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1. Introduction 

 
Steel concentric braced frames (CBFs) are frequently 

used as lateral load resisting systems in structural frames. 
CBFs can provide strength, stiffness, and ductility of 
structures due to their ability of deforming inelastically and 
enduring large cyclic demands of earthquake loadings. 
Based on AISC design codes (AISC 2010a and 2016), 
Special Concentrically Braced Frames (SCBFs), and 
Ordinary Concentrically Braced Frames (OCBFs) are two 
types of CBFs that should follow certain design rules. 
According to demands of design earthquake, OCBFs are 
expected to experience limited inelastic deformation in their 
members and connections, while SCBFs are expected to 
withstand significant inelastic deformation without 
considerable resistance reduction in their members and 
connections. 

Capacity design methods require that plastic 
deformations must occur in braces; thus other frame 
members such as columns and beams must act elastically 
during earthquake. Several analytical and experimental 
studies such as (Jain and Goel 1978, Shaback and Brown 
2003, Fell 2008, Lai et al. 2010, Hsu et al. 2011, D’Aniello 
et al. 2013) have been done to investigate inelastic behavior 
and energy dissipation of braces. In this regard, Tremblay 
(2002) has evaluated the experimental studies on 
phenomena such as buckling strength of braces, post-
buckling behavior, maximum tensile strength, out-of-plane 
deformation, and fracture life of braces. His conclusions 
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reveal that brace slenderness is the prevailing parameter 
affecting the seismic behavior of braces. Based on 
dissipated energy in braces of different section and 
slenderness, Lee and Bruneau (2005) demonstrate that 
compressive strength and energy dissipation capacity in 
compressive braces decrease dramatically for slenderness 
ratio over 80. In order to examine buckling and fracture 
behavior of different section shapes of braces, Fell et al. 
(2009) infer that width-to-thickness ratio is the most 
important parameter affecting the seismic behavior of brace 
members. Also, Tirca and Chen (2014) show that square 
HSS braces with larger slenderness ratios and lower width-
to-thickness ratios have a longer fracture life. By testing the 
full scale X-braced specimens composed of double angle 
braces, Kanyilmaz (2017) demonstrates thatthe slenderness 
of compression members should be estimated withmore 
realistic boundary conditions.He also focuses on the 
stiffness and post-buckling influence of compression 
diagonal members on the global performance of concentric 
X-braced frames. 

Quite a few experimental and analytical works have 
been done to enhance the ductile behavior of different 
geometric types of edge gusset plates, as one of the crucial 
factors influencing on the steel frame seismic behaviors. 
Published remarkable results such as (Astaneh-Asl et al. 
1982, 1985, Astaneh-Asl 1998) show that, during the brace 
out of plane buckling, a linear clearance which corresponds 
to twice the thickness of edged-gusset plates (i.e., 2tp), can 
provide an appropriate condition for end rotation of the 
brace. In fact this conclusion is drawn from full scale tests 
on specimens made of double angle back to back braces that 
were subjected to cyclic loadings. In another study, in order 
to investigate different end rotation conditions of braces, 
some specimens composed of face-to-face and back-to-back 
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Evaluation of seismic criteria of built-up special concentrically braced frames 

This research shows that different built-up brace 
configurations, such as face-to-face and back-to-back 
sections, can affect the cyclic and failure behaviors of 
BSCBFs. For single diagonal BSCBFs, double channel 
back-to-back braces are preferred in comparison to the face-
to-face models, especially due to their failure results. 
However, diagonal double angle face-to-face braces act 
much better than the similar back-to-back ones because of 
experiencing the lower plastic equivalent strains of the 
brace. FE analysis for X-braced frames reveals the 
importance of using face-to-face built-up braces instead of 
the back-to-back ones. 
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