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1. Introduction 

 

Concrete-filled tubular (CFT) columns are used 

increasingly in many engineering fields. Due to the 

availability of high strength materials, thin-walled steel 

tubes are becoming more popular (Qin et al. 2016). The 

relatively low stiffness of thin-walled tube leads to the local 

instability of steel plate when subjected to combined 

bending and compression (Liu et al. 2018). Meanwhile, 

square steel tubes are increasingly used as bracings in 

earthquakes-resisting structures. The buckling in the 

compression range of the bracing significantly reduces the 

energy dissipating capacity of the structures. Infill materials 

like concrete may be used as filler to form the buckling 

restrained braces, which prevent the buckling of steel plate 

inwards and thus, improve the structural behavior (Gheidi et 

al. 2011, Mirtaheri et al. 2018). Furthermore, progressive 

collapse, which causes significant loss of property and life, 

has been one of the most important issues in civil 

engineering and has been interested by civil engineers. 

Local buckling of structural members may be distributed 

through entire structure and lead to progressive collapse 

(Mirtaheri and Zoghi 2016). Therefore, the consideration 

for local buckling is essential for efficient and reliable 

design of different structural components. In general, the 

investigation on local buckling of steel tube is conducted by 
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modelling the web plate and flange plate individually and 

considering the adjacent plates as boundary supports. In this 

way, each component is modelled as a steel plate with 

different boundary conditions and subjected to combined 

bending and compression. 

A number of research have been conducted on the local 

buckling of plates under different loadings and with varying 

edge restraints. Qiao et al. (2013) studied the case of 

composite plate with two opposite edges simply-supported 

and the other two opposite edges either both rotationally 

restrained or one rotationally restrained and the other free 

and subjected to combined linearly varying axial and in-

plane shear loading. Villarreal and Abajo (2018) described a 

theoretical approach for the buckling analysis of 

rotationally restrained orthotropic plates. Recently, Klouche 

et al. (2017) and Dong et al. (2017) proposed an analytical 

method to obtain the shear buckling coefficient of thick 

isotropic plate and symmetrically laminated composite 

plate, respectively. Liu et al. (2017) studied the local 

buckling behavior of extreme thick-walled cold-formed 

square steel tube. Abbasi et al. (2018) used compound strip 

method to the buckling analysis of steel with discrete 

fasteners. Burgos et al. (2018) focused on the buckling of 

horizontal steel tanks supported on discrete saddles under 

pressure. Yerudkar and Vesmawala (2018) investigated the 

buckling performance of cold-formed steel laterally braced 

stiffened C and Z section members under combined bending 

and torsion. 

Meanwhile, the plate contact buckling theory has been 

studied by some researchers. De Holanda and Gonçalves 

 
 
 

Buckling analysis of elastically-restrained steel plates 
under eccentric compression 

 

Ying Qin 1,2, Gan-Ping Shu 1, Er-Feng Du 1 and Rui-Hua Lu 1 
 

1
 Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, 

and National Prestress Engineering Research Center, School of Civil Engineering, Southeast University, Nanjing, China 
2
 State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou, China 

 
 

(Received May 27, 2018, Revised September 30, 2018, Accepted October 23, 2018) 

 
Abstract.  In this research, the explicit closed-form local buckling solution of steel plates in contact with concrete, with both 

loaded and unloaded edges elastically restrained against rotation and subjected to eccentric compression is presented. The 

Rayleigh-Rize approach is applied to establish the eigenvalue problem for the local buckling performance. Buckling shape 

which combines trigonometric and biquadratic functions is introduced according to that used by Qin et al. (2017) on steel plate 

buckling under uniform compression. Explicit solutions for predicting the local buckling stress of steel plate are obtained in 

terms of the rotational stiffness. Based on different boundary conditions, simply yet explicit local buckling solutions are 

discussed in details. The proposed formulas are validated against previous research and finite element results. The influences of 

the loading stress gradient parameter, the aspect ratio, and the rotational stiffness on the local buckling stress resultants of steel 

plates with different boundary conditions were evaluated. This work can be considered as an alternative to apply a different 

buckling shape function to study the buckling problem of steel plate under eccentric compression comparing to the work by Qin 

et al. (2018), and the results are found to be in consistent with those in Qin et al. (2018). 
 

Keywords:  explicit analysis; local buckling; rotationally restrained; combined compression and bending; steel plate 

 

379



 

Ying Qin, Gan-Ping Shu, Er-Feng Du and Rui-Hua Lu 

(2003) investigated the buckling and large deflection post-

buckling performance of plates laterally constrained by a 

tensionless foundation and subjected to in-plane 

compressive forces. Shen and Li (2004) studied the post-

buckling responses of shear deformable laminated plates 

supported by a tensionless elastic foundation and under in-

plane compressive edge loads or a uniform temperature rise. 

Li et al. (2016) evaluated the end condition effect through 

the buckling analysis of finite length plates with various 

boundary conditions resting on an elastic foundation. 

Naghsh et al. (2018) performed thermal buckling analysis 

of point-supported thin laminated composite plates. Dong et 

al. (2018) investigated the buckling performance of a long 

thin orthotropic plate on a tensionless rigid foundation 

under combined in-plane shear and bending. 

In contrast to extensive research on the closed-formed 

exact solutions for the local buckling of steel plates, most 

studies on local buckling of steel plates in contact with 

concrete are based on numerical approaches. Uy and 

Bradford (1996) used a finite strip method to evaluate the 

elastic local buckling performance of steel plates in 

composite steel-concrete members. Patton and Singh (2017) 

investigated the buckling behavior of fixed-ended concrete-

filled tubular columns through finite element analysis. 

Furthermore, closed-formed exact solutions for the local 

buckling of steel plates in contact with concrete are quite 

limited. Long et al. (2016) investigated the local buckling 

of steel plates in concrete-filled steel tubular columns 

subjected to eccentric compression and with clamped 

loaded edges. Qin et al. (2017) provided analytical solutions 

for the critical buckling stress for steel plates in concrete-

filled tubular columns subjected to uniform compression 

and with elastically-restrained four edges. The shape 

function was constructed by a combine sine and cosine 

function in the x direction and a biquadratic function in the 

y direction. In addition, Qin et al. (2018) studied the 

buckling of steel plates in composite structures under 

combined bending and compression with the buckling 

shape function of combined sinusoidal and cosine functions 

along both x- and y-directions. The research in this paper 

can be regarded as an extension to work by Qin et al. 

(2017) to employ the buckling shape in Qin et al. (2017) to 

the case of steel plates under eccentric compression and an 

alternative to study in Qin et al. (2018) by applying a 

different buckling shape function. 

For a CFT column in real project, it generally bears both 

axial compression and bending moment, as shown in Fig. 1. 

The pure compression plus pure bending on the steel plate 

can be considered as eccentric compression. The four edges 

of the steel plate are restrained against rotation, to some 

extent, by the adjacent plates. 

As the boundary condition of steel plate is largely 

determined by the stiffness of adjacent plate field, it is 

expected that the four edges of the steel plate in CFT 

column is restrained from rotation by the adjacent plate 

fields and infilled concrete. However, the degree of restraint 

is not complete since the steel plate fields are normally not 

stiff enough to form the clamped boundary. Therefore, it is 

more appropriate to assume the steel plates are elastically 

restrained along both loaded and unloaded edges (Qin et al. 

2017, 2018). For steel plates with this more realistic 

boundary conditions, the local buckling problem can be 

solved by the finite element method (Thai et al. 2017, Fang 

et al. 2017). Although the finite element techniques are 

capable of capturing a variety of nonclassical cases with 

various degree of flexibility along the steel plate edges, it is 

time consuming and tedious for general use by structural 

engineers. 

In this research, the buckling shape function, which was 

proposed by Qin et al. (2017) to study the case of steel plate 

under uniform compression, was introduced to reflect the 

steel plate in rigid contact with concrete while elastically 

restrained along four edges. Furthermore, the hand 

calculation method for steel plate under eccentric 

compression was derived to exclude the needs for 

complicated numerical simulations as used by previous 

research. 

The formulation of energy method is first presented, 

followed by explicitly capturing the critical local buckling 

load under combined bending and compression using the 

Rayleigh-Ritz method, which resembles the methods by Qin 

et al. (2017) and Qin et al. (2018). The buckling shape 

function for the elastically restrained steel plates is 

constructed by combining trigonometric and biquadratic 

functions as used by Qin et al. (2017). Several special cases 

are simplified from the general solutions, and their local 

buckling coefficients are compared with both the available 

solutions and the finite element eigenvalue solutions, thus 

validating the accuracy of the proposed explicit analytical 

formulas. A parametric study is then conducted to evaluate 

the effects of the loading stress gradient parameter, the 

 

 

 

Fig. 1 Elastically restrained steel plates under combined 

bending and compression 
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aspect ratio, and the rotational restraint stiffness on the local 

buckling stress of elastically restrained steel plates. This 

work can be considered as the effort to use a different 

buckling shape function comparing to that in Qin et al. 

(2018) to investigate the local buckling of steel plate in 

composite structures under eccentric compression. 

 

 

2. Analytical formulation 
 

2.1 Formulation for elastically-restrained steel 
plates 

 

This section offers the basic formulation for steel plates 

with elastic restraint along four edges. It should be noted 

that the knowledge in this section can be found in many 

textbooks regarding plate buckling or in references such as 

Qiao et al. (2013), Qin et al. (2017, 2018), and Dong et al. 

(2018). The brief formulation was provided below for the 

readers’ convenience and the readers could refer to the 

references mentioned above for detailed information. 

The total potential energy of the steel plate system Π is 

given as Eq. (1). 

 

U V U   
 (1) 

 

where U is the elastic strain energy stored in the deformed 

steel plate as given by Eq. (2); UΓ is the restraining energy 

stored in the rotational springs along the loaded and 

unloaded edges as shown in Eq. (4), V is the work done by 

the external bending and compression as expressed by Eq. 

(5). 

 
22 2

2 2

22 2 2

2 2

2 1

2

w w

x yD
U dxdy

w w w

x yx y


   

    
   

  
     

          

W

 

(2) 

 

 

3

212 1

Et
D





 

(3) 

 

𝑈𝛤 =
1

2
 𝑘𝑦  

𝜕𝑤

𝜕𝑦
 𝑦=0 

2

Γ𝑥

𝑑𝑥 +
1

2
 𝑘𝑦  

𝜕𝑤

𝜕𝑦
 𝑦=𝑏 

2

Γ𝑥

𝑑𝑥 

+
1

2
 𝑘𝑥  

𝜕𝑤

𝜕𝑥
 𝑥=0 

2

Γ𝑦

𝑑𝑦 +
1

2
 𝑘𝑥  

𝜕𝑤

𝜕𝑥
 𝑥=𝑎 

2

Γ𝑦

𝑑𝑦 

(4) 

 
2

1

2
x

w
V N dxdy

x

 
  

 
W

 

(5) 

 

where W is the area of the steel plate; v is the Poisson’s ratio 

and can be taken as 0.3; w is the buckling shape for the steel 

plate; E is the elastic modulus of steel; t is the thickness of 

steel plate; kx, ky are the elastic rotational stiffness of springs 

at the loaded edges and unloaded edges, respectively; Γx, Γy 

are the boundary lines along the unloaded edges (y = 0 and 

y = a) and loaded edges (x = 0 and x = b), respectively; Nx = 

σxt is the axial load per unit length at the boundary line 

along the loaded edges. The stress distribution along the x-

direction is shown in Fig. 1 and can be given by Eq. (6). 
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where ς is the loading stress gradient parameter along the y-

direction and is given by Eq. (7). It should be noted that 0 < 

ς < 1 represents the case that the steel plate is under 

combined in-plane bending and compression, as the plate is 

subjected to linearly varying axial edge loads. 
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By choosing the appropriate out-of-displacement 

buckling shape and substituting it into Eqs. (2), (4), and (5) 

and the corresponding results into Eq. (1), the buckling 

eigenvalue problem can be obtained by Rayleigh-Rize 

method. 
 

2.2 Buckling shape for the plate 
 

An adequate approach for the out-of-plane buckling 

shape function w should satisfy both boundary and load 

conditions. For steel plate elastically restrained against 

rotation at both loaded and unloaded edges, the boundary 

conditions should meet the requirements given by Eq. (8) 

(Qin et al. 2017, 2018). 
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On the other hand, for steel plate in contact with 

concrete, the plate can only buckle outwards. This means 

the value of w should be no less than zero in any cases. 

Furthermore, due to the applied loading of eccentric 

compression at x = 0 and x = a, the buckling shape should 

exhibit the symmetry properties about straight line x = 0.5a 

while show the asymmetry behavior about y = 0.5b. 

In CFT columns, the infilled concrete is regarded as the 

rigid material to be in contact with the steel plate (Wright 

1993). Therefore, the steel plate can be considered to be 

resting on a rigid foundation. According to the research by 

Ma et al. (2008), a single half-wave buckling model 
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(a) ω = 0 
 

 

(b) ω = 1 
 

 

(c) 0 < ω < 1 

Fig. 2 Buckling shapes with different ω values 

 

 

along the x-direction is appropriate. Therefore, it is assumed 

that in the x-direction the combination of weighted 

sinusoidal function and cosine function describes the 

buckling shape, while in the y-direction a biquadratic 

function is applied, which can be expressed as Eq. (9). It 

should be noted that this type of shape function has been 

used by Qin et al. (2017) to deal with steel plate under 

uniform compression. The research in this paper extends the 

application of this equation to the case of steel plate under 

combined bending and compression. In addition, the 

buckling shape function with combined sinusoidal and 

cosine functions along both x- and y-directions has been 

used by Qin et al. (2018) to investigate the same problem. It 

will be seen from the discussion in Section 3 that, the 

application of buckling shape function in this research 

generates similar and consistent results to those by Qin et 

al. (2018), which indirectly verifies the accuracy of the used 

shape function. 

It should also be noted that a double series of simple 

sin-functions along both x and y directions is commonly 

used by many researchers in previous studies. However, this 

generally-adopted function is too complicated with many 

unknown parameters to obtain the explicit solution. 

Furthermore, this function cannot meet the deformation 

requirement for steel plates in composite structures. 
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where C is a constant, and ϕ1, ϕ2, ϕ3 and ω are the constants 

to be determined which should satisfy both the boundary 

conditions and the requirement of compatibility. By 

choosing proper value of ω, the buckling function exhibits 

reasonable shape to reflect the elastic restraint along loaded 

edges, as shown in Fig. 2. 

It can be observed that the shape function specified in 

Eq. (9) exactly satisfies the boundary conditions given in 

Eq. (8a). Substituting the first-order partial derivative and 

the second-order partial derivative of Eq. (9) with respect to 

x into Eq. (8b) or (8c) gives the weight constant ω in terms 

of the rotational stiffness of the elastic restraint (kx) along 

the loaded edges 
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Similarly, substituting the derivative function of Eq. (9) 

with respective to y into Eqs. (8d)-(8f), the unknown 

constants ϕ1, ϕ2, and ϕ3 can be solved in terms of the elastic 

rotational restraint stiffness (ky) along the two opposite 

unloaded edges as shown in Eq. (11). 

It can be observed that the change in the loading 

condition from uniform compression in Qin et al. (2017) to 

eccentric compression in this research does not change the 

expression of ω, ϕ1, ϕ2, and ϕ3. 
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Substituting Eq. (9) into Eqs. (2), (4), and (5) and 

integrating gives Eqs. (12a)-(12c). The commercial 

software MATLAB was used to solve this problem for time-

saving, though the mathematical derivation can be 

completed by hand calculation. 
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where A1, A2, A3, A4, A5, A6, A7, B1, B2, B3, B4, and B5 are 

defined as 
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It can be observed that the main differences for 

equations between the cases of uniform compression in Qin 

et al. (2017) and eccentric compression in this research lie 

in the change of expression of V when comparing to Qin et 

al. (2017). 

2.3 Explicit solution 
 

The method to obtain the explicit solution of steel plate 

under eccentric compression assembles the methods used 

by Qin et al. (2017, 2018). Inserting Eqs. (12a)-(12c) into 

Eq. (1) leads to the following explicit expression for the 

total potential energy of the steel plate 
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(14) 

 

The fundamental relation that governs the buckling 

shape of the steel plate states that the first-order derivative 

of the potential energy P in the buckled state has to vanish 

 

0
C






P

 
(15) 

 

Inserting Eq. (14) into Eq. (15) and rearranging leads to 

the following governing equation for the critical buckling 

stress 
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(16) 

 

where γ is the aspect ratio and is defined as γ = a/b; k is the 

elastic local buckling coefficient of the steel plate as given 

in Eq. (17); λx and λy are the elastically restraining factors of 

loaded and unloaded edges, respectively, as defined in Eqs. 

(18a)-(18b). 
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(17) 

 

2
x

x

k a

D
 

 
(18a) 

 

2
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(18b) 

 

The value of the critical elastic local buckling 

coefficient kcr can be obtained by taking a partial derivative 

of Eq. (17) with respect to γ and setting the derivative equal 
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to zero. The corresponding critical aspect ratio γcr can be 

calculated by 

 
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(19) 

 

Inserting Eq. (19) into Eq. (17), the critical elastic local 

buckling coefficient kcr can be determined. Then the critical 

local buckling stress of steel plate σcr is calculated by 

substituting kcr and D into Eq. (16) as 
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(20) 

 

 

3. Verification 
 

In order to verify the proposed explicit solutions, two 

different approaches were used. Explicit solutions and 

numerical results by other researchers in the literature, and 

finite element results obtained by the commercial program 

ANSYS are compared in this section. The details of the 

finite element models could be referred to Qin et al. (2018). 

The brief information was listed below. The material 

properties of the steel plates considered are: E = 2.06×105 

N/mm2, v = 0.3. In the modelling herein, the steel plate was 

modelled by the 8-node shell elements SHELL93, and the 

concrete was modelled by the 8-node solid structural 

elements SOLID65. The interface between steel plate and 

concrete was simulated by creating contact pairs with the 3-

D target surface elements TARGE170 and the 3-D 8-node 

surface-to-surface contact elements CONTA174. The 

rotational restraints were modelled by a series of spring 

 

 

elements COMBIN14 connected to the nodes along the 

edges of steel plate. 
 

3.1 Boundary condition 1: Clamped loaded edges 
and simply-supported unloaded edges (CS) 

 

The steel plate with clamped loaded and simply-

supported unloaded edges is represented by CS steel plate. 

The boundary condition of clamped loaded edges at x = 0 

and a corresponds to ω = 1, while that of simple supported 

unloaded edges at y = 0 and b corresponds to λy = 0. The 

value of critical aspect ratio γcr = 1.52 can then be obtained 

by Eq. (19). Substituting γcr = 1.52 into Eq. (17) gives the 

value of critical local buckling coefficient kcr as 
 

5.467

1 0.5
crk




  
(21) 

 

Particularly, ς = 0 leads to kcr = 5.467. This case is 

reduced to the research in Qin et al. (2017) and corresponds 

to the loading condition that the steel plate is subjected to 

uniform compression. This results is close to kcr = 5.6 

proposed by Uy and Bradford (1996) based on finite strip 

method, and kcr = 5.06 given by Qin et al. (2018) according 

to the application of a different shape function. 

For steel plate with different value of ς, the buckled 

shapes of a square steel plate with the aspect ratio γ = 1 

obtained by the finite element simulations are shown in Fig. 

3. The width and thickness of the steel plate are b = 100 mm 

and t = 1 mm, respectively. A comparison between the 

proposed explicit and finite element eigenvalue solutions is 

given in Table 1 and Fig. 4(a). 

As indicated in Table 1 and Fig. 4(a), the explicit results 

agree well with the finite element results for the plates with 

   

(a) ς = 0 (b) ς = 0.2 (c) ς = 0.4 
 

   

(d) ς = 0.6 (e) ς = 0.8 (f) ς = 1.0 

Fig. 3 Buckling shapes with different ω values 
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Table 1 Comparison of local buckling stress for CS steel 

plate 

ς 
Explicit FE Exp/FE 

ς 
Explicit FE Exp/FE 

N/mm2
 

N/mm2
 

 N/mm2
 

N/mm2
 

 

0 125.09 126.15 0.99 0.1 131.67 132.78 0.99 

0.2 138.99 140.15 0.99 0.3 147.16 148.38 0.99 

0.4 156.36 157.58 0.99 0.5 166.79 167.99 0.99 

0.6 178.70 179.82 0.99 0.7 192.45 193.33 1.00 

0.8 208.48 209.11 1.00 0.9 227.44 227.50 1.00 

1.0 250.18 249.30 1.00     
 

 

 

clamped loaded edges and simply-supported unloaded 

edges. The maximum difference is about 0.84% between 

the finite element eigenvalue and the explicit solutions. 

 

3.2 Boundary condition 2: Clamped loaded and 
unloaded edges (CC) 

 

The steel plate with clamped both loaded and unloaded 

edges is represented by CC steel plate. The boundary 

condition of clamped loaded edges at x = 0 and a 

corresponds to ω = 1, while that of clamped unloaded edges 

at y = 0 and b corresponds to ky → ∞. The value of critical 

aspect ratio γcr = 1.0 can then be obtained by Eq. (19). 

Substituting γcr = 1.0 into Eq. (17) gives the value of critical 

local buckling coefficient kcr as 

 

10.31

1 0.5
crk




  
(22) 

 

 

 

Fig. 5 Typical buckled shape of steel plate with clamped 

loaded and unloaded edges 
 

 

Particularly, ς = 0 reduces to the case studied by Qin et 

al. (2017) and means the steel plate is under uniform 

compression. It leads to kcr = 10.31. This results is close to 

kcr = 10.12 by Qin et al. (2018) based on a different 

function shape, kcr = 10.31 proposed by Uy and Bradford 

(1996), and kcr = 10.312 suggested by Long et al. (2016). 

The typical buckled shape of a square steel plate with all 

edges clamped is obtained by the finite element method and 

is illustrated in Fig. 5. For square steel plate (b = 100 mm 

and t = 1 mm) with different values of ς, a comparison 

between the proposed explicit and finite element eigenvalue 

solutions is given in Table 2 and Fig. 4(b). 

It can be observed from Table 2 and Fig. 4(b) that, in 

general, the formulas proposed has good accuracy with the 

numerical solutions. The ratios of the predicted explicit 

solutions to the numerical ones range from 1.08 to 1.10 with 

a mean of 1.08 and a standard deviation of 0.002. These 

values closely correspond. 

 

 

   

(a) For CS steel plate (b) For CC steel plate (c) For CK steel plate 
 

  

(d) ς = 0.6 (e) ς = 0.8 

Fig. 4 Comparison of local buckling stress 
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Table 2 Comparison of local buckling stress for CC steel 

plates 

ς 
Explicit FE Exp/FE 

ς 
Explicit FE Exp/FE 

N/mm2
 

N/mm2
 

 N/mm2
 

N/mm2
 

 

0 191.07 176.73 1.08 0.1 201.12 186.02 1.08 

0.2 212.30 196.31 1.08 0.3 224.78 207.77 1.08 

0.4 238.83 220.64 1.08 0.5 254.75 235.20 1.08 

0.6 272.95 251.73 1.08 0.7 239.95 270.66 1.09 

0.8 318.44 292.49 1.09 0.9 347.39 318.04 1.09 

1.0 382.13 348.11 1.10     
 

 

 

Table 3 Comparison of local buckling stress for CK steel 

plate 

ς 
Explicit FE Exp/FE 

ς 
Explicit FE Exp/FE 

N/mm2
 

N/mm2
 

 N/mm2
 

N/mm2
 

 

0 169.44 166.44 1.02 0.1 178.36 175.21 1.02 

0.2 188.27 184.90 1.02 0.3 199.34 195.69 1.02 

0.4 211.80 207.81 1.02 0.5 225.92 221.52 1.02 

0.6 242.06 237.09 1.02 0.7 260.68 254.91 1.02 

0.8 282.40 275.47 1.03 0.9 308.08 299.49 1.03 

1.0 388.88 327.84 1.03     
 

 

 

3.3 Boundary condition 3: Elastically restrained two 
opposite edges 

 

Normally, the restraint at the loaded edges is stiffer than 

that along the unloaded edges. Therefore, another two 

common cases usually applied are: (1) the steel plate is 

clamped at the loaded edges while elastically restrained 

along the unloaded edges (CK steel plate); (2) the steel plate 

is elastically restrained at the loaded edges and simply-

supported along the unloaded edges (KS steel plate). 

Finite element simulation was conducted by commercial 

program ANSYS. The standard springs connecting the 

boundary nodes to “rigid” support in different directions are 

chosen for the rotational restraining springs. The elastic 

rotational stiffness of springs is set as 40000 N·mm/mm. 

For the steel plate with clamped loaded edges and 

elastically restrained unloaded edges (CK steel plate), the 

comparison between the proposed explicit and finite 

element eigenvalue solutions is given in Table 3 and Fig. 

4(c). The averaged ratio of explicit solutions to finite 

element results is 1.02 and the standard deviation is 0.005. 

For the steel plate with elastically restrained loaded 

edges and simply-supported unloaded edges (KS steel 

plate), the comparison between the proposed explicit and 

finite element eigenvalue solutions is given in Table 4 and 

Fig. 4(d). The averaged ratio of explicit solutions to finite 

element results is 0.96 and the standard deviation is 0.007. 
 

3.4 Boundary condition 4: Elastically restrained 
along both loaded and unloaded edges (KK) 

 

In order to verify the accuracy of the present explicit 

solution for steel plate with elastic restraints along four 

Table 4 Comparison of local buckling stress for KS steel 

plate 

ς 
Explicit FE Exp/FE 

ς 
Explicit FE Exp/FE 

N/mm2
 

N/mm2
 

 N/mm2
 

N/mm2
 

 

0 110.67 114.80 0.96 0.1 116.49 120.86 0.96 

0.2 122.96 127.52 0.96 0.3 130.19 134.98 0.96 

0.4 138.33 143.38 0.96 0.5 147.55 152.91 0.96 

0.6 158.09 163.64 0.97 0.7 170.25 176.09 0.97 

0.8 184.44 190.43 0.97 0.9 201.21 207.21 0.97 

1.0 221.33 227.16 0.97     
 

 

 

Table 5 Comparison of local buckling stress for KK steel 

plate 

ς 
Explicit FE Exp/FE 

ς 
Explicit FE Exp/FE 

N/mm2
 

N/mm2
 

 N/mm2
 

N/mm2
 

 

0 152.67 154.90 0.99 0.1 160.70 163.06 0.99 

0.2 169.63 172.08 0.99 0.3 179.61 182.17 0.99 

0.4 190.83 193.46 0.99 0.5 203.55 206.21 0.99 

0.6 218.09 220.71 0.99 0.7 234.87 237.27 0.99 

0.8 254.44 256.53 0.99 0.9 277.57 278.82 1.00 

1.0 305.33 305.30 1.00     
 

 

 

edges, eleven finite element models were established with 

the same material properties and geometry size of steel 

plate as described in the sections above. The elastic 

rotational springs of both loaded and unloaded edges were 

chosen as 20000 N·mm/mm. As indicated in Table 5 and 

Fig. 4(e), the present solutions of critical stress resultants 

compare closely with finite element eigenvalue analytical 

results. It can also be concluded that the present explicit 

solution is highly accurate and can be used with confidence 

in local buckling analysis. 
 
 

4. Design recommendation 
 

The model presented in this paper is based, for most 

part, on sound engineering principles. It is important, 

though, to stress at this point that simplifications and 

assumptions should be made to both reduce the model’s 

complexity to a reasonable level and contribute for practical 

design. 

For a more general case where the CFT column is under 

combined bending and axial compression in practical 

engineering application, it is of significance to determine 

the values of kx and ky to obtain the explicit solution for 

steel plates with both loaded and unloaded edges elastically 

restrained. Normally the loaded edges of the steel plate can 

be regarded as be clamped while the unloaded edges is 

more exactly to consider elastically rotationally restraint, 

i.e., it can be assumed that kx → ∞. In this case and 

referring back to Eq. (17), the most important issue to deal 

with is to find out the most suitable solutions for λy. Based 

on the research by Bleich and Qin et al. (2017), modified 

equations to predict the elastically restraining factor for 
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steel plate in concrete filled tubular columns are given in 

Eqs. (23)-(25) (Qin et al. 2017). 

 
3

w
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t
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where bf and tf are the width and thickness of the calculated 

steel plate, respectively; bw and tw are the width and 

thickness of the adjacent steel plate, respectively. βr = 0.5 is 

 

 

 

Fig. 6 Relationship between local buckling stress and 

loading stress gradient parameter 

 

 

the reduction factor used for considering the beneficial 

restraining effects offered by concrete. 

The simplification and assumption made in this section 

should be verified by test results. However, there is a dearth 

of information for experimental data of local buckling of 

steel plates under combined bending and compression. 

Therefore, the test data of local buckling of CFT columns 

under axial compression (ς = 0) from Uy (2001) and Mo et 

al. (2004) are compared with the calculated ones by the 

proposed model, as an indirect way to calibrate the 

proposed theoretical model. The comparison results are 

given in Table 1 of Qin et al. (2017). 

 

 

5. Parametric study 
 

As can be observed from Eq. (17), the explicit critical 

local buckling coefficient is a function of the loading stress 

gradient parameter ς, the aspect ratio γ, and the rotational 

restraint stiffness kx and ky. A parametric study is conducted 

to evaluate the effects of these three parameters on the local 

buckling stress resultants of steel plates. 

 

5.1 Loading stress gradient parameter ς 
 

The relationship between the local buckling stress and 

the loading stress gradient parameter is plotted in Fig. 6. For 

a fixed aspect ratio γ = 1.0, as expected, the steel plate with 

elastically restrained loaded edges and simply-supported 

unloaded edges (KS) has the lowest local buckling stress, 

while the steel plate with clamped both loaded and 

unloaded edges has the highest one. The minimum value of 

the local bucking stress of steel plate with different 
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Fig. 8 Relationship between local buckling stress and 

rotational stiffness 
 

 

boundary conditions can be obtained when the loading 

stress gradient parameter ς = 0. This indicates that the 

square steel plate is more vulnerable to local buckling when 

it is subjected to uniform axial compression, which is 

consistent to the conclusion by Qin et al. (2018). 
 

5.2 Aspect ratio γ 
 

The relationship between the local buckling stress of 

steel plate with different boundary conditions and the aspect 

ratio is plotted in Fig. 7. The buckling stress of CS steel 

plate reaches the minimum value when the aspect ratio 

approaches 1.5 as shown in Fig. 7(a), while for CC steel 

plate, the minimum value of buckling stress is reached 

when the aspect ratio approaches 1.0, as indicated in Fig. 

7(b). Furthermore, the steel plates under eccentric 

compression (ς = 1.0) are slightly more sensitive to the 

change of the aspect ratio than under uniform compression 

(ς = 0). 
 

5.3 Rotational restraint stiffness kx and ky 
 

The buckling stress are plotted with respect to the 

rotational stiffness (kx = ky) in Fig. 8, for a given aspect ratio 

γ = 1.0. As expected, the buckling stress of the square steel 

plates increases with the growth of the rotational stiffness. 

The buckling stress is almost proportional to the rotational 

stiffness when the rotational stiffness is low. On the other 

hand, when the rotational stiffness becomes relatively large 

(close to the clamped boundary), the influence of the 

increase in the rotation stiffness on the buckling stress is 

negligible. Furthermore, the steel plate with ς = 1.0 is the 

most sensitive to the change of the rotational stiffness, 

while the steel plate subjected to uniform compression (ς = 

0) is the least sensitive to be influenced by the change of the 

rotational stiffness. 
 

 

6. Conclusions 
 

In this study, Rayleigh-Rize approach, which assembles 

the method used by Qin et al. (2017, 2018), is used to 

establish the eigenvalue problem for the local buckling 

behavior of steel plates elastically restrained along its four 

edges and subjected to combined bending and compression. 

Buckling shape functions combining trigonometric and 

biquadratic functions, which have been used by Qin et al. 

(2017) to study the case of uniform compression, are 

introduced to obtain the explicit solution. The derived 

solutions for steel plates with elastically restrained edges 

are simplified to several special cases based on the different 

edge restraining conditions (e.g., simply-supported, 

clamped, or rotationally restrained). Validity of the explicit 

solutions presented is demonstrated by a good agreement of 

comparison to available explicit solutions in the literature, 

and finite element results. A parametric study is further 

conducted to investigate the influences of the loading stress 

gradient parameter, the aspect ratio, and the rotational 

restraint stiffness on the local buckling stress resultants of 

steel plates with different boundary conditions. This 

research extends the work by Qin et al. (2017) to the case of 

steel plate under eccentric compression and can also 

indirectly verify the accuracy of research by Qin et al. 

(2018) by using a different shape function to obtain the 

local buckling solution. 
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