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1. Introduction 

 

Due to the mixture of elements (ceramic and metal) 

along the thickness direction, there are multiple benefits for 

using functionally graded materials (FGMs) in advanced 

engineering structures. Because at the same time, the metal 

element provides a reliable mechanical performance in the 

structural system for decreasing the probability of fracture 

while the ceramic element gives the high thermal resistance 

inside these materials (Karami et al. 2018a, b, f, j, She et al. 

2018d, Yang and Yu 2017).  Moreover, combination of 

piezoelectric layers has engineering innovations for 

controlling vibration, stability, and deformation acoustics of 

FGMs. (Rouzegar and Abad 2015) showed that, the 

increment in thickness of piezoelectric layers leads to 

higher mass density and lower elastic moduli of FG plate, 

and takes higher natural frequencies. An analytical solution 

was presented for the nonlinear post-buckling analysis of 

functionally graded carbon nanotubes reinforced composite 

(FG-CNTRC) cylindrical shells with piezoelectric layers by 

(Ansari et al. 2016). Damped free vibration of same 

materials bounded with piezoelectric sensor and actuator 

layers are studied by (Ghorbanpour Arani et al. 2017). 
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On the other hand, it is known that during fabrication 

process of FGMs and in the sintering step, due to the gap 

between solidification temperatures of elements, different 

patterns of voids or porosities can be generated (Li et al. 

2003, Zhu et al. 2001). Therefore, considering and 

modeling of the behavior of FGMs with porosities can be 

applicable and important for their optimal design.  In order 

to appropriate predict of FGM with porosities, several 

numerical and analytical models have been proposed for 

beam/plate type structures including porosity in recent 

years. Linear and nonlinear vibration characteristics of 

imperfect FG beams with porosities were studied by 

(Wattanasakulpong and Ungbhakorn 2014). In this work, 

even and uneven porosity distributions were considered 

using a modified power-law index. The wave propagation 

of FG plates including even porosities with application in 

ultrasonic inspection techniques was examined by (Yahia et 

al. 2015). Buckling and static bending analysis of FG beam 

porous were presented by (Chen et al. 2015). Gupta and 

Talha (2017) analyzed the influence of porosity on the 

vibration behavior of FG plates in the presence of thermal 

environment by applying a non-polynomial higher-order 

shear and normal deformation theory. They showed, with 

increment in the temperature difference between the two 

elements (ceramic and metal), the frequency will be 

decreased. A  refined-trigonometric shear deformation 

theory (R-TSDT) was applied for the thermo/elastic 

bending response of FG sandwich plates by (Tounsi et al. 

2013). Again, it was indicated that the temperature 
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possesses considerable role on determining the behaviors of 

porous FG plates. 

With the rapid development of using nanoscale 

structures in engineering applications due to their benefits, 

FGMs with porosities have gained interest among 

researchers. Furthermore, at micro/nano-scale, it has been 

proved that the mechanical behaviors of structures possess 

size dependency via some experimental studies. Hence, it is 

requisite to predicting the size-dependent specifications of 

structures in this scale. Consequently, wide ranges of non-

classical continuum elasticity theories have been introduced 

to capture the size-dependent effects when the scale of 

structures tend to micro/nano scale (Karami and 

Janghorban 2016, Karami et al. 2017, Karami et al. 2018c, 

d, f, j, Shahsavari et al. 2018a, b, She et al. 2018a, e, 2017b, 

c). Among non-classical continuum theories for thinking the 

size-dependent effects, the nonlocal elasticity theory. 

Eringen (1983) offered by Eringen is an ideal model for 

comparison with the old ones (classical continuum theories) 

which didn’t consider the size-dependent effects. On the 

basis of this theory, the size-dependent effect counts with 

only one small-scale parameter (known as the nonlocal 

parameter). Based on this theory, the strain-driven nonlocal 

elastic theory characterizes that the stress field at a 

reference point in an elastic continuum depends not only on 

strain at that point, but also on strains at all other points in 

the domain of interest (Lim et al. 2010, Wang and Duan 

2008, Yang et al. 2010). The strain-driven nonlocal integral 

model is difficult to solve. Since the strain-driven nonlocal 

integral model equipped with Helmholtz averaging kernel 

can be equivalently transformed as a nonlocal differential 

model for unbounded domain problems, as shown by 

Eringen in his original paper (Eringen 1983). The nonlocal 

differential model may be called Eringen Nonlocal 

Differential Model (ENDM). In spite of the limitations of 

ENDM in some cases (Romano et al. 2017a, 2018), due to 

the fact that the ENDM can be easily addressed and it has 

been proved to show good agreement with molecular 

dynamic results (Hu et al. 2008, Wang and Hu 2008), it has 

been widely chosen in many works for investigating on the 

behaviors of numerous nanoscale structures (Karami et al. 

2018e, g, Shahsavari and Janghorban 2017, Shahsavari et 

al. 2017b). Thermal buckling analysis of FG nanosize plates 

based on trigonometric shear deformation theory is 

conducted by (Khetir et al. 2017). Based on Timoshenko 

beam theory, (Ebrahimi and Daman 2017) examined 

dynamic behavior of curved inhomogeneous structures with 

porosities exposed to thermal environment. Application of 

nonlocal elasticity theory in Hygro-thermo-mechanical 

vibration and buckling analysis of exponentially graded 

nanoplates resting on elastic foundation is investigated by 

(Sobhy 2017) based on four-unknown shear deformation 

plate theory.  For porous beam and plates in nano scale, 

several models were proposed so far (Karami et al. 2018e; 

She et al. 2018b, c). Free vibration of imperfect FG 

nanoplates with porosities using nonlocal elasticity theory 

and also Monte Carlo method was examined by Mechab et 

al. (2016b). Matching results between the nonlocal 

elasticity theory and also Monte Carlo method showed the 

importance of porosity in the formulation in order to obtain 

accurate results. Nonlocal elasticity theory in connection 

with third-order shear deformation plate theory was 

developed in order to examine the size-dependent free 

vibration analysis of porosity-dependent magneto-electro-

elastic functionally graded (MEE-FG) nanobeams by 

(Ebrahimi and Barati 2017). The even and uneven porosity 

distribution was used for nonlinear vibration analysis of FG 

nanobeam on the basis of a size-dependent Euler–Bernoulli 

beam model by (Li et al. 2018). Size-dependent nonlinear 

buckling analysis of FG nanobeams including porosity was 

examined using nonlocal elasticity theory and generalized 

differential quadrature method by Shafiei and Kazemi 

(2017). Mechab et al. (2016a) analyzed the frequency of 

nanoplates made of FGM rested on Winkler-Pasternak 

elastic foundation using nonlocal elasticity theory and two-

variable refined plate theory. Guided wave propagation in 

fully clamped FG nanoporous plates rested on Winkler-

Pasternak foundation via nonlocal first deformation theory 

were investigated by (Karami et al. 2018e) for the first time. 

Recently, (Karami et al. 2018f) studied the wave analysis of 

temperature-dependent FG nanoplates with even porosity 

patterns based on a nonlocal strain gradient second shear 

deformation theory. They showed that the porous materials 

are very sensitive to the variation of environment 

temperature. 

When identically acknowledged that by adding 

constitutive boundary conditions in strain-driven nonlocal 

integral models, the problems caused by the equilibrium 

and constitutive conditions in the stress field become 
improper (Barretta et al. 2018a, b, Romano and Barretta 

2017, Romano et al. 2017a, b). Hence, a right solution of 

strain-driven nonlocal integral models may not exist 

(Barretta et al. 2016, Challamel and Wang 2008, Li et al. 

2015). This caused to report of the results of contradictions 

inside some works (Barretta et al. 2016, Li et al. 2015, Zhu 

and Li 2017b). This crucial problem can be defeated by 

performing a stress-driven nonlocal integral model 

according to the suggestion in Romano and Barretta (2017) 

where the impact of stress and elastic strain fields are 

swapped. 

The critical buckling, material stiffness and also fracture 

toughness of structures will be further surveyed by 

incorporation of an elastic foundation in the system. Among 

elastic foundations, the Winkler model with incorporation a 

linear series of springs has most cited and used in the 

literature due to its simplicity in implementing, but it has 

not an ability for considering the conjunction in substrates 

(Kolahchi et al. 2016). In order to improve the aforesaid 

weakness, a shear layer was attached over the spring series, 

known as Pasternak model. Application of Pasternak 

foundation on the post-buckling of FG porous nanobeam 

was analyzed by (Barati and Zenkour, 2017). The electro-

mechanical vibration of FG plates with Pasternak 

foundation was investigated using four variable refined 

plate theory by Barati et al. (2017). Shafiei et al. (2016) and 

Rad and Shariyat (2015) showed that the trend of frequency 

for variation of porosity volume fraction is dependent on 

the values of power-law index value and foundation 

stiffness. Buckling, bending, and free vibration responses of 

FGM beams with porosities resting on an elastic foundation 
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was examined by (Atmane et al. 2017). In that work, the 

authors presented closed form solutions utilizing Navier 

solution method. Recently, (Shahsavari et al. 2017a) 

developed even, uneven, log-uneven porosity distribution 

for quasi-3D vibration of FG plates rested on Winkler-

Pasternak-Kerr elastic foundations using Galerkin method. 

From the above, it can be seen that there are many 

inconsistencies in porosity effect for different types of 

elastic foundation, especially at nanoscale. In this study, 

Kerr elastic foundation is considered herein for the sake of 

generalization. 

In the current article, thermal buckling analysis of 

imperfect functionally graded nanobeam including 

porosities and piezoelectric layers when embedded in an 

elastic Kerr foundation is studied by using an analytic 

model based on the nonlocal elasticity theory (NET) and 

higher-order shear deformation beam theory. The NET is 

utilized to take the size-dependent effects and their 

equations are derived by using higher-order shear 

deformation beam theory. Material properties of FG 

nanobeams are supposed to be temperature-dependent and 

vary through the thickness direction and are determined 

through the modified power-law rule. Here the porosities 

with even type are considered. Applying Hamilton’s 

principle, governing equations of higher-order FG 

nanobeam are obtained and solved by applying an analytical 

solution method. Uniform and nonlinear temperature 

distributions are also considered. Several numerical 

exercises indicate that various parameters such as nonlocal 

parameter, thickness ratio, type of temperature distribution, 

external electric voltage, porosity volume fraction, power-

law index, and elastic Kerr foundation parameters have 

remarkable influence on the critical temperature of porous 

FG nanobeam. 
 

 

2. Theory and formulation 
 

In this study, we consider a smart porous functionally 

graded nanobeam, which is a nanosized sandwich beam 

with length L (in x-direction), width b (in y-direction) and 

thickness h+2ha (in z-direction), as shown in Fig. 1. 

The core of the sandwich nanobeam is made of porous 

FG material with its properties varying smoothly across the 
 

 

thickness direction (the thickness is h), and is integrated 

with piezoelectric layers on its both sides (each piezo-

electric layer has the thickness of ha). The piezoelectric 

layers can be viewed as a piezoelectric sensor and a 

piezoelectric actuator, and the voltage Va is applied to the 

piezoelectric actuator. Furthermore, the smart nanobeam is 

imbedded on an elastic medium, which is supposed to be 

modelled by using Kerr model (Kneifati 1985). 

 
2.1 Numerical simulation procedure 

 
By using the modified mixture rule, the effective 

material properties (Pf) of the evenly porous FGM core of 

the sandwich nanobeam can be expressed as 

(Wattanasakulpong and Ungbhakorn 2014) 

 

( 2) ( 2)f u u l lP P V P V    
 

(1) 

 

where ξ is the volume fraction of even porosities. Notice 

that ξ is set to zero for a perfect FGM. Often the porosity is 

not even pattern, however, the rigorous requires a 

substantial work, which deserves further systematic 

investigations. Pu and Pl denote, respectively, the material 

properties of the top and bottom sides of the porous 

functionally graded core. Vu and Vl denote the volume 

fraction of top and bottom surfaces of the porous 

functionally graded core, respectively. In the case of a two-

constituent and perfect FG material, we have 

 

1u lV V 
 

(2) 

 

The effective material properties in the thickness are 

usually assumed to obey a power-law function (Dai et al. 

2016, Li and Hu 2017a, b). Accordingly, the volume 

fraction of upper side (Vu) is defined as follows 

 

 0.5
n

uV z h 
 

(3) 

 

where the non-negative parameter n is called power-law 

exponent or the volume fraction index, and determines the 

material distribution across the thickness direction. 

According to Eqs. (1) and (2) and taking into the even 
 

 

 

Fig. 1 Geometry of the FGM piezoelectric beam resting on elastic Kerr foundation 
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porosity effect account, the effective material properties of 

porous functionally graded core can be expressed as the 

following form 
 

( ) ( )( 0.5) ( )( 2)n

u l l u lP z P P z h P P P      
 (4) 

 

In order to examine the behavior of the FGMs under 

high temperature more precisely, it is necessary to consider 

the temperature dependency on material properties. The 

temperature-dependent material properties of material 

phases can be written as (She et al. 2017a, Touloukian and 

Buyco 1970) 
 

1 2 3

0 1 1 2 3P P (P T PT P T P T 1)

    
 

(5) 

 

where P0, P-1, P1, P2 and P3 are the temperature-dependent 

coefficients. In this paper, the temperature-dependent 

coefficients are given in Table 1 for a two-constituent FGM 

made of Si3N4 and SUS304. Here the bottom and top 

surfaces of the porous functionally graded core are fully 

metal (SUS304) and fully ceramic (Si3N4), respectively. 

And we assume that the temperature varies through the 

thickness of nanobeam where T(0.5h) = Tc and T(‒0.5h) = 

Tm. As usual, we assume that all the material properties 

have the same form of function with respect to temperature 

T. It may be unreasonable and requires a substantial work, 

which deserves further systematic investigations. 

 

2.2 Kinematic relations 
 

Based on a Reddy’s higher-order shear deformation 

theory (or second-order shear deformation theory), the 

displacement field at any point of the beam can be 

expreesed as (Khdeir and Reddy 1999) 

 
2

0 1 2 0,u u z z w w    
 

(6) 

 

where u0 and w0 are the displacement components of the 

material point at the middle plane of the beam in the x-, and 

z-direction respectively; ϕ1 and ϕ2 are the rotation and 

variable of the higher-order terms, respectively. It has been 

reported by (Karami et al. 2018f) that the second-order 

shear deformation theory can be used to model nanoscale 

graphene and can reasonably interpret the dynamic 

behaviors of mounted graphene. 

 

 

All displacement components (u0, w0, ϕ1, ϕ2) are 

dependent of x and time t. In addition, the nonzero strains of 

the higher-order shear deformation beam theory are 

expressed as 
 

0

2

0

xxxx xx xx

xz xz xzxz

z z
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  
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(7) 

 

in which 
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            
      

(8) 

 

2.3 Constitutive equation based on nonlocal 
elasticity theory 

 

The essence of the nonlocal elasticity theory is that, the 

stress field at a reference point x in an elastic continuum 

depends not only on strain at that point, but also on strains 

at all other points in the domain of interest (Lim et al. 2010, 

Pradhan and Murmu 2010, Wang and Duan 2008, Yang et 

al. 2010). Therefore, the nonlocal stress tensor σij at the 

reference point x can be defined as follows (Lim et al. 

2010, Pradhan and Murmu 2010, Wang and Duan 2008, 

Yang et al. 2010) 
 

( ) ( , ) ( )ij ijx x x x dV        
(9) 

 

( ) ( ) ( )ij ijkl klx C x x 
 

(10) 

 

here σi j(x′) is the classical (local) stress tensor at 

neighboring points x′. The scalar function α (|x′ ‒ x|, τ) is 

called the nonlocal kernel function which decays rapidly 

with the increase of the distance |x′ ‒ x|. Cijkl(x) is the fourth-

order elasticity coefficient at the reference point x. And τ is 

defined by τ = e0a / l where the term (e0a) is the nonlocal 

parameter. The difference between the classical and 

nonlocal elasticity theories lies in the presence of small 

scale parameter e0a in the nonlocal theory (Lim et al. 2010, 

Pradhan and Kumar 2011, Pradhan and Murmu 2010, Wang 

and Duan 2008, Yang et al. 2010). Notice that the internal 

characteristic length a is often determined based on lattice 

parameter, granular size, bond length, and so on, and e0 is a 

material constant which is often determined from 

 

 

Table 1 Temperature-dependent coefficients for stainless steel and silicon nitride 

Properties Material P0 P-1 P1 P2 P3 

κ (W/mK) 
Stainless Steel 15.379 0 ‒1.264×10-3 2.092×10-6 ‒7.223×10-10 

Silicon Nitride 13.723 0 ‒1.032×10-3 5.466×10-6 ‒7.876×10-11 

α (/K) 
Stainless Steel 12.330×10-6 0 8.086×10-4 0 0 

Silicon Nitride 5.8723×10-6 0 9.095×10-4 0 0 

v 
Stainless Steel 0.3262 0 ‒2.002×10-4 3.797×10-7 0 

Silicon Nitride 0.2400 0 0 0 0 

E (Pa) 
Stainless Steel 201.04×109 0 3.079×10-4 -6.534×10-7 0 

Silicon Nitride 348.43×109 0 ‒3.070×10-4 2.160×10-7 ‒8.946×10-11 
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experimental data or atomic lattice dynamics (Zhu and Li 

2017a, b). The external characteristic length l is often 

determined based on crack length, wavelength and so on. 

It is often quite difficult to analyze the governing 

equations based on the integral nonlocal constitutive 

equation. Hence, for unbounded domain problems, the 

strain-driven nonlocal integral model (Eq. (9)) equipped 

with Helmholtz averaging kernel can be equivalently 

transformed as a nonlocal differential model as follow 

(Eringen 1983) 
 

2 2(1 ) ij ijkl klC    
 (11) 

 

in which μ = (e0a)2, and 2 is the Laplacian operator in 

Cartesian coordinate. As shown by Eringen in his original 

paper (Eringen 1983), the nonlocal model (11) is so-called 

Eringen Nonlocal Differential Model (ENDM). The ENDM 

can be easily applied and consequently has been extensively 

used in nanotechnology (Arash and Wang 2012, Li and Hu 

2017b, Peddieson et al. 2003, Wang and Wang 2007). 

Nevertheless, when considering boundary condition 

problems, the nonlocal integral and differential models 

(Eqs. (9) and (11)) are not usually equivalent to each other 

since constitutive boundary conditions on the stress 

naturally appear in dealing with bounded domains (Barretta 

et al. 2018a, b, Romano and Barretta 2017, Romano et al. 

2017a, b). The ENDM can be viewed as a phenome-

nological model or a stress gradient model, which has been 

proved to show good agreement with molecular dynamic 
results (Hu et al. 2008, Murmu and Adhikari 2012, Wang 

and Hu 2008). 

To capture small-scale effects, the nonlocal differential 

constitutive equation is used herein. Therefore, the size-

dependent constitutive equation of the smart porous FG 

nanobeam incorporating the thermal and piezoelectric 

effects can be expressed as (Mirzavand and Eslami 2011, 

Nami et al. 2015) 
 

112
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  
   
     

(12) 

 

where θ is the temperature difference. And Cij is the elastic 

stiffness of the FGM core of the smart sandwich beam and 

can be given by 
 

   

 
11 552

,
2 11

E z E z
C C


 


 

(13) 

 

The piezoelectric stress constants e31, e15 can be 

expressed in terms of the dielectric constants (or 

piezoelectric strain constants) d31, d15 and the elastic 

constants 𝐶𝑖𝑗
(𝑎)

 of the piezoelectric actuator layers as 

(Mirzavand and Eslami 2011) 
 

31 31 11 15 15 55,a ae d C e d C 
 

(14) 

 

The longitudinal component of electric field Ex is 

negligible, and the transverse component of electric field Ez 

is dominant in the beam-type piezoelectric material. Thus, 

we can assume that 
 

, 0z a a xE V h E 
 (15) 

 

here Va and ha are the electric voltage applied to the 

piezoelectric actuator in the thickness direction and the 

thickness of the piezoelectric actuator, respectively. 
 

2.4 Governing equations 
 

Using Hamilton’s prainciple, the equation of motion will 

be drived by 
 

0
( ) 0

t

U V K dt     
(16) 

 

Here U is strain energy, V is work done by external 

forces and K is kinetic energy. The virtual variation of strain 

energy can be written as 
 

 ij ij xx xx xz xz
v v

U dV dV           
(17) 

 

Substituting Eqs. (11) and (12) into Eq. (17) yields 
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(18) 

 

in which the stress resultants are defined as 
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(19) 

 

where 
 

  

2

2 3 4

2

( , , , , ) (1, , , , )

h
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The first variation of work done by applied forces can 

be written in the form 
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here 𝑁𝑥𝑥
0  is the axial compressing force. The distributed 

reaction qKerr of the Kerr medium can be expressed as 

(Kneifati 1985) 
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The Kerr foundation model consists of a shear layer 

(with stiffness ks) attached to two independent upper and 

lower elastic layers (modeled by distributed springs) with 
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stiffness of k2 and k1, respectively. 

The variation of kinetic energy is represented by 
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The governing equations are obtained by inserting Eqs. 

(18)-(23) in Eq. (16) when the coefficients of δu, δw, δϕ1 

and δϕ2 are equal to zero. 
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According to the size-dependent constitutive equation of 

the smart porous FG nanobeam incorporating the thermal 

and piezoelectric effects, the stress resultants can be 

expressed as 
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Substituting Eqs (29)-(33) and Eqs. (34) into Hamilton’s 

prainciple (16), the governing equations including the 

effects of thermal environment and piezoelectric layers can 

be obtained as 
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3. Solution procedures 
 

In this section, an analytical approach will be used to 

solve the nonlocal governing equations of functionally 

graded nanobeam with simply-supported boundary edge. To 

satisfy this boundary condition, the following Navier-series 

are intended for displacement variables 
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where m denotes the number of half waves in x- direction; 

𝛼 =
𝑚𝜋

𝐿
; (Um, Wm, Φ1m, Φ2m) denote constant coefficients 

that depend on m. Substituting Eqs. (39)-(42) into the 

equations of motion (Eqs. (35)-(38)), respectively, leads to 

Eqs. (43)-(46) 

354



 

Thermal buckling of smart porous functionally graded nanobeam rested on Kerr foundation 

2 2 2

11 0

2 2 2

11 1 1

2 2 2

11 2 2

11 1

( ( ) (1 ( ) ) )

( ( ) (1 ( ) ) )

( ( ) (1 ( ) ) )

0

n m

n m

n m

m m
A I U

L L

m m
B I

L L

m m
D I

L L

m m
G J

L L

 
 

 
 

 
 

 

  

    

    

  

 (43) 

2 2 2

11 0

2 2 2

11 1 1

2 2 2

11 2 2

11 1

( ( ) (1 ( ) ) )

( ( ) (1 ( ) ) )

( ( ) (1 ( ) ) )

0

n m

n m

n m

m m
A I U

L L

m m
B I

L L

m m
D I

L L

m m
G J

L L

 
 

 
 

 
 

 

  

    

    

  
 

 

2

55 1 55

2 2 0 2 2

0

2 21 2 2

1 2 1 2

55 2

( ) ( ( )

(1 ( ) ) ) ( ) (1 ( ) )

( ( ) )(1 ( ) ))

( 2 ) 0

m

n xx

s

m

m

m m
A A

L L

m m m
I N

L L L

k k k k m m
W

k k k k L L

m
B

L

 

  
  

 




   

   

   
 

   

 
(44) 

 

2 2 2

11 1

2 2 2

11 2 1

2 2 2

11 3 2

11 2

( ( ) (1 ( ) ) ))

( ( ) (1 ( ) ) ))

( ( ) (1 ( ) ) ))

0

n m

n m

n m

m m
B I U

L L

m m
D I

L L

m m
E I

L L

m m
H J

L L

 
 

 
 

 
 

 

  

    

    

  

 
(45) 

 

2 2 2

11 2

2 2 2

11 55 3 1

2

55 11 55

2 2

4 2 11 3

( ( ) (1 ( ) ) ))

( ( ) 2 (1 ( ) ) ))

( 2 ) ( ( ) 4

(1 ( ) ) )) 0

n m

n m

m

n m

m m
D I U

L L

m m
E B I

L L

m m
B W F D

L L

m m m
I Y J

L L L

 
 

 
 

 

  
 

  

     

    

     

 
(46) 

 

By setting the determinant of the coefficient matrix of 

the above equations, the analytical solutions can be 

obtained from the following equations 
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in which [K] and [KT] respectively, denote stiffness matrix 

and the coefficient matrix of temperature change, and [M] 

denotes the mass matrix. By setting this polynomial to zero, 

we can find natural frequencies ωn and critical buckling 

temperature ΔTcr. 

The aim of the presented paper is to investigate the two 

types of temperature distributions across thickness (namely 

uniform and nonlinear temperature distributions). It is 

important to know, for the uniform temperature case, the 

assumed structure will be exposed to a constant; but for the 

nonlinear case, the temperature will change across the 

thickness direction of the structure. For the nonlinear 

temperature rise, the equation referred to the heat transfer 

may be described as follow (Mirzavand and Eslami 2011) 
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4. Numerical results and discussions 
 
In this section, the effect of two type of temperature 

change namely uniform and nonlinear, material 

composition, porosities, nonlocality effect, voltage, elastic 

Kerr foundation and thickness on the thermal buckling 

response of porous functionally graded (FG) nanobeam will 

be figured out. The beam geometry has the following 

dimensions: L (length) = 10 nm, b (width) = 1 nm and h 

(thickness) is variable. In addition, the following non-

dimensional parameters are used to describe the numerical 

results in graphical and tabular forms are defined as 
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4.1 Validation 
 

Consider a functionally graded beam with fully simply 

supported boundary conditions subjected to nonlocality 

effect. In Table 2 results are shown for different power-law 

indices n. The present results are compared with finite 

element method on the basis of Euler-Bernoulli beam 

theory and analytical method on the basis of Reddy’s shear 

deformation beam theory. In this case, it can be observed 

 

Table 2 Comparison of the nondimensional fundamental frequency 𝜔  for a S-S FG nanobeam with various gradient indexes 

when L = 10 nm, h = 0.5 nm 

 n = 0 n = 0.2 n = 0.5 n = 1 n = 5 

μ 

(nm2) 

(Eltaher Emam 

et al. 2012) 
Present 

(Eltaher Emam 

et al. 2012) 
Present 

(Eltaher Emam 

et al. 2012) 
Present 

(Eltaher Emam 

et al. 2012) 
Present 

(Eltaher Emam 

et al. 2012) 
Present 

0 9.8797 10.1291 8.7200 8.8546 7.8061 7.7818 7.0904 7.0179 6.0025 6.0018 

1 9.4238 9.6634 8.3175 8.4475 7.4458 7.4241 6.7631 6.6953 5.7256 5.7259 

2 9.0257 9.2566 7.9661 8.0919 7.1312 7.1115 6.4774 6.4134 5.4837 5.4848 

3 8.6741 8.8972 7.6557 7.7777 6.8533 6.8354 6.2251 6.1644 5.2702 5.2718 

4 8.3607 8.5766 7.3791 7.4975 6.6057 6.5891 6.0001 5.9423 5.0797 5.0819 

5 8.0789 8.2884 7.1303 7.2455 6.3830 6.3677 5.7979 5.7426 4.9086 4.9111 
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from Table 2 that the present results are in good agreement 

with available literature. 

 

4.2 Role of nonlocal parameter on thermal buckling 
response 

 

Thermal buckling response of simply supported porous 

FG nanobeam with respect to beam thickness for different 

values of nonlocal parameters under different temperature 

distributions namely uniform and nonlinear are depicted in 

Fig. 2. Given this figure, it is easily understood for an S-S 

porous FG nanobeam that, an increase in beam thickness 

parameter gives rise to an increase in the critical 

temperature (ΔTcr). Also, it is observed that the with 

 

 

 

 

increases nonlocal parameter the results will decrease. In 

additions, it was concluded that the nonlocality effect is 

more efficient in thick and moderately thick FG beams in 

comparison with the thin ones. 

 

4.3 Role of porosities on thermal buckling response 
 

Thermal buckling responses of S-S FG nanobeam for 

different porosity coefficients and beam thickness under 

uniform and nonlinear temperature distributions are 

illustrated in Figs. 3 and 4, respectively at μ = 1.0 nm2. It 

can be observed from these figures that with an increase of 

the porosity coefficient, critical temperature decreases. It is 

seen from Figs. 3 and 4 that the beam thickness shows an 

 

 

 

  

(a) Uniform (b) Nonlinear 

Fig. 2 Thermal buckling relation between critical temperature and thickness of imperfect FG nanobeam for different 

temperature distributions (L = 10 mm, n = 1, ξ = 0.2) 

  

(a) h = 0.15 nm (b) h = 0.25 nm 
 

  

(c) h = 0.35 nm (d) h = 0.45 nm 

Fig. 3 The variation of the critical temperature of FG nanobeam with material compositions and even porosity pattern 

for different beam thickness (uniform temperature distribution) 
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(a) h = 0.15 nm (b) h = 0.25 nm 

 

  

(c) h = 0.35 nm (d) h = 0.45 nm 

Fig. 4 The variation of the critical temperature of FG nanobeam with material compositions and even porosity pattern 

for different beam thickness (nonlinear temperature distribution) 

  

(a) h = 0.15 nm (b) h = 0.25 nm 

 

  

(c) h = 0.35 nm (d) h = 0.45 nm 

Fig. 5 The effects of voltage and material compositions on the critical temperature for different thickness values 

(uniform temperature distribution) 
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increasing effect on critical temperature for all values of 

power-law indexes. Also in Figs. 3 and 4 it is observed that 

porosity distribution decreases the critical temperature of 

imperfect FG nanobeam. Although, the influence of 

porosity on the results will be increased with increasing the 

power-law index. 

 

4.4 Role of piezoelectric layers on thermal buckling 
 

As another example to applying the external voltage 

effect on critical temperature of porous FG nanobeams 

under uniform and nonlinear temperature distribution, Figs. 

5 and 6 are plotted for various values of beam thickness in 

versus power-law index at μ = 1.0 nm2. To consideration the 

 

 

 

 

voltage effect it is assumed that functionally graded beam 

integrated with piezoelectric layers in both sides. So, for 

piezoelectric layers, G-1195N are considered which 

thickness of actuator layer is ha = 2×10-12 m and G-1195N 

properties are E11 = 63×109 Pa, υ12 = υ21 = 0.3 and d31 = d32 

= 1×10-13 m/V. It is shown that critical temperature reduces 

with increase of voltage and power-law indices in all values 

of beam thicknesses. One can also understand that the 

results are varied linearly with respect to voltage. In 

addition, with respect to material compositions, the effect of 

power-law index to decrease results in lower value of 

voltage is more. By comparing these figures, it is observed 

that critical temperature for nonlinear temperature 

distribution are lower than those for uniform temperature 

 

 

 

 

  

(a) h = 0.15 nm (b) h = 0.25 nm 

 

  

(c) h = 0.35 nm (d) h = 0.45 nm 

Fig. 6 The effects of voltage and material compositions on the critical temperature for different thickness values 

(nonlinear temperature distribution) 

  

(a) ξ = 0 (b) ξ = 0.2 

Fig. 7 Variation of critical temperature under uniform temperature distribution of mounted FG core versus material 

compositions for different values of linear layer of Kerr foundation (L / h = 10 mm, μ = 1.0, Ks = 5) 
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distribution. 

 

4.5 Role of elastic Kerr foundation on thermal 
buckling response 

 
Variation of critical temperature of mounted FG 

nanobeams versus power-law index under uniform 

temperature distribution for different values of linear layer 

of Kerr foundation illustrated in Fig. 7 at L/h = 10, Ks = 5 

and μ = 1.0 nm2. Also, Figs. 7(a) and (b) shows the behavior 

of perfect and imperfect FG nanobeams respectively. 

Simplicity assumption is based on that stiffness of upper 

and lower springs of Kerr foundation are identical. It was 

shown that the results increased by increasing the stiffness 

of springs. In fact, the nanobeam becomes more rigid by 

increasing the stiffness of springs loading. Also, it is 

concluded that the linear layer of foundation performs 

increasing effect on the results for imperfect FG nanobeam. 

As another example, to study the effect of the linear 

layer of Kerr foundation on the thermal buckling response 

of FG nanobeams under nonlinear temperature distribution 

with and without porosities, the Fig. 8 is drawn. It is 

concluded that in perfect and imperfect FG nanobeams by 

increasing stiffness of springs, critical temperature will 

increase. 

In order to consider the effect of shear layer of 

foundation Figs. 9 and 10 are drawn. It is obvious that with 

 

 

 

 

increasing shear layer of foundation, results for perfect and 

imperfect FG nanobeams under uniform and nonlinear 

temperature distribution will increase. Also, it is found that 

in the presence of elastic Kerr foundation, critical 

temperature reduces with the increase of porosity 

coefficients. 

From Figs. 7-10, it can be observed that, for thermal 

buckling response of perfect and imperfect FG nanobeams 

under uniform and nonlinear temperature distribution for all 

values of elastic Kerr foundation the critical temperature 

reduces with the increase of gradient index, where this 

reduction is more sensible according to the lower values of 

gradient index. Also, it is concluded that the shear layer of 

the elastic Kerr foundation has a more remarkable effect on 

the critical temperature than linear layer parameters. In fact, 

with the increase of shear layer, the critical temperature 

increases significantly. 

 

 

5. Conclusions 
 

By considering nonlocal effects, the thermal buckling 

response of porous functionally graded core integrated with 

piezoelectric layers is studied for the first time based on a 

higher-order shear deformation beam model. Nanobeam is 

assumed to be rested on elastic Kerr foundation 

incorporating three coefficients. And a modified power-law 

 

 

  

(a) ξ = 0 (b) ξ = 0.2 

Fig. 8 Variation of critical temperature under nonlinear temperature distribution of mounted FG core versus material 

compositions for different values of linear layer of Kerr foundation (L / h = 10 mm, μ = 1.0, Ks = 5) 

  

(a) ξ = 0 (b) ξ = 0.2 

Fig. 9 Variation of critical temperature under uniform temperature distribution of mounted FG core versus material 

compositions for different values of shear layer of Kerr foundation (L / h = 10 mm, μ = 1.0, Ks = 5) 
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role is used to describe the material properties of the beam. 

Nonlocal elasticity theories together with Hamilton’s 

principle are applied for obtaining the governing equations 

to analyze buckling behavior. Outlined discussions are 

given to show how to change the critical buckling 

temperatures by varying the thickness of beam, linear and 

shear stiffness coefficients of elastic Kerr foundation, 

porosity, power law index, temperature distribution, electric 

voltage and nonlocal parameter. The outcomes are 

presented for simply-supported sandwich beams. With 

relying on the results of the present investigation, the 

following considerations are valuable: 
 

 The critical temperature decreases as nonlocal 

parameter increases. 

 With the growth of beam thickness, the critical 

temperature increases. 

 The critical temperature may decrease with respect 

to the increment of the power-law indices and 

porosity coefficients. 

 The piezoelectric layer can reduce the critical 

buckling temperature. 

 With the increment in the stiffness of linear and 

shear layers of elastic Kerr foundation, the 

functionally graded nanobeam will be more rigid and 

hence its critical temperature increases. 
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