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Abstract. This paper investigates the free vibration of geometrically imperfect functionally graded car-bon nanotube-
reinforced composite (FG-CNTRC) beams that are integrated with two sur-face-bonded piezoelectric layers and subjected to a
combined action of a uniform temperature rise, a constant actuator voltage and an in-plane force. The material properties of FG-
CNTRCs are assumed to be temperature-dependent and vary continuously across the thick-ness. A generic imperfection function
is employed to simulate various possible imperfections with different shapes and locations in the beam. The governing equations
that account for the influence of initial geometric imperfection are derived based on the first-order shear deformation theory. The
postbuckling configurations of FG-CNTRC hybrid beams are determined by the differential quadrature method combined with
the modified Newton-Raphson technique, after which the fundamental frequencies of hybrid beams in the postbuckled state are
obtained by a standard eigenvalue algorithm. The effects of CNT distribution pattern and volume fraction, geometric
imperfection, thermo-electro-mechanical load, as well as boundary condition are examined in detail through parametric studies.
The results show that the fundamental frequency of an imperfect beam is higher than that of its perfect counterpart. The
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influence of geometric imperfection tends to be much more pronounced around the critical buckling temperature.
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1. Introduction

Due to the superior mechanical properties, functionally
graded carbon nanotube-reinforced composites (FG-
CNTRCs) in which carbon nanotube (CNT) reinforcements
are dispersed nonuniformly in the matrix have attracted
considerable scientific and technological interests in the
past few years (Liew et al. 2015, Shen 2009, Wu et al.
2015, 2016a). Owning to the graded variation of CNT
concentration, the material properties of FG-CNTRCs
exhibit a continuous change from one surface to the other,
thus eliminating the interface problems that usually take
place in conventional nanocomposites. By combining the
outstanding properties of CNTs and the advantages of
functionally graded materials (FGMs), FG-CNTRCs may
find promising applications in aerospace and defence
industries. Numerous research works have been done on the
free vibration of FG-CNTRC structures. Among those, Ke
et al. (2010) carried out nonlinear vibration analysis of FG-
CNTRC beams based on Timoshenko beam theory. Yas and
Samadi (2012) studied the free vibration of FG-CNTRC
beams resting on an elastic foundation. Wattanasakulpong
and Ungbhakorn (2013) analytically investigated the same
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problem using various shear deformation theories. Shen and
Xiang (2013) discussed the nonlinear vibration of FG-
CNTRC bheams resting on an elastic foundation in thermal
environment. Lin and Xiang (2014a, b) examined the linear
and nonlinear free vibrations of FG-CNTRC beams using p-
Ritz method. Based on the two-dimensional elasticity
theory, Nejati et al. (2016) presented the vibration analysis
of FG-CNTRC beams under a compressive axial load. Wu
et al. (2016b) extended the existing works to the geo-
metrically imperfect FG-CNTRC beams and revealed that
the initial geometric imperfection has an important effect on
the nonlinear vibration behaviour.

The high-performance composite structures are often
subjected to combined thermal and mechanical loads. The
thermo-mechanically induced postbuckling deformation
will change the structural configuration and influence the
vibration characteristics that can ultimately affect the
stability and control of those structures (Asadi et al. 2013,
Esfahani et al. 2014, Komijani et al. 2013, 2014, Li et al.
2004, 2009, Rahimi et al. 2013). In spite of its practical
importance, very limited work has been reported on the free
vibration of postbuckled FG-CNTRC beams. Most recently,
Shen et al. (2017) analysed the small- and large-amplitude
vibration of thermally postbuckled FG-CNTRC beams
resting on elastic foundations. With the exception of (Wu et
al. 2016b), it appears that previous studies of the vibration
behaviour have mainly focused on the perfect straight
beams. In reality, geometric imperfection is inevitable in
structural elements during their fabrication process and
service life. As reported in Emam (2009), those geometric
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imperfections have a considerable effect on the vibration
characteristics of composite beams in the vicinity of
postbuckling configuration. To the best of the authors’
knowledge, so far there is no literature on the free vibration
of geometrically imperfect FG-CNTRC beams under
thermo-mechanical loads.

Owing to the electro-mechanical coupling effect,
piezoelectric materials have been widely used as distributed
actuators and sensors in smart structural system. The
stability and vibration analyses of smart composite
structures integrated with surface-mounted piezoelectric
layers are of great practical importance for active structural
control and health monitoring (Duan et al. 2010, Zhang et
al. 2016). Rafiee et al. (2013a, b) investigated the nonlinear
vibration and thermal buckling of piezoelectric FG-CNTRC
beams under thermo-electric loads. Alibeigloo and Liew
(2015) studied the bending and free vibration of FG-
CNTRC beams integrated with piezoelectric actuator and
sensor under an applied electric field. Yang et al. (2015)
presented a dynamic buckling analysis of thermo-electro-
mechanically loaded FG-CNTRC beams with surface-
bonded piezoelectric layers. Wu et al. (2016c) dealt with the
thermo-electro-mechanical post-buckling of piezoelectric
FG-CNTRC beams with geometric imperfections.

This paper aims to investigate the free vibration of FG-
CNTRC beams that are integrated with surface-bonded
piezoelectric layers and subjected to thermo-electro-
mechanical loads in both the pre- and post-buckling
equilibrium states. Material properties of FG-CNTRCs are
assumed to be graded in the thickness direction and
estimated by the extended rule of mixture. A one-
dimensional imperfection mode is used to model various
possible geometric imperfections that may come in different
shapes and locations in the beam. Parametric studies are
conducted to highlight the effects of geometric imperfection
mode, half-wave number, location and amplitude on the
vibration response of piezoelectric FG-CNTRC beams. The
influences of CNT distribution pattern and volume fraction,
temperature rise, actuator voltage, in-plane force, and
boundary condition are discussed as well. The thermal
postbuckling  of  electro-mechanically  prestressed
piezoelectric FG-CNTRC beams is treated as a subset
problem
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L and total thickness H, as shown in Fig. 1(a). The hybrid
beam consists of two piezoelectric layers of equal thickness
hy that are symmetrically bonded to the top and bottom
surfaces of a CNTRC host of thickness h. The CNT
reinforcements are assumed to be either functionally graded
(FGX and FGO) or uniformly distributed (UD) along the
thickness direction, with the volume fraction V¢,

FGX: Vi, = 4%% ,
FGO: v, = 2—4'—:]|)v;, 1)
ub:  V,=V,.

As illustrated in Fig. 1(b), the surfaces of FGX are CNT
rich while this is inversed for FGO whose midplane is CNT
rich. The CNT concentration is assumed to be constant
across the thickness for UD. However, the total CNT
volume fraction Vg, for the three distribution patterns of
FGX, FGO and UD are the same to facilitate direct

comparison.

The effective material properties of CNTRC that are
graded across the thickness direction can be predicted by
the extended rule of mixture (Shen 2009)

Ell = 771Vcn C{l +Vm Em ' (2)
V Vv
I _ CC'; 4_m, (3)
E22 E22 Em
V V
ﬁ = % _m , (4)
G12 GlZ Gm
P :Vcnpcn +Vmpm ) 5)
V12 =Vcnvlczn +vam ' (6)

where the superscript/subscript “cn” and “m” represent the

CNT and matrix, respectively. Eff, E3, Em,

cn

v, Gm are

2. Theoretical formulation

2.1 Effective material properties

Consider a piezoelectric CNTRC hybrid beam of length

f?p

Young’s and shear moduli; the volume fraction V¢, and Vi,
are related by V¢, + Vi, = 1; pen and pr, are mass densities;
vy and vy, are Poisson’s ratios. #; (i = 1, 2, 3) are the CNT
efficiency parameters accounting for the size-dependence of
the nanocomposites. The thermal expansion coefficient of
CNTRC is given by

OOl
LE N R N}
(XY N}
(RN NI

ILXXXX]

vy = Le A
(a)

[ ] ENTRC host
:] Piezoelectric layer

Fig. 1 Configuration and coordinate system of a piezoelectric CNTRC beam
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— VCFI ElC]r.] alc:{l +Vm Em am , (7)
cn C:[l +Vm Em

a,

in which a3; and ay, are thermal expansion coefficients of
the CNT and matrix, respectively. By taking into
consideration the temperature dependency, the effective
material parameters of CNTRC given in Egs. (2)-(7) are
functions of both temperature and position.

2.2 Governing equations

Let the origin of coordinate system (X, Z) be located at
the corner of mid-plane (Z = 0), with the coordinates X and
Z along the length and thickness directions of the beam,
respectively. Based on the first shear deformation theory
(FSDT), the displacements of an arbitrary point in the
hybrid beam parallel to X and Z directions are given by

U(X,Z,t)=U(X,t)+Zy(X 1)

Z,

_ ) (®)
W (X,t)=W(X)+W*(X):

where U and W are the longitudinal and transverse
displacement components in the mid-plane, v is the angle
of rotation of the normal to the mid-plane, t is the time. W"
is the initial geometric imperfection that may be either
globally or locally distributed in the beam. The various
possible imperfection shapes are simulated by a one-
dimensional imperfection model (Wadee 2000, Wu et al.
2016b) that is the product of trigonometric and hyperbolic
functions as

W" = Ayrsech a(x-c) |cos| bz (x-c)], )
in which x = X/L, r = ,/I/A is the gyration radius of the

beam cross section with A and | being the area and the
second moment of the cross section; A, is the dimensionless

Table 1 Imperfection modes (Wu et al. 2016b)

imperfection amplitude; a is the constant that determines
the localization degree of the imperfection; b is the half-
wave number of the imperfection that is symmetric about x
= ¢. Table 1 lists the imperfection modes considered in this
study, among which G; and L; (i = 1, 2, 3, 4) are global and
localized imperfections, respectively.

It is assumed that the beam is initially stress free at a
reference temperature T, then subjected to the combined
action of a uniform temperature rise AT = T — Ty, a constant
actuator voltage V; and an in-plane force Ny, along the X-
axis. In view of Eq. (8) and using Hamilton’s principle, the
nonlinear governing equations of the thermo-electro-
mechanically loaded piezoelectric CNTRC beam which
include the initial geometric imperfection can be expressed
in terms of displacement components as

Ay (U..X_T W W o +W oW 5 + ”/'..Y”t.\_"\') =1U, (10)

Ass (W,xx T¥x )+ Ay (U,xx +W W
FW 3o W +W Wi )(wyX +W )

2 . (11)
+[A&1U,>< +3 A, (W,x ) + AW, Wy
. V{ - Vf —Nxo :i (W..\t\' + Wiy ) =dy i,
Dy v — 4ss (W.\' s '/’) =Ly, (12)

where a comma and an overdot denote the partial derivative
with respect to the coordinate X an time t, respectively. It
should be noted that for a uniform temperature change and a
constant actuator voltage, the derivatives of thermo-
electrically induced forces with respective to X as well as
the thermo-electrically induced moments vanish, hence are
omitted in the governing equations. The thermally and
electrically induced forces Nx and Ny are determined by

Sine-type
a=0,b=1,¢c=05

G1-mode
a=0,b=2,¢c=05

G2-mode
a=0,b=3,c=05

/

G3-mode
a=0,b=51c¢=05

G4-mode
a=0,b=7,¢c=05

L1-mode
a=15b=2,¢=05

L2-mode
a=15Db=3,¢=05

L3-mode
a=15b=5,¢c=05

L4-mode
a=15b=7,¢c=05
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T -h/2 D
N =] Qha,ATdZ
-H/2 13)
h/2 h H/2 P (
+[, QhonATdZ + | “Qha,ATdZ

E -hiz Hi2
Ny = I_HIZQlldglEde + -[hlz Qd;,E,dZ (14)

The stiffness components and inertia related terms are
defined as

(Ail' Dll) = J‘:://ZZlel (1, z? )dZ

(15)
+ jfh'ZQ{; (L2%)dz +th2/2le1 (12%)dz

_h/2 h/2 H/2
As = K(J._H/ZQspst +_[_h/2Q5hst + -[h/z Qgst) +(16)

—h/2

(I 15)=

pp(L2%)dz

+j p(12?) d2+j “po(L2%)dz . 0

In the above equations, the elastic constants QI;, Q%, Qk,
Q% with superscripts “h” and “p” referring to the CNTRC
host and piezoelectric layer respectively, are given by

(thl’ lel) = ( B/ (L=vipva), E, /(1_ sz)) ,

(18)
(Qh. Q&) =(Gu, E, /2(1+,))

where E,, pp, vp, 0p and ds; are the Young’s modulus, mass
density, Poisson’s ratio, thermal expansion coefficient and
piezoelectric strain constant of the piezoelectric layer,
respectively. E; = Vz/h, is the electric field due to the
applied actuator voltage.

Neglecting inertia related terms in Eqgs. (10)-(12) leads
to the following equations governing the static postbuckling
of piezoelectric CNTRC beams under thermo-electro-
mechanical loading

Ail(U,XX W W +W oW +WxW§<x)=Ov (19)

Ass(W,xx +‘//,><) |:'°11 x T zpll(WX)

(20)
AW, W =Ny =Ny — }( XX +Wxx) 0,

Dy xx = Ass (Wx +'//):0' (21)

Let (Uo, Wo, wo) denote the static postbuckling solutions
of Egs. (19)-(21). By substituting for (U, W, v) in Egs. (10)-
(12) with (U+U,, W+W,, w+yp), we obtain the governing
equations of motion for the thermo-electro-mechanically
postbuckled piezoelectric CNTRC beam as

Ail(U,XX AW W + W WS+ W W

. (22)
+ W Wy x + W W e )= LU,
2
Ass (W,xx ¥ x )+ |:A11Uo,x +3 A, (Wo,x )
+ AW, W - Ny —Ng _Nxo}w,xx 23)
2 *
+A&1[U'X + (W )+ WL W, +WXW,X}
(W_n' + Wy v +W iy ) = 11”}-
Dy sy = Ass ( Wi+ '/’) =Ly . (24)

In this study, the beam is either hinged or clamped at
each end, with the associated boundary conditions as
follows

Hinged (H): U=0, W=0, Duyx=0; (25)
Clamped (C): U=0, W=0, w=0. (26)
By introducing the following dimensionless parameters

x=X/L,

(U, W, Up, W, W)= (U, W, Ug,Wo,W* ) r,

((/7: ¢0):(l//1l//0)’

n=r/L,

(all’aSS’dll):(Ail’ Ass, Dll/rz)/AllO'

n=r/L, (27)

(all'aSS' 11)_('A&1'A551 11/r2)/p‘110’

(1o 1c) {1' ly/r? }/Ilo'

75 )5 M e
7=t A/l /L,

0=0Lly /Ay,

in which Ay and 1y, are the values of A;; and I, of the
equivalent homogeneous beam made from the pure matrix
material, the static governing Egs. (19)-(21) can be
rewritten in the dimensionless form as

ailu,xx + ailn(vv,xw,xx + Vv,xxvv,*x + Vv,xw,*xx) =0 ) (28)

A5 (W,xx + leq’,x ) + |:a11u,x + %a11772 (W,x )2

(29)
+ 5‘11772W,><W,*x - PT - PE - P:|(W,xx + \N,*xx ) = 0!

dllqo,xx _%(W,x +%¢) =0 (30)
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The governing equations of motion (22)-(24) can be
nondimensionalized as

ailu,xx + ailn(Wx\N,xx + Vv,xxvv,*x (31)

* vs
T WW g5 W Wox + WMo ) = [a” 2

2
855 (W,xx +Tl]¢,x)+|:allr7u0,x +%a11772 (WO,X)
+ allﬂzwo,xw,*x -PT-PF - P:|W,xx

+a1177(u,xx + nw,xw,xx + nw,xxw*x + 77\N,X\N,*XX (32)

®
+ U\N,XXWO,X + 77W,>(W0,xx )(Wx + WO,X + W,x )

2 e
+a1177|:u,x +%77(W,x) +77W,><W0,x +77W,><W,x:|

(u‘»w TWy o TW o ) =1 w,

(/llq)\\ (7“( Wy +q7\)=]cq) (33)
The boundary conditions in Egs. (25) and (26) can be
handled in the same way as

Hinged (H): u=0, w=0, dup,=0; (34)

Clamped (C): u=0, w=0, ¢=0. (35)

2.3 Solution procedure

The differential quadrature (DQ) method is employed to
convert the partial differential governing equations into a
set of algebraic equations that is then solved through an
iterative procedure. According to DQ rule, the unknown
displacement components u, w, ¢ and their k™ partial
differentiation with respect to x are approximated by

N
{u’ W, (o} = Zlm (X){um' Win gam} )
& o (36)
and y{u’wa (P} :Zci(m){um’wm’(pm},
x=x, ~m=1

where |,(x) is the Lagrange interpolation polynomials; {u,
W, ¢} are the values of {u, w, ¢} at x = X,; C(k) im is the
weight coefficient of the k™ partial differentiation of
unknown displacements with respect to x and can be
determined by a recurrence scheme (Yang et al. 2006); N is
the total number of grid points that are distributed along the
x direction in a cosine pattern as

~1)/(N-1)]}/2, i=1.2,

Applying the relationships (36) to the static governing
Egs. (28)-(30) yields

N N
ailZCi(mZ)um + auﬂ(ZCS)Wm
m=1

m=1

X, ={1—cos[7z(i N, (37)

N
>'clw, (38)
m=1

N N
van’y Cw, Y —pT-pE - P} (39)
m=1 m=1

N N N N
DICETRS Yot R o Yo )
~ im ~ im ~ im Um:l im

d ic(z) s ic(”w Ly lo0 40
11 im Pm n im m U(Di ' ( )
m=1 m=1

Similarly, the governing equations of motion (31)-(33)
of postbuckled hybrid beams can be discretized as

+ ZN:cf:)wm icfml)w;; + icfﬂf)wm Zcij;; (41)

N
+(2) (1) (1) O e
43700 3y, + 30, 3 J_z

m=1 m=1 m=1 m=1

=
z

N N N
a5 [ZC(:)Wm + lZ:C‘(:)(/’m j + {an’?zC,(ml)UOm :

m=1 m=1 m=1

a11’7 ’~ :
2 ZC Worm +aun ZC WOmZC
m=1

m=

—PT—PE- PJiC(Z)W +a11n[ic(:)um

m=1 m=1
z WmiC W, +UZC(2WmZN:C
m=1
N N
+772C WmZC W, +772C WmZC Wy, (42)
m=1 m=1

N N N N
+n2cf:>wm2cfs)wom+n2cfs>wm2Cf5)Wﬂ

m=1 m=1 m=1 m=1

N N N
DILITIS VAT L

m=1 m=1 m=1

=Iw,
a1

2 155 (i
d“ (‘ o, — [Z("
m=1

m=1

The boundary conditions (34) and (35) can also be
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rewritten as
Hinged (H)

N
up=0, w=0, dllzcl(rln)(pm =0, at x=x, (44)
m=1

N
u=0, wy=0, d,> C%, =0, at x=xy (45)
m=1

Clamped (C)
u;=0, w;=0, 01 = 0, at X=Xy, (46)
Uy = O, Uy = O, ON = 0, at X=Xu. (47)

In view of Egs. (13) and (14) and keeping Eg. (27) in
mind, incorporation of boundary conditions from Eqgs. (44)-
(47) into Egs. (38)-(40) gives the matrix system of
nonlinear algebraic equations that describes the thermo-
electro-mechanical postbuckling of piezoelectric CNTRC
beams as

(KL —ATK; =V, Kg = PKy, + Ky + Ky, )d =R (48)

where d represents the unknown displacement vector
that is composed of u;, w;, ¢;; the right-hand side vector R is
caused by the thermo-electro-mechanical load and
geometric imperfections and will automatically vanish for
perfect beams (i.e., w* = 0); K is the stiffness matrix, Kr,
Ke and Ky, are the geometric stiffness matrices that are
associated with the temperature change, actuator voltage
and in-plane force, respectively. The elements in Ky, and
Knez are linearly and quadratically dependent on unknown
displacements.

Likewise, letting d = d"e™* and removing the nonlinear
terms in Eqgs. (41)-(43), we arrive at the matrix system of
linear algebraic equations governing the free vibration of
thermo-electro-mechanically  postbuckled  piezoelectric
CNTRC beam as

iot

[KL-ATK; =V,K¢ —(P-R)Ky -&’M]d" =0 (49)

where M is the mass matrix, P, is the internal force
caused by the postbuckling deformation and is given by

2 L
Py =ay iy, + 28,77 (W, )+ Wo Wy (50)

Note that the elements of K in Eq. (49) are associated
with the postbuckling deflection w, and therefore are not
identical to those of K_ in Eq. (48). In order to solve the
free vibration problem of postbuckled piezoelectric CNTRC
beams, the static postbuckling configuration is first
determined by solving Eq. (48) using the modified Newton-
Raphson technique as detailed in Wu et al. (2016c), after
which the natural frequencies of piezoelectric CNTRC
beams in the postbuckled state can be obtained by solving
Eq. (49) through a standard eigenvalue algorithm.

3. Numerical results and discussion

In present analysis, the CNTRC host is made from a
mixture of PMMA matrix and (10, 10) single-walled carbon
nanotube (SWCNT) reinforcements. Their material
properties are temperature-dependent and given as follows
(Shen et al. 2017)

E,, =(3.52—0.0034T ) GPa,
0ty =45(1+0.0005AT ) x10° K2, (51)
P =1150kgm™, v, =0.34

El = (6.18387 —0.00286T +4.22867x107°T?
—~2.2724x10°T°| TPa,

E5p = (7.75348—0.00358T +5.30057 x 10 °T*
~2.84868x10°°T° ) TPa,

GY = (1.80126 +7.7845%x107'T —1.1279x10°T?  (52)
+4.93484x107°T* | TPa,

ol = (—1.12148 +0.02289T —2.88155x107°T?
+1.13253x10°°T%)x10°K™,

P =1400kgm=2, v, =0.175.

The CNT efficiency parameters #; used in Egs. (2)-(4)
are determined by matching the Young’s moduli and shear
modulus of CNTRCs calculated from the rule of mixture to
those obtained from the molecular dynamics simulation
(Han and Elliott 2007). As reported by Shen and Zhang
(2010), 5, = 0.137, 57, = 1.022, 53 = 0.715 for V,, =0.12, ;
= 0.142, u, = 1.626, 3 = 1.138 for V,, = 0.17, and #; =
0.141, », = 1585, 53 = 1109 for V. = 0.28. The
piezoelectric layers are assumed to be temperature-
independent with E, = 63.0 GPa, a, = 0.9x10-6 K™, dy; =
2.54x10™ m V™, p, = 7600 kg m™ and v, = 0.3.

3.1 Convergence and comparison studies

Convergence and comparison studies are first conducted
to validate the present formulations and solution method.
The dimensionless postbuckling deflections at varying
number of grid points N are calculated and compared in
Table 2 for imperfect piezoelectric FGX-CNTRC beams
under a given thermo-electro-mechanical load. w, is the
dimensionless deflection at the beam center. The minimum
number of grid points required to obtain convergent results
increases with the number of half-waves in the
imperfection. This is because the imperfection containing
more half-wave numbers has a more complex geometry
which requires more grid points to represent. For simplicity,
N =39 is used in all the subsequent studies.

Comparison study is performed by considering the free
vibration of a thermally postbuckled isotropic homogeneous
beam with different boundary conditions. The fundamental
frequency versus temperature rise curves are depicted and
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Table 2 Convergence of dimensionless postbuckling deflection w, for H-H piezoelectric FGX-
CNTRC beams with different geometric imperfections (V,, = 0.17, L/H = 60, hy/h =1/10,
AT=130K, V,=-200V, P/P,=0.2,4,=0.1)

Imperfection mode

N Sine Gl G2 G3 G4 L1 L2 L3 L4

9 2.280 2.247 2.362 2.943 2.818 2.385 2.403 2.433 2414
15 2.280 2.247 2.344 2.337 2.497 2.346 2.363 2.435 2.573
21 2.280 2.247 2.344 2.335 2.333 2.329 2.337 2.367 2.450
27 2.280 2.247 2.344 2.335 2.332 2.322 2.326 2.337 2.359
33 2.280 2.247 2.344 2.335 2.332 2.321 2.325 2.332 2.338
39 2.280 2.247 2.344 2.335 2.332 2.321 2.324 2.330 2.334
45 2.280 2.247 2.344 2.335 2.332 2.321 2.324 2.330 2.334
51 2.280 2.247 2.344 2.335 2.332 2321 2.324 2.330 2.334

w0k Isotropic, L/r =100
Present
* LiS-Retal. (2004)

] 1. H-H
5 30F 2.C-H
g 3.CC N 2
g L
g
o 20
Q
=
Q
=
[S3
210

0 " 1 " 1 " 1 "

0 20 40 60 80 100

Temperature rise parameter u

Fig. 2 Comparison of fundamental frequency for a
thermally postbuckled isotropic homogeneous beam

compared in Fig. 2 with those given by Li et al. (2004)
using the shooting method. Our results are in good
agreement with those reported in the literature.

3.2 Thermal postbuckling

This section studies the thermal postbuckling of
piezoelectric FG-CNTRC beams that are initially stressed
by a constant actuator voltage and an in-plane force. Unless
otherwise mentioned, the thermal postbuckling results, in
the form of the temperature rise AT (K) plotted against the
dimensionless central deflection w,, are presented in Figs.
3-9 for H-H FGX-CNTRC hybrid beams with L/H = 60,
hyh = 1/10, V,, = 0.17, 4y = 0.1, ¥z =-200 V and P =
0.2P;, where P, is the compressive critical buckling load of
the perfect hybrid beam at AT =0 K.

Figs. 3 and 4 investigate the effects of CNT distribution
pattern and volume fraction on the thermal postbuckling
behaviour of piezoelectric FG-CNTRC beams that contain a
sine type imperfection. The distribution pattern FGX with
more CNT reinforcements dispersed near the surfaces of the
CNTRC host is capable of carrying a higher temperature in
the postbuckling stage than the patterns UD and FGO. The

thermal postbuckling curve becomes lower as the CNT
volume fraction increases, which is opposite of the
observation for the beam without piezoelectric layers and
in-plane force (Wu et al. 2017). This is because the beam
with more CNTs possesses a greater buckling load P., and
therefore is subjected to a higher in-plane force (P = 0.2P,)
that significantly weakens the beam stiffness. It is worthy to
note that bifurcation buckling does not occur due to the
presence of the initial deflection in imperfect beams.
Moreover, the thermal postbuckling load-deflection curve
of an imperfect beam is lower than that of its perfect
counterpart at a certain range of deflection but gets higher
when the deflection is sufficiently large.

The influence of half-wave number on the thermal
postbuckling behaviour of FGX-CNTRC hybrid beams is
examined in Figs. 5(a) and (b) where the global and
localized imperfections are considered, respectively. The
half-wave number b is 2, 3, 5, 7 for G1 (L1) - G4 (L4) in
order. The results show that the thermal postbuckling
response is less affected by the imperfection with more
half-waves. To be specific, the postbuckling curves of
globally imperfect beams are almost overlapped and
extremely close to that of the perfect counterpart when the
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0 1 . 1 .
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Fig. 3 Effect of CNT distribution pattern on the thermal
postbuckling of piezoelectric FG-CNTRC beams
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Fig. 4 Effect of CNT volume fraction on the thermal
postbuckling of piezoelectric FGX-CNTRC beams

half-wave number is more than 2, while the curves of
locally imperfect beams gradually approach that of the
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(a) Global imperfections

perfect counterpart as the half-wave number increases.

Fig. 6 compares the thermal postbuckling paths of FGX-
CNTRC hybrid beams with either a G1-mode or an L1-
mode imperfection whose center is located at x = 0.1, 0.2,
0.3,0.4,0.5 (i.e,,c=0.1,0.2,0.3, 0.4, 0.5). Among those, ¢
= (.5 means the imperfection geometry is symmetric about
the beam center x = 0.5. The difference between the thermal
postbuckling curves of perfect and imperfect beams is more
significant as the imperfection center move towards the
beam center. In addition, negative deflections are observed
when the imperfection center is close to the beam end. The
thermal postbuckling curves of Gl-mode shaped beams
with ¢ = 0.1 and 0.2 are symmetrical to those with ¢ = 0.4
and 0.3, respectively. This is due to the fact that the
geometries of G1-mode imperfections at ¢ = 0.1 and 0.2 are
antisymmetric with those at ¢ = 0.4 and 0.3.

The effects of imperfection amplitude are examined in
Figs. 7(a), (b) and (c) where the sine type, Gl-mode and
L1-mode imperfections are considered, respectively. The
FGX-CNTRC hybrid beam with a higher imperfection
amplitude tends to carry a lower temperature rise within a
certain range of deflection, beyond which the imperfection
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(b) Localized imperfections

Fig. 5 Effect of imperfection half-wave number on the thermal postbuckling of piezoelectric FGX-CNTRC beams
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Fig. 6 Effect of imperfection location on the thermal postbuckling of piezoelectric FGX-CNTRC beams
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Fig. 7 Effect of imperfection amplitude on the thermal postbuckling of piezoelectric FGX-CNTRC beams

amplitude has the opposite effect. By comparing the curves
in the figures, the thermal postbuckling is most affected by
G1l-mode imperfection, followed by the sine type and L1-
mode imperfections.

Figs. 8 and 9 evaluate the influences of the applied
voltage and in-plane force on the thermal postbuckling of
FGX-CNTRC hybrid beams, respectively. A positive/
negative value of P/P. represents a compressive/tensile

50
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Fig. 8 Effect of actuator voltage on the thermal
postbuckling of piezoelectric FGX-CNTRC beams

force exerted on the beam. Both the negative voltage and
tensile force increase the beam stiffness thus lead to a
higher thermal postbuckling resistance, while the positive
voltage and compressive force have inverse effects. It
should be noted in Fig. 9 that the postbuckling curves of
P/P. = -0.2 and 0.0 do not start from AT = 0 K due to the
negative initial deflection caused by the electro-mechanical
load in these two cases.
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Fig. 9 Effect of in-plane force on the thermal postbuckling
of piezoelectric FGX-CNTRC beams
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3.3 Free vibration

We next turn our attention to the free vibration analysis
of thermo-electro-mechanically postbuckled piezoelectric
FG-CNTRC beams. Numerical results, in terms of the
dimensionless fundamental frequency w against the
temperature rise AT (K), are given in Figs. 10-17 for both
perfect and imperfect FG-CNTRC hybrid beams with
various parameters, where the intersection at o = 0
represents the critical buckling temperature rise AT, of
perfect hybrid beams.

The results in Figs. 10-17 show that the fundamental
frequencies are first reduced with the temperature rise due
to the decrease in beam stiffness. As the temperature further
increases, the growing thermal postbuckling deflection
improves the nonlinear stiffness and the fundamental
frequencies are then raised. The frequencies of perfect
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Fig. 10 Effect of CNT distribution pattern on the
fundamental frequency of thermo-electro-
mechanically postbuckled piezoelectric FG-
CNTRC beams
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Fig. 11 Effect of CNT volume fraction on the
fundamental frequency of thermo-electro-
mechanically postbuckled piezoelectric
FGX-CNTRC beams

beams become zero when AT = AT, at which the curves are
continuous but not smooth. This is because the
configurations of perfect beams in the prebuckled and
postbuckled states are totally different. However, the curves
of imperfect beams are smooth and their fundamental
frequencies are higher than those of perfect counterparts in
the whole range of AT7. This tends to be much more
prominent as the temperature approaches the critical
buckling temperature.

Figs. 10 and 11 present the variation of fundamental
frequency with the temperature rise for piezoelectric FG-
CNTRC beams with different CNT distribution patterns and
volume fractions, respectively. The FGX-CNTRC hybrid
beam has the highest fundamental frequency in the
prebuckling temperature range, followed by the UD- and
FGO-CNTRC ones. This is inversed in the postbuckling
temperature range. The results also show that the
fundamental frequency of imperfect beams increases in the
whole temperature range as the CNT volume fraction
increases, while the opposite effect is observed for perfect
beams when AT is slightly less than AT,.
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Fig. 12 Effect of imperfection half-wave number on the
fundamental frequency of thermo-electro-
mechanically postbuckled piezoelectric FGX-
CNTRC beams
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Fig. 13 Effect of imperfection location on the fundamental frequency of thermo-electro-mechanically postbuckled

piezoelectric FGX-CNTRC beams
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Fig. 14 Effect of imperfection amplitude on the fundamental frequency of thermo-electro-mechanically postbuckled

piezoelectric FGX-CNTRC beams

Fig. 12 shows the effect of half-wave number on the
fundamental frequency of FGX-CNTRC hybrid beams with
either global or local imperfections. The results of the
perfect beam are also given for a direct comparison. The
half-wave number exhibits a similar effect on the
fundamental frequency as on the thermal postbuckling. The
fundamental frequency is considerably affected by the

global imperfection when the half-wave number b = 2,
beyond which the global imperfection has almost no impact
on the fundamental frequency. In contrast, the curve of a
locally imperfect beam is continuously closer to that of the
perfect counterpart as the half-wave number increases.

The influence of imperfection location on the
fundamental frequency of FGX-CNTRC hybrid beams is
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examined in Figs. 13(a) and (b) where the G1-mode and
L1-mode imperfections are considered, respectively. The
fundamental frequency is the highest when the imperfection
is symmetrical about the beam center. The curves of
imperfect beams containing a G1-mode imperfection with ¢
= 0.1 and 0.2 coincide with those of ¢ = 0.4 and 0.3,
respectively. This is attributed to the antisymmetry of their
postbuckling configurations. However, the curve of the L1-
mode featured beam becomes closer to that of the perfect
beam when the imperfection center moves towards the
beam end.

The fundamental frequency versus temperature rise
curves are compared in Fig. 14 for FGX-CNTRC hybrid
beams with different imperfection amplitudes. Three
different imperfections, i.e., sine type, Gl-mode and L1-
mode, are considered in this example. The results indicate
that the fundamental frequency increases as the
imperfection amplitude grows. This effect is most
pronounced for the G1-mode imperfection, followed by the
sine type and L1-mode imperfections.
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Fig. 17 Effect of boundary condition on the fundamental
frequency of thermo-electro-mechanically
postbuckled piezoelectric FGX-CNTRC beams

Figs. 15 and 16 demonstrate the effects of applied
voltage and in-plane force on the fundamental frequency of
FGX-CNTRC hybrid beams, respectively. The fundamental
frequency increases in the prebuckling temperature range
but decreases in the postbuckling temperature range when
the beam is subjected to either a negative voltage or a
tensile in-plane force. The reason is illustrated in Figs. 8
and 9, which show that the beam under a negative
voltage/tensile force has a smaller postbuckling deflection
and therefore possesses a lower nonlinear stiffness in the
postbuckling temperature range.

Fig. 17 depicts the variation of fundamental frequency
with the temperature rise for FGX-CNTRC hybrid beams
with different boundary conditions. The fundamental
frequency of the H-H beam is smaller in the prebuckling
temperature range due to the lower supporting rigidity but is
greater in the postbuckling temperature range because of the
higher nonlinear stiffness, followed by the C-H and C-C
beams. The relatively lager difference between the curves of
perfect and imperfect beams indicates that the fundamental
frequency of the C-C beam is more sensitive to the
imperfection.

4. Conclusions

The free vibration of thermo-electro-mechanically
postbuckled piezoelectric FG-CNTRC hybrid beams with
geometric imperfections is studied in this paper within the
framework of FSDT. The DQ method in conjunction with
Newton-Raphson technique is used to obtain the
fundamental frequencies of FG-CNTRC hybrid beams in
the  postbuckled states.  Thermo-electro-mechanical
postbuckling of such a beam is also analyzed as a subset
problem. Comprehensive numerical results are presented in
graphical form to illustrate the influences of CNT
distribution pattern and volume fraction, geometric
imperfection parameters, thermo-electro-mechanical load
and boundary condition on the postbuckling and free
vibration behaviours of the beam. Our results show that the
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fundamental frequencies of geometrically imperfect FG-
CNTRC hybrid beams are higher than those of perfect
counterparts and this effect is much more pronounced
around the critical buckling temperature. The imperfection
with fewer half-waves but a larger amplitude leads to a
higher fundamental frequency that is most increased when
the imperfection is symmetrical about the beam center. In
addition, the fundamental frequency is raised/reduced in the
prebuckling/postbuckling temperature range when the beam
is subjected to either a negative voltage or a tensile force,
while the positive voltage and compressive force have
inverse effects. The results also indicate that the CNT
distribution pattern and volume fraction have significant
impacts on the free vibration of postbuckled piezoelectric
FG-CNTRC beams.
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