling factors 

at a constant mode shape. Increasing scaling factor resulted 

in remarkable reduction of cylinder‟s stiffness, while 

different mode shapes had a minor effect on it. 

As is seen in Figs. 3 and 4, mode shapes used as 

imperfection pattern had a negligible effect on the predicted 

 

 

 

Fig. 3 Buckling load in different imperfections eigenmode 

patterns also different scaling factor (𝛿/𝑡) 

  

(a) Dimensions and boundary conditions (b) Detailed view 

Fig. 2 Dimensions and boundary conditions of the cylinder 
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Fig. 4 Cylinder‟s stiffness in different imperfections and 

scaling factors (𝛿/𝑡) 
 

 

buckling load and the cylinder‟s stiffness using LBMI 

method. Thus in the present study, a stochastic approach 

was employed to select a possible happening eigenmode 

pattern among the thirty initial mode shapes. Fig. 5 shows 

the probability density functions for buckling load under 

different eigenmode patterns at a constant scaling factor 

(𝛿/𝑡 = 0.2). To obtain the probabilistic distribution as 

illustrated in Fig. 5, the thirty initial buckling mode shapes 

and their associated buckling loads were obtained using 

linear eigenvalue analysis. As the buckling loads of 

different mode shapes are close together, a probability 

distribution investigation was performed to select an 

eigenmode pattern which is more likely to occur during 

buckling analyses. Gaussian (normal) distribution is 

suitable for discrete numbers such as buckling loads. So its 

probability density function is calculated as follows 
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Where, бx is the standard deviation, μx is the mean of 

data and „x‟ is corresponded buckling load in each mode-

shape. 

By considering 30 initial mode shapes and calculation of 

their corresponding бx and μx, probability density function 

of each buckling load can be calculated. The mode shape 

associated with the buckling load with the maximum 

probability density function is the suitable eigenmode 

pattern which should be used in the M-LBMI method. As 

the buckling load of each even and its followed odd mode 

shapes are very close to each other, so only the odd ones are 

presented in Fig. 5. Circles on Fig. 5 are the representative 

of predicted buckling loads of each mode shape. According 

to Fig. 5, eigenmode 23rd has the maximum frequency, thus 

this mode shape is suitable for modeling imperfection 

pattern of the perfect composite cylinder. 

In order to select the appropriate amplitude value for the 

candidate modeshape pattern as the initial imperfection, 
 

 

 

Fig. 5 Probabilistic distribution functions of buckling load 

in different eigenmode patterns 

Table 1 Buckling mode shapes and associated loads 

1st mode 3rd mode 5th mode 7th mode 9th mode 11th mode 13th mode 15th mode 

        

325.55 kN 328.58 kN 329.32 kN 329.49 kN 332.14 kN 334.16 kN 335.98 kN 336.72 kN 

17th mode 19th mode 21st mode 23rd mode 25th mode 27th mode 29th mode  
 

        

338.02 kN 342.16 kN 342.33 kN 342.57 kN 344.94 kN 345.87 kN 346.22 kN  
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Fig. 6 Reaction load-End shortening curve in different 

scaling factors 

 

 

 

Fig. 7 Buckling load at 23rd eigenmode against 

imperfection amplitude ranged from 10 to 20 

percent of thickness 

 

 

experimental results obtained by Degenhardt et al. (2010) 

were used. Fig. 6 shows the reaction load versus end-

shortening response curve in the 23rd eigenmode pattern as 

initial imperfection under different scaling factors. As 

shown in Fig. 6, for scaling factors in the range of 10 to 20 

percent of the wall thickness an abrupt change in the 

reaction load was observed while higher scaling factors 

resulted in smooth behavior after buckling. 

Fig. 7 shows buckling load variations, at a constant 

imperfection given from 23rd mode shape, against 

imperfection amplitude ranged from 10 to 20 percent of 

thickness. Due to safety issue considerations, the value of 

„„small risk of failure” proposed by Franke (1987) was used 

and lower 0.5%-quantiles of the buckling load with scaling 

factor between 10 to 20 percent of thickness was taken as 

buckling load (201.98 kN). 

 

3.2 SPLI method for cylinders without cutout 
 

This type of imperfection was carried out by inserting a 

small amount concentrated load perpendicular to the 

cylinder axis prior to axial loading at the mid length of the 

cylinder. Buckling load is decreased by increasing SPL‟s as 

demonstrated in Fig. 8. By approaching SPL‟s to a certain 

value, the sensitivity of buckling load to SPL decreased and 

after that buckling load remain constant with increasing 

SPL. The corresponding load to this SPL is called P1 and its 

associated axial load is buckling load, N1. 

 

Fig. 8 Buckling load curve in different SPL 

 

 

Fig. 9 shows reaction load against end-shortening curve 

in different SPL‟s. As shown, in SPL‟s ranged from 0 to 

300N, the stiffness of structure up to buckling point was 

almost constant and abruptly changed in buckling moment. 

In SPL‟s between 400 N to 500 N stiffness was constant 

until a local snap-through occurred in structure and caused 

deviation from initial stiffness, after that point reaction load 

was increased until global buckling happened. More than 

SPL about 600 N stiffness of structure would be decreased 

gradually until buckling occurred. The local snap-through 

pattern just before buckling, buckling pattern just after 

buckling and post-buckling pattern, are shown in Figs. 

10(a)-(c), respectively. 

 

 

 

Fig. 9 Detailed reaction load in terms of end shortening in 

different SPL 

 

 

   

(a) Local snap-

through 

(b) After buckling 

moment 

(c) Post-Buckling 

pattern 

Fig. 10 Deformation in different states 
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3.3 Comparison between Modified LBMI and SPLI 
methods for cylinders without cutout 

 

Fig. 11 comprises results obtained from two SPLI and 

M-LBMI methods which are presented in the current 

article. This is evidence that increasing amplitude of 

imperfections would decrease the buckling load predicted 

by two methods, however buckling load predicted by the 

LBMI method is always more conservative than those 

predicted by the SPLI method. This difference between 

results comes from different procedures which are used by 

two methods to define initial imperfections. Fig. 12(a) 

shows imperfections pattern in the overall structure of 

LBMI method and Fig. 12(b) shows perturbed position in 

SPLI method before buckling. In the LBMI method,  

 

 

 

Fig. 11 Knock-down factor for the different amplitude of 

imperfections in SPLI and LBMI methods 
 

 

  

(a) LBMI method (b) SPLI method 

Fig. 12 Imperfections pattern before buckling 
 

 

  

(a) LBMI method (b) SPLI method 

Fig. 13 Buckling pattern just after buckling 
 

Table 2 Predicted buckling load and associated knock-

down factors 

Method Buckling load (kN) KDF 

Linear buckling analysis 325.55 1 

NASA SP-8007 175.79 0.54 

M-LBMI 201.98 0.62 

SPLI 208.35 0.64 
 

 

 

imperfections are applied all over the cylinder body while 

in the SPLI method imperfections are local and applied 

around the perturbation load. Thus imperfections engaged a 

major area of shell in LBMI in comparison to SPLI which 

would result in lower buckling load by the LBMI method. 

Predicted results by the SPLI and the Modified LBMI are 

close together. Figs. 13(a) and (b) show buckling pattern 

just after buckling in Modified LBMI and SPLI methods, 

respectively. Table 2 showed Knock-down factors and 

corresponding buckling loads predicted by Modified LBMI 

and SPLI methods also conservative results of NASA SP-

8007. 

 

 

4. Linear buckling of cylinders with cutout 
 
When a cylindrical shell with a cutout is subjected to an 

axially compressive load, two phenomena are more likely to 

happen, buckling and static damage. Local buckling may 

occur in the body of shell structure without any sign of 

damage or damage may occur in the structure prior to the 

buckling phenomenon. In cylindrical shell with cutout, 

damage may occur prior to buckling in loading gripe area or 

around the cutouts region. In order to prevent premature 

damaging on the edge of loading or around cutouts, 

normally tabbing of the loading edges and stiffening of 

cutouts area are accomplished. Although dominant failure 

mode is depending on different parameters as cutout size 

and shell thickness, buckling of the cylinder is taken as the 

dominant failure mode in the current research. 

In this article, cutouts are modeled with a circular shape 

and located in halfway along the axial length of the 

cylinder. Reinforcing around cutouts is neglected. Damage 

around cutout is not considered as a mode of failure prior to 

buckling. The effects of two geometrical parameters are 

investigated on buckling of a cylindrical shell with a cutout 

as size and number of cutouts. Fig. 14(a) shows circular 

cutouts with different sizes and Fig. 14(b) shows cylinder 

with a different number of cutouts. In this part, linear 

buckling is performed to evaluate the effect of these two 

parameters on buckling load of the cylinder. Worth to 

mention our research is limited to maximum four cutouts so 

presented results in the following subsections may not be 

valid for cylinders with multiple cutouts. 

Local linear buckling behavior of the cylinder with a 

circular cutout is shown in Fig. 15. As illustrated in Fig. 15 

number of cutouts has minor effect on the buckling load of 

the cylinder while the size of the cutouts revealed 

remarkable effects. The sensitivity of the buckling load to 

the cutout size was decreased beyond a certain cutout size. 

562



 

Buckling of axially compressed composite cylinders with geometric imperfections 

 
 

 

Fig. 15 Buckling load with different size and number of 

cutouts 
 
 

 

 

In the following section, Modified LBMI method is 

used to evaluate the effect of size and number of the cutout 

on the buckling load of a cylindrical shell structure. Worth 

to mention, as the non-linear buckling of a cylinder with 

square cutout was investigated previously by Orifici and 

Bisagni (2013), therefore this research is focused solely on 

the cylinder with a circular cutout. 

 

4.1 Modified LBMI method for cylinder with cutout 
 

Eigenmodes extracted by linear buckling analysis for a 

cylindrical shell containing a single circular cutout of 50mm 

diameter are exhibited in Table 3. In contrast to buckling 

load of a perfect cylinder, every mode shape of a cylinder 

with cutout has its corresponding buckling load. Mode 
 

 

    

D = 40 mm D = 60 mm D = 80 mm D = 100 mm 

(a) Size of cutout 
 

    
Single cutout Two-cutout Three-cutout Four-cutout 

(b) Number of cutout 

Fig. 14 Geometrical parameters of cylinders with cutout 

Table 3 Buckling mode shapes in a cylinder with circular cutout and associated buckling load 

1st mode 2nd mode 3rd mode 4th mode 5th mode 6th mode 7th mode 8th mode 

        
157.64 kN 161.12 kN 166.42 kN 216.06 kN 309.27 kN 321.39 kN 325.09 kN 325.57 kN 

9th mode 10th mode 11th mode 12th mode 13th mode 14th mode 15th mode  
 

       

 

328.48 kN 328.95 kN 329.12 kN 329.34 kN 330.8 kN 330.92 kN 332.31 kN  
 

D 
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Fig. 16 Buckling load against different eigenmode patterns 

and scaling factors for a cylinder with a 50 mm 

cutout 

 

 

 

Fig. 17 Stiffness against different eigenmode patterns and 

scaling factors for a cylinder with 50 mm cutout 
 

 

shapes can be classified in two folds, a series of mode 

shapes just consist of deformation around cutouts that 

predict local buckling while the other mode shapes are 

related to global buckling of the cylinder. As shown in Table 

3 first six modes are associated with local buckling and the 

rest are for global buckling. Fig. 16 shows buckling load 

with different imperfections eigenmode pattern at constant 

imperfection magnitude of 𝛿/𝑡 = 0.2, furthermore buckling 

load with various scaling factors at a constant imperfection 

eigenmode pattern of 7th mode (selection of mode shape to 

study the effect of scaling factor was arbitrary). It is worth 

pointing out, as local buckling modes (1 to 6) are related to 

deformations around the cutouts not whole of the cylinder 

so global mode shapes are considered as initial 

imperfections in the M-LBMI method which is introduced 

in the current research. As shown in Fig. 16, imperfection 

patterns selected from mode 1 to 6 that marked with dashed 

line give buckling loads close together while the remaining 

modes result in buckling loads remarkably lower than first 

six eigenmodes. By increasing magnitude of imperfections, 

buckling load was decreased constantly without converging 

to a constant value. Fig. 17 shows stiffness of structure with 

different imperfections eigenmode pattern at a constant 

imperfection magnitude of 𝛿/𝑡 = 0.2, furthermore stiffness 

of structure with imperfections eigenmode pattern given 

from 7th mode against different scaling factor for 50mm 

cutout. Similar to cylinder without cutout, different 

imperfections due to eigenmode patterns resulted in almost 

same stiffness before buckling. Even though stiffness in 

 

Fig. 18 The probabilistic distribution function of 

buckling load for a cylinder with 50 mm cutout 

 

 

 

Fig. 19 Buckling load with imperfection amplitude 

between 10 to 20 percent of thickness and 

eigenmode pattern of 14 
 

 

cylinder with imperfection due to local eigenmode patterns 

(modes 1 to 6) are somewhat higher than imperfections due 

to global eigenmode patterns. As shown in Figs. 16 and 17 

scaling factor has more important effect on buckling 

behavior of perforated cylinder than eigenmode pattern. 

As discussed in previous section, a stochastic procedure 

is used to select the suitable mode shape pattern as the 

initial imperfection for non-linear analysis of the perforated 

cylinder. In Fig. 18 probabilistic density function is drawn 

for different buckling load from global eigenmode patterns 

(modes 7 to 15). The maximum frequency in predicting 

buckling load is related to mode shape number 14th, which 

will be used as imperfection pattern to predict the buckling 

load of the cylinder with a cutout in Modified LBMI 

method. 

Fig. 19 shows the buckling load with imperfections 

amplitude ranged from 10 to 20 percent of thickness at 14th 

mode shape. For lowest risk in buckling load prediction, 

lower 0.5%-quantiles of buckling load with scaling factor 

between 10 to 20 percent of thickness was taken as buckling 

load (175.33 kN). 

Modified LBMI method was employed to evaluate the 

combination effect of cutout numbers and size on the 

buckling load. It was shown in Fig. 20 that in small cutouts, 

increasing cutout size up to a certain value resulted in a 

remarkable reduction of the buckling load, beyond that limit 

buckling load were constant against D/R ratios. Moreover, 

the cutout number had a major effect on decreasing of the 

buckling load at small D/R ratios than large D/R ratios 
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Fig. 20 Buckling load against different D/R ratios 

for 1-4 cutouts 
 

 

based on our observation for 1 to 4 cutouts and the specific 

cylinder under question. 
 

4.2 SPLI method for cylinder with cutout 
 

Orifisi and Bisagni (2013) examined buckling of 

composite cylindrical shells with square shape cutouts by 

using the SPLI method. In this article cutouts with circular 

shape are investigated by SPLI method and results are 

compared with Modified LBMI method. In order to 

evaluate the effect of horizontal perturbation load location 

on the buckling load, two points as “A” far away from 

cutout and “B” on the edge of cutout was selected as shown 

in Fig. 21. 

 

 

Fig. 21 Local of applying perturbation load, “A” far away 

from the cutout, “B” on the edge of the cutout 
 

 

 

Fig. 22 Buckling load in SPLI method for a cylinder with 

cutout diameter of 50 mm 

 

 

Fig. 23 Buckling load against D/R ratios of the cylinder 

 

 

Fig. 22 illustrated buckling load predicted by SPLI 

method for the different position of initial perturbation as 

on the edge of the cutout and far from it. Buckling load with 

perturbation load on the edge of cutout converged to 175.11 

kN while for perturbation load far away from cutout 

converged to 177.12 kN. Both results are near to predicted 

buckling load by a nonlinear method without considering 

perturbation. However, since instability initiation is around 

the cutout so perturbation on the edge of the hole gives 

lower buckling load than perturbation far away from the 

hole. The predicted buckling load with perturbation on the 

edge of the cutout (175.11 kN) could be a conservative 

selection. 

 

4.3 Combination effect of cutouts and geometric 
imperfections on the buckling load 

 

Buckling loads are predicted for a cylinder with various 

cutout diameters using different methods. As cutout on the 

cylinder act as an imperfection, so its effect was 

investigated separately using nonlinear methods and results 

are compared with predicted results using both LBMI and 

SPLI methods. Fig. 23 shows the buckling load against 

different cutout diameter to the radius of cylinder ratio 

(D/R) using different methods. Circular symbols in Fig. 23 

illustrate the effect of the cutout on the buckling load 

without considering any other geometrical imperfections. 

Square and triangle symbols, in Fig. 23, are corresponding 

to the buckling loads predicted by the Modified LBMI and 

SPLI methods, respectively. As depicted in Fig. 23 for small 

cutouts the effect of the cutout and geometrical 

imperfections are important and should be considered in 

buckling load calculations, while for the larger cutouts 

geometrical imperfections have an ignorable effect and 

nonlinear solution gives acceptable results. 

 

 

5. Conclusions 
 

An investigation on the buckling of composite 

cylindrical shells with and without cutout was performed 

with using linear buckling mode shape imperfection 

(LBMI) and simple perturbation load imperfection (SPLI) 

approaches. A modification was suggested to enhance the 
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ability of LBMI method to predict the critical buckling load 

of thin-walled cylindrical shell structures. As the linear 

buckling loads of composite cylindrical shells were very 

close to each other, so a stochastic approach was developed 

to select the eigenmode pattern with the maximum 

frequency in the probability density function chart. The 

predicted results with using the modified LBMI method 

were compared with results of SPLI method to assess the 

ability of M-LBMI method. The results of the SPLI and 

Modified LBMI methods in cylindrical shells without 

cutout were close together but higher than the buckling load 

predicted by the linear buckling analysis modified by 

NASA SP-8007 knockdown factors. In the second part of 

the current manuscript, buckling loads of the perforated 

cylindrical shells was investigated by considering the 

effects of imperfection pattern, size and number of cutouts 

on the cylinder‟s body. The results obtained by both of the 

SPLI and Modified LBMI methods revealed that 

considering geometrical imperfection in the buckling 

analysis resulted in a significant decrease in the value of the 

predicted buckling load in cylindrical shells with small 

cutouts. However, in cylinders with larger cutouts, the 

effect of the cutout is dominant. So considering geometrical 

imperfection had a minor effect on the buckling load 

predicted by both of the SPLI and modified LBMI methods. 

Moreover, Modified LBMI method was employed to 

evaluate the combination effect of cutout numbers and size 

on the buckling load. It was shown that in small cutouts, 

increasing cutout size up to a certain value resulted in a 

remarkable reduction of the buckling load, beyond that limit 

the buckling loads were constant against D/R ratios. 

Moreover, cutout number had more effect on decreasing of 

the buckling load at small D/R ratios than large D/R ratios. 
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