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1. Introduction 
 

Functionally Graded Material (FGM) belongs to a class 

of advanced materials characterized by variation in 

properties as the dimension varies. Currently, FGMs have 

been widely applied in aerospace and nuclear industries. 

The overall properties of FGM are unique and different 

from any of the individual materials that form it. There is a 

wide range of applications for FGM which is expected to 

increase as the cost of material processing and fabrication 

processes are reduced. Pure metals are of little use in 

engineering applications because there are conflicting 

property requirements for different applications. For 

example, an application may require a material that is hard 

as well as ductile, but no such material exists in nature. To 

solve this problem, a combination (in molten state) of one 

metal with other metals or non-metals is used (Mahamood 

and Akinlabi 2012). As a new class of engineering 

materials, FGM has also been subjected to various types of 

studies including free vibration, linear and nonlinear 

buckling, and thermo-mechanical analyses (Farid et al. 

2010, Jagtap et al. 2011, Khalili and Mohammadi 2012, 

Shahba and Rajasekaran 2012, Shahba et al. 2011, Chaht et 

al. 2015, Khayat et al. 2016a, b, 2017a, b, Mahmoud and 
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Tounsi 2017). Many studies on the free vibration analysis of 

FGMs have been reported in the literature. 

Various aspects of the dynamic behavior of composite 

materials such as laminated composite materials and FGM 

have been studied in many studies. Patel et al. (2005) 

researched the free vibration characteristics of functionally 

graded elliptical cylindrical shells using a higher-order 

theory through the thickness approximations of both in-

plane and transverse displacements. The finite element 

employed in the study was based on field-consistency 

approach and free from shear and membrane locking 

problems. The strain–displacement relations were 

accurately introduced in the formulation without making 

any approximation in the thickness coordinate to radius 

ratio. Ganapathi (2007) studied the dynamic stability 

behavior of FGM spherical shells subjected to external 

pressure load. The material properties were graded in the 

thickness direction according to the power-law distribution 

in terms of volume fractions of the constituents of the 

material. The structural model was based on shear 

deformation theory and geometric non-linearity was 

considered in the formulation by using von Karman’s 

assumptions. Nanda and Sahu (2012) analyzed the free 

vibration response of laminated composite shells with 

delamination using the finite element method based on first-

order shear deformation theory. The shell theory used was 

the extension of a dynamic, shear deformable theory 

according to Sanders’ first approximation for doubly curved 

shells, which can be reduced to Love and Donnell’s theories 

by means of tracers. A dynamic analysis of doubly curved 

shell structures was conducted by Tornabene et al. (2014). 

The partial differential system of equations was solved by 
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using the Generalized Differential Quadrature (GDQ) 

method. The paper focused on functionally graded doubly-

curved shells and panels using various higher-order 

equivalent single layer theories and different through the 

thickness volume fraction distributions. Su et al. (2014) 

proposed a method for determining the natural frequencies 

of cylindrical, conical, and spherical shells with arbitrary 

subtended angle and general boundary conditions. The 

formulation was derived by the modified Fourier series in 

conjunction with Rayleigh-Ritz method according to the 

first-order shear deformation shell theory. 
Many studies have been conducted concerning modeling 

and the effects of stiffeners on the behavior of different 
structures under various conditions; including among them, 
the following studies can be mentioned (Duc 2016, 
Rajasekaran 2013, Damnjanovic et al. 2017 and Qin et al. 
2017). 

Civalek (2017) solved the differential equations by the 

differential quadrature and discrete singular convolution 

methods. Governing equations of motion were obtained 

based on two different shell theories such as Love’s shell 

theory and first-order shear deformation theory. Jin et al. 

(2015) presented a modified Fourier–Ritz approach for free 

vibration analysis of laminated functionally graded shallow 

shells with general boundary conditions in the framework of 

first-order shear deformation shallow shell theory. The 

displacement and rotation components of the shells were 

represented by the modified Fourier series consisting of 

standard Fourier cosine series and several closed-form 

auxiliary functions. Lee and Kwak (2015) used the 

Rayleigh–Ritz method to derive a dynamic model for the 

free vibration analysis of a circular cylindrical shell. The 

dynamic model was constructed according to Donnell’s 

theory. Tornabene et al. (2015) compared the results 

obtained from the following methods: classical two-

dimensional (2D) and three-dimensional (3D) finite 

elements (FEs), classical and refined 2D generalized 

differential quadrature (GDQ). Then they presented an 

exact three-dimensional solution for free vibration analysis 

of one-layered and multilayered composite shell panels. 

Vibration modes were investigated to make a comparison 

between the results obtained from the FE and GDQ 

methods (numerical solutions) and those obtained from the 

exact three-dimensional solution. Wali et al. (2015) studied 

the free vibration response of functionally graded material 

(FGM) shell structures using an efficient 3d-shell model 

based on a discrete double directors shell element. The 

mechanical properties of the shell structure were assumed to 

vary continuously in the thickness direction according to the 

general power-law distribution in terms of the volume 

fractions of the constituents. The fundamental equations for 

the FGM shell structures were derived using virtual work. 

Tornabene et al. (2016) presented a numerical procedure 

based on the Generalized Differential Quadrature (GDQ) 

method to solve the strong form of the differential equations 

that govern the free vibration problem of some structural 

elements. In semi-analytical finite strip method to 

approximate displacements and rotations in the direction in 

which geometry and material properties do not change, 

Fourier series are taken into account, while, in the other 

direction, the structure is discretized into several finite 

elements, which can be of low or high order types. One of 

the advantages of the finite strip method in comparison to 

other numerical methods is less number of degrees of 

freedom required for the analysis of shells without 

imperfection, so that the cost of analyzes is reduced and the 

speed of analysis increases. 

The above review demonstrates that some literature 

exists on the vibration of functionally graded shells but 

most of it is restricted to a single shell theory. It should also 

be emphasized that most of previous studies did not indicate 

which shell theories have the best results for free vibration 

analysis. The present paper is concerned with the free 

vibration analysis of eccentrically stiffened functionally 

graded cylindrical shells. First, the fundamental equations 

for the free vibration analysis of stiffened shell segments 

were derived based on classical shell theory using the 

smeared stiffener technique and adjacent equilibrium 

criterion. The semi-analytical finite strip method was used 

to obtain the natural frequencies based on five different 

shell theories (Donnell 1934, Reissner 1941, Sanders 1959, 

Novozhilov 1964 and Teng and Hong 1998). The results 

were also compared with 3D finite element results referred 

to as exact solution. Semi-analytical numerical comparisons 

were carried out between different theories to explore their 

differences as well as similarities. Particular attention was 

paid to the effect of using a different set of linear strain–

displacement relations on the predicted free vibration of 

eccentrically stiffened functionally graded cylindrical 

shells. Then, the effects of various parameters such as 

power-law index of functionally graded material, geometry 

of shell, and geometry of stiffeners on the vibration of the 

shells were discussed. 
 

 

2. Theoretical development 
 

2.1 Shell geometry and coordinate system 
 

The position of a shell point is given by: θ as the 

circumferential coordinate, s as the meridional coordinate, 

and z as the coordinate normal to the middle surface which 

are shown in Figs. 1(a)-(b). 

It should be noted that, owing to the weakness of 

composite material in shear stress, in this article, the first-

order shear deformation theory has been utilized. Therefore, 

the displacement field corresponding to the first-order shear 

deformation theory is given as 
 

𝑢  𝑠, 𝜃, 𝑧 = 𝑢 𝑠, 𝜃 + 𝑧𝛽𝑠 𝑠, 𝜃  

𝑣  𝑠, 𝜃, 𝑧 = 𝑣 𝑠, 𝜃 + 𝑧𝛽𝜃 𝑠, 𝜃  

𝑤  𝑠, 𝜃, 𝑧 = 𝑤 𝑠, 𝜃  

(1) 

 

where, u, v and w are displacements in the middle plane of 

the laminate and 𝛽𝑠 and 𝛽𝜃  are the rotations of the normal 

axis at the middle plane around the θ and s axes, 

respectively. 
 

2.2 Functionally graded materials 
 

It is assumed that the FGM cylindrical shell is made of a 

mixture of a metal phase (denoted by m) and a ceramic 
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(a) 3D shell 

 

 

(b) Stringer stiffeners 

Fig. 1 Geometry and coordinate system of stiffened FGM 

 

 

phase (denoted by c), where the material composition varies 

only smoothly along its thickness direction. Thus, the 

materials properties of FGM, such as Young’s modulus E or 

Poisson’s ratio υ, can be expressed as (Sofiyev (2010)-Torki 

et al. (2014)) 
 

eff m m c cF (z) F V (z) F V (z) 
 (2) 

 

where 𝐹𝑒𝑓𝑓  is the effective mechanical or physical 

property and 𝐹𝑚  and 𝐹𝑐  are the material properties of 

metal and ceramic, respectively. z is the coordinate in the 

normal to the middle surface. Also, 𝑉𝑚  and 𝑉𝑐  stand for 

the volume fractions of metal and ceramic, respectively that 

are related by 
 

m cV (z) V (z) 1 
 (3) 

 

The ceramic phase has a greater elasticity modulus, and 

lower density, and lower Poisson’s ratio than the metal 

phase. Vm  can be expressed by the power law 

 
Nfgm

m

z 1
V , Nfgm 0

h 2

 
   
   

(4) 

 

where Nfgm is the power law exponent, which is a critical 

parameter in controlling the distribution of the constituents. 

If the effective elasticity modulus of FGM increases with 

Nfgm, the material is transformed into ceramic. Similarly, if 

the effective elasticity modulus of FGM decreases with 

Nfgm, the material is transformed into metal. In this study, 

the temperature has been assumed to be equal to the 

reference temperature (the environment temperature), i.e., 

300 K. The equations used to estimate the effective material 

properties (the effective Young’s modulus 𝐸𝑒𝑓𝑓 ,  the 

effective mass density 𝜌𝑒𝑓𝑓 , the effective Poisson’s ratio 

𝑣𝑒𝑓𝑓 , the effective shear modulus 𝐺𝑒𝑓𝑓 ) are based on the 

power law distribution and can be expressed as 

 

Nfgm

eff c m m

Nfgm

eff c m m

Nfgm

eff c m m

Nfgm

eff c m m

z 1
E (E E )( ) E

h 2

z 1
( )( )

h 2

z 1
( )( )

h 2

z 1
G (G G )( ) G

h 2

   

      

       

   

 (5) 

 

2.3 Semi analytical method 
 

In semi-analytical finite strip method, to approximate 

displacements and rotations in the direction in which 

geometry and material properties do not change, Fourier 

series are used, while, in the other direction, the structure is 

discretized into several finite elements which can be of low 

or high order types. In the present analysis the shell is 

divided into several closed strips with their nodal lines in 

the circumferential direction. 

The circumferential variables of the global displace-

ments (u, v, w, 𝛽𝑠, and 𝛽𝜃 ) can be described by a suitable 

Fourier series expansion which generally consists of both 

symmetric and anti-symmetric terms as 
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(6) 

 

where 𝜃 stands for the circumferential angular coordinate, 

n is the circumferential wave number, NH is the number of 

harmonic terms in the truncated series, and 𝑐𝑛  and 𝑠𝑛  are 

coefficients of Fourier series. 

 

2.4 Comparison with other theories for 
general thin shells 

 

The strains in an arbitrary point of shell thickness and 

with distance z from mid-surface can be expressed in terms 

of mid-surface strains 𝜀𝑠𝑠 , 𝜀𝜃𝜃  and 𝛾𝑠𝜃  and also mid-

surface changes of curvatures 𝜅𝑠𝑠 , 𝜅𝜃𝜃  and 𝜅𝑠𝜃 . 

 

ss ss ss s s sz z z                   
 

(7) 

 

The generalized strain vector is as follows 

 

ss s ss s z sz{ }             
 (8) 

 

where linear strain-displacement relations are (Teng and 

Hong 1998) 
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ss s
R

u 1 v w v 1

R

u
    

s R s
 

   
      

  


   
(9) 

 
moreover, the transverse shear strains can be calculated as 

follows 

 

sz s ss z         
 (10) 

 
The semi-analytical method is used to obtain the natural 

frequencies based on five different shell theories (Donnell, 

Reissner, Sanders, Novozhilov, and Teng). Differences 

between different linear strain–displacement relations are 

only found in the expressions of curvatures, twisting 

curvature, and the transverse shear strains (Teng and Hong 

1998). The differences are highlighted in Table 1. 

The vector of stress resultants is defined as 

 

 
T

ss s ss s sz zN   N  N  M   M   M  Q  Q     
 

(11) 

 
𝑁𝑠𝑠 ,   𝑁𝜃𝜃 and 𝑁𝑠𝜃 are the in-plane meridional, 

circumferential, and shearing force resultants per unit 

length, respectively. 𝑀𝑠𝑠 , 𝑀𝜃𝜃  and 𝑀𝑠𝜃  are the analogous 

couples, while 𝑄𝑠𝑧  and 𝑄𝑠𝜃  are the transverse shear force 

resultants per unit length. The constitutive equation relates 

internal stress resultants and couples to generalized strain 

components on the middle surface. 
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(12) 

 
𝐴𝑖𝑗  is extensional stiffness, 𝐷𝑖𝑗  is bending stiffness, and 

𝐵𝑖𝑗  is bending-extensional coupling stiffness (Torki et al. 

2014) and are defined as 
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(14) 

 

And the local stiffness of the stiffener is 
 

s s sE A z
C

s


 
(15) 

 

In Eqs. (13), (14), and (15), 𝐸𝑠 is the elastic modulus in the 

axial direction of the corresponding stiffener, the spacing of 

the stiffeners is denoted by s, the quantities of 𝐴𝑠 are the 

cross section areas of the stiffeners, and 𝐼𝑠 are the second 

moments of cross section areas and, 𝑧𝑠 are eccentricities of 

the stiffeners with respect to the middle surface of the shell. 

𝐾𝑠 is the shear correction factor. 

 

 

Table 1 Comparison of curvatures and twisting curvature 

Theory 𝜷𝒔𝐬 𝜷𝜽𝜽 𝜷𝒏 𝜷𝒎 𝜿𝒔𝐬 𝜿𝜽𝜽 𝜿𝒔𝜽 
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The equations of motion with the related boundary 

conditions can be obtained by using the Hamilton principle, 

which is expressed as 
 

2

1

t

t

( T U)dt 0  
 

(16) 

 

where 𝑡1  and 𝑡2  are two arbitrary times, 𝛿  is the 

variational operator, T and U are the kinetic and potential 

energies of the FGM shell, respectively. The virtual work of 

the internal forces, including the nonzero initial stresses, 

can be obtained from the variations of the shell elastic 

potential energy as 
 

ss ss s s

sz szz z z

dzd dU R
   

  

      
 

   

 
     

  
 

(17) 

 

By taking the integral of Eq. (17) in the thickness 

direction and by using Eq. (12), the internal virtual work 

can be written as 
 

o

s

ss s

ss

l 2
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int ss s

0 0

ss s

s

ss

s

W  (N N N

M k M k M k

 Q Q Rd ds)

 

 



 

 

 

      

     

    

 

 

(18) 

 

in which 𝑙𝑜 is the length of shell generator. Discretization of 

𝛿𝑈 by using Eq. (18) gives 

 
nstrip

L T

int j ej j

j 1

W  ( ) K


   
 

(19) 

 

in this equation, ∆𝑗  contains all unknown coefficients of 

displacements and rotations of jth strip and 𝛿∆𝑗  represents 

its virtual counterpart, also 𝐾𝑒𝑗  is the linear stiffness 

matrix of jth strip. For the variation of total kinetic energy 

 

eq

V

T (z)[u u v v w w]       
 

(20) 
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where 
 

s
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I h
    

 
(22) 

 

and 
 

h/2

i

i eq

h/2

I (z)z dz, i 0,1,2


  
 

(23) 

 

𝜌𝑠  is the density of isotropic stiffeners. The global 

stiffness and mass matrices of the stiffened shell structure 

(K, M) are achieved by assembling the stiffness and mass 

matrices of the shell and stiffener elements. Consequently, 

the following eigenvalue problem is obtained for the 

stiffened shell structure with natural frequency of ω. 
 

2(K M)U 0 
 (24) 

 

 

3. Results and discussion 
 

In this section, some results and considerations 

concerning the free vibration problem of the FGM shells are 

presented. Based on the presented formulations, a computer 

program has been prepared in MATLAB to compute the 

global matrix and solve eigen-problems for free vibration. 

To verify the accuracy of the present method, some 

comparisons with available data in the literature have been 

performed. 
 

3.1 Verification of solution method 
 

3.1.1 FGM cylindrical shell 
In order to demonstrate the accuracy of the present 

semi-analytical approach, Table 2 compares the free 

vibrations of functionally graded simply supported 

cylindrical shells with the results given by Patel et al. 

(2005) and Loy et al. (1999). The results have been 

calculated by Sanders’s theory in the two studies. It was 

assumed that FGM shells were made of a mixture of 

zirconium (ZrO2) and titanium (Ti-6Al-4V). The material 

 

 

Table 2 Comparison of natural frequencies in (Hz) for simply supported functionally graded circular 

cylindrical shells (h = 0.002 m, R/h = 500, L/R = 20) 

 Nfgm = 0.5 Nfgm = 1 Nfgm = 5 

Harmonic 

Number (n) 

Loy 

(1999) 

Patel 

(2005) 

Present 

study 

Loy 

(1999) 

Patel 

(2005) 

Present 

study 

Loy 

(1999) 

Patel 

(2005) 

Present 

study 

2 4.517 4.520 4.490 4.480 4.484 4.461 4.407 4.410 4.389 

4 7.097 7.100 7.071 7.038 7.041 7.028 6.926 6.928 6.910 

6 16.594 16.605 16.574 16.445 16.466 16.448 16.192 16.203 16.176 

8 30.023 30.062 30.003 29.771 29.811 29.800 29.296 29.334 29.272 

10 47.301 47.339 47.313 46.905 46.943 46.930 46.155 46.193 46.133 
 

739



 

Majid Khayat, Seyed Mehdi Dehghan, Mohammad Amir Najafgholipour and Abdolhossein Baghlani 

 

 

properties are listed in Table 3. 

It is clear that the results of the present method are in in 

good agreement with those of Loy (1999) and Patel (2005). 

The maximum relative error is about 2.76%. 
 

3.1.2 Isotropic stiffened cylindrical shell 
In this section, the free vibration analysis is carried out 

for cylindrical shells having two fixed ends (F-F) and 

simple ends (S-S). The material properties and geometry of 

the shell are summarized in Table 4 according to Naghsh et 

al. (2015). 

Table 5 shows the natural frequencies of the un-stiffened 

cylinder and those of cylinders stiffened with 16 concentric 

and eccentric stringers. The results have been calculated by 

Reissner’s theory in the two studies. 

It can be concluded from Table 5 that the maximum 

difference between the results of the current study and those 

of Naghsh et al. (2015) is limited to 1.8% for the case of 

no-stringer, 1.86% for the case of exterior stringer, and 

1.76% for the case of interior stringer. One reason for the 

observed difference between the results of these two studies 

is that Naghsh et al. (2015) used Lagrange polynomials to 

interpolate the displacement variables for both the 

circumferential and meridian directions of the shell element. 

In addition, stringer stiffeners were modeled as discrete 

curved beams to investigate the free vibration of stiffened 

shells. 
 

3.2 Cylindrical shells 
 

In this study, the effects of various parameters such as 

geometries and material properties on natural frequencies of 

 

 

Table 4 Mechanical and geometrical properties of the 

cylindrical shell with equally spaced stringers 

L = 394.46 mm R = 49.76 mm h = 1.651 mm E = 68.95 GPa 

ρ = 2760 Kg/m3 v = 0.3 h = 5.334 mm b = 3.175 mm 
 

 

 

 

 

cylindrical shell have been investigated. The properties of 

constituents, including the Young’s modulus and Poisson’s 

ratio are given in Table 6. The boundary conditions are 

pined-pined and radius of the shell is 304.875 mm. 

 

3.2.1 Unstiffened cylindrical shells 
In this section of the problem, the effects of different 

thicknesses on natural frequency obtained by different shell 

theories are investigated. The natural frequencies for the 

first ten modes have been presented in Table 7(a)-(c). 

It appears that the difference between the results 

obtained from different variation shell theories increases 

with the increase of thickness. As can be observed from the 

results in Table 7, Novozhilov and Donnell shell theories 

gave the lowest and largest values, respectively. The 

difference between the results may be due to the different 

deformation simulation accuracy of different shell theories. 
 
 

Table 6 Mechanical properties of nickel and alumina 

Material E (GPa) υ ρ (Kg/m3)
 

Nickel 380 0.31 3800 

Alumina 70 0.338 2702 
 

 

 

 

Fig. 2 Three dimensional mesh elements of the 

cylindrical shell 
 

 

Table 3 Material properties of the FGM cylindrical shell 

Elastic modulus 

of metal 

Em (GPa) 

Elastic modulus 

of ceramic 

Ec (GPa) 

Density of 

metal 

ρm (Kg/m3) 

Density of 

ceramic 

ρc (Kg/m3) 

Poisson’s ratio 

of metal 

vm 

Poisson’s ratio 

of ceramic 

vc 

207.788 205.098 8166 8900 0.317756 0.31 
 

Table 5 The first four natural frequencies of the cylinder with 16 stringers in (Hz) 

Boundary 

condition 

Stringer 

type 

ω1 ω2 ω3 ω4 

Naghsh 

(2015) 

Present 

study 

Naghsh 

(2015) 

Present 

study 

Naghsh 

(2015) 

Present 

study 

Naghsh 

(2015) 

Present 

study 

S-S 

No-stringer 702 696 1272.00 1262 1489 1478 1641 1626 

Exterior stringer 703 696 1093.00 1083 1421 1404 1671 1641 

Interior stringer 605 599 1026.00 1016 1359 1339 1373 1361 

F–F 

No-stringer 1150 1129 1367.00 1354 1922 1889 2316 2297 

Exterior stringer 1157 1149 1248.00 1226 2023 2004 2024 2012 

Interior stringer 969 960 1109.00 1090 1606 1595 1906 1875 
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Table 7 The effects of different thicknesses on natural 

frequencies obtained by different shell theories 

(Nfgm = 10, L/R = 3) 

 

(a) h = 0.183 mm 

Mode Donnell Reissner Sanders Novozhilov Teng 

1 37.745 37.340 37.183 37.040 37.083 

2 38.669 38.233 38.090 37.923 38.008 

3 44.171 43.581 43.477 43.307 43.415 

4 44.616 44.014 43.907 43.728 43.826 

5 53.742 53.000 52.858 52.581 52.778 

6 60.573 59.707 59.561 59.227 59.440 

7 65.028 64.085 63.942 63.386 63.773 

8 78.001 76.800 76.620 75.964 76.488 

9 92.449 91.016 90.767 89.821 90.486 

10 92.516 90.969 90.703 89.861 90.328 
 

 

(b) h = 2.439 mm 

Mode Donnell Reissner Sanders Novozhilov Teng 

1 63.136 63.136 63.136 63.136 62.505 

2 66.862 66.862 66.862 66.862 65.525 

3 75.284 75.284 75.284 75.284 73.026 

4 93.502 93.502 93.502 93.502 89.762 

5 96.701 96.701 96.701 96.701 91.866 

6 123.967 123.967 123.967 123.967 116.529 

7 153.901 153.901 153.901 153.901 143.128 

8 155.801 155.801 155.801 155.801 143.337 

9 191.736 191.736 191.736 191.736 174.480 

10 231.591 231.591 231.591 231.591 208.432 
 

 

(c) h = 4.878 mm 

Mode Donnell Reissner Sanders Novozhilov Teng 

1 85.132 83.870 83.691 83.244 83.467 

2 97.665 96.134 96.003 94.841 95.327 

3 104.024 102.227 102.068 100.903 101.001 

4 140.631 137.974 137.824 136.118 136.116 

5 153.866 150.938 150.791 148.387 149.529 

6 187.905 184.164 183.721 180.737 182.229 

7 243.542 238.405 237.904 233.778 235.690 

8 275.455 269.618 268.412 263.757 266.280 

9 306.762 299.949 297.891 291.759 294.825 

10 377.227 368.838 365.944 358.679 362.312 
 

 

 

 

Also the difference between natural frequencies obtained by 

different shell theories for higher modes is more than that of 

lower modes. With the aim of determining the accuracy of 

different theories, a number of analyses have been 

conducted by finite element software ABAQUS using 

around 39500 eight-nodded C3D8R solid elements with 

fine mesh (Fig. 2). In order to analyze the shells using 

three-dimensional element of ABAQUS software, shell is 
 

 

 

(a) 
 

 

(b) 
 

 

(c) 

Fig. 3 The effect of thickness and Nfgms: (a) Nfgm = 0; 

(b) Nfgm = 5; (c) Nfgm = 30 

 

 

Table 8 Comparison of the tenth frequency obtained by different theories and 3D solid elements for 

various thicknesses (mm) 

Thickness Donnell Reissner Sanders Novozhilov Teng ABAQUS(3D) 

0.183 92.516 90.969 90.703 89.861 90.328 90.682 

2.439 231.591 231.591 231.591 231.591 208.432 231.582 

4.878 377.227 368.838 365.944 358.679 362.312 364.790 
 

741



 

Majid Khayat, Seyed Mehdi Dehghan, Mohammad Amir Najafgholipour and Abdolhossein Baghlani 

Table 9 The effect of length-to-radius ratio on natural 

frequencies obtained by different shell theories 
 

(a) L/R = 1 

Mode Donnell Reissner Sanders Novozhilov Teng 

1 229.614 223.481 222.306 220.884 221.316 

2 238.521 231.910 230.739 228.277 229.245 

3 244.632 237.712 236.327 233.580 234.916 

4 267.125 259.423 257.781 254.054 256.132 

5 286.076 277.182 275.597 272.041 274.064 

6 310.641 300.676 298.911 294.851 296.998 

7 356.909 345.284 342.640 337.978 340.998 

8 365.403 353.476 349.848 345.492 348.258 

9 429.125 415.011 410.702 405.583 408.514 

10 463.162 447.697 443.121 437.610 440.088 
 

 
(b) L/R = 3 

Mode Donnell Reissner Sanders Novozhilov Teng 

1 69.935 68.067 67.604 66.794 66.927 

2 76.885 74.754 74.201 73.425 73.433 

3 88.396 85.895 85.152 84.330 84.417 

4 119.792 116.315 115.035 113.648 113.902 

5 120.860 117.103 115.909 114.544 114.820 

6 162.072 156.810 154.863 153.486 153.781 

7 210.407 203.554 201.995 199.049 199.428 

8 214.746 207.736 204.706 202.866 202.952 

9 265.332 256.287 252.344 249.673 249.964 

10 326.621 315.349 310.466 304.841 306.997 
 

 
(c) L/R = 6 

Mode Donnell Reissner Sanders Novozhilov Teng 

1 40.296 39.083 38.596 38.171 38.384 

2 54.351 52.624 52.016 51.423 51.719 

3 54.533 52.773 52.168 51.549 51.858 

4 82.116 79.409 78.510 77.553 78.031 

5 112.655 108.928 107.165 106.035 106.600 

6 117.616 113.532 111.873 110.567 111.220 

7 159.895 154.304 151.464 149.603 150.534 

8 187.577 180.942 177.502 175.247 176.375 

9 187.577 180.481 177.153 175.048 176.101 

10 187.577 180.276 176.560 174.433 175.497 
 

 

 

 

meshed to the appropriate number in three directions: 

longitudinal, circumferential and thickness. In the direction 

of thickness, the shell is divided into at least 2400 solid 

elements so that constant properties can be attributed to 

each element. The tenth mode has the highest difference in 

the results of Table 7 As a result, a comparison of the results 

of this mode with those obtained from ABAQUS software 

has been presented in Table 8. 

According to Table 8, it can be observed that the 

frequency values obtained from Sanders’s theory have the 

maximum conformity with the values obtained from 3D 

analysis, and in comparison with the other shell theories 

studied in this research, they have a higher precision in the 

free vibration analysis of cylindrical shells. 

In this part of the study, the effects of thickness on 

natural frequency for different modes in the clamped-

clamped FGM cylindrical shell have been investigated by 

using Sanders’s theory. In addition, three different 

thicknesses of 0.183, 2.439, and 4.878 mm and three 

different Nfgms of 0, 5, and 30 have been considered. The 

radius and length of the cylinder are 190.5 mm. 

When the thickness varies from 0.183 to 4.878 mm, as 

shown in different parts of Figs. 3(a)-(c), the values of 

natural frequencies decrease in a similar way, as is the case 

for pure isotropic (Nfgm = 0) and FGM shells. The effect of 

length-to-radius ratio on the results of various theories is 

demonstrated in different parts of Tables 9(a)-(c) for h = 

4.878 mm and Nfgm = 5. 

It can be seen that the deeper the cylindrical shell, the 

higher the difference between the results obtained by 

different shell theories. It appears that the value of the 

natural frequency obtained by Donnell and Sanders’s 

theories has the highest and lowest sensitivity to length-to-

radius ratio, respectively. With the aim of validating the 

accuracy of different theories, a number of analyses have 

been conducted by the help of finite element software 

ABAQUS using solid elements. The tenth mode has the 

highest difference in the results of Table 9 As a result, a 

comparison of the results of this mode with those obtained 

from ABAQUS software has been presented in Table 10. 

According to Table 10, it can be observed that the 

frequency values obtained from Sanders and Teng’s theories 

have the maximum conformity with the values obtained 

from 3D analysis, and compared to the other shell theories 

studied in this research, they have a higher precision in the 

free vibration analysis of cylindrical shells. 

In the next section, the effects of length-to-radius ratio 

on natural frequency of cylindrical shells with different 

Nfgms will be investigated. The results achieved by using 

Sanders’s theory have been presented for different length-

to-radius ratios which are 1, 3, 6 as well as different Nfgms 

 

Table 10 Comparison of the tenth frequency obtained by different theories and 3D solid elements for 

various length to radius ratios (L/R) 

L/R Donnell Reissner Sanders Novozhilov Teng ABAQUS(3D) 

1 463.162 447.697 443.121 437.610 440.088 442.009 

3 326.621 315.349 310.466 304.841 306.997 308.517 

6 187.577 180.276 176.560 174.433 175.497 176.181 
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(a) 

 

 

(b) 

 

 

(c) 

Fig. 4 The effect of length to radius ratio on frequencies: 

(a) Nfgm = 0; (b) Nfgm = 5; (c) Nfgm = 30 

 

 

 

= 0, 5 and 30. The effects of length to radius ratio on 

increasing or decreasing the frequency are shown in Figs. 

4(a)-(c). 

Hence, it is concluded from Fig. 5 that the shell 

frequency reduces when the length to radius ratio increases 

and this is the case for all of the considered modes. 

However, this reduction does not have a significant relation 

with the increase of length-to-radius ratio. Moreover, the 

 

 

Table 11 The effect of Nfgm on natural frequencies 

obtained by different shell theories 
 

(a) Nfgm = 0 

Mode Donnell Reissner Sanders Novozhilov Teng 

1 47.195 46.770 46.674 46.624 46.624 

2 49.438 48.988 48.889 48.815 48.825 

3 54.125 53.633 53.525 53.439 53.454 

4 57.827 57.296 57.133 57.093 57.104 

5 70.092 69.448 69.237 69.195 69.216 

6 73.510 72.826 72.584 72.554 72.584 

7 85.034 84.240 83.962 83.928 83.954 

8 102.112 101.142 100.785 100.775 100.805 

9 111.869 110.805 110.403 110.403 110.435 

10 121.086 119.923 119.500 119.488 119.524 
 

 
(b) Nfgm = 5 

Mode Donnell Reissner Sanders Novozhilov Teng 

1 30.602 30.209 30.138 29.587 29.921 

2 32.273 31.855 31.757 31.152 31.485 

3 34.897 34.412 34.336 33.682 34.023 

4 37.910 37.334 37.188 36.583 36.818 

5 46.041 45.271 45.061 44.421 44.573 

6 47.325 46.482 46.161 45.608 45.747 

7 55.905 54.871 54.331 53.781 53.908 

8 67.160 65.734 65.089 64.607 64.628 

9 72.115 70.268 69.795 69.226 69.382 

10 79.655 77.294 76.854 76.331 76.549 
 

 

 

Fig. 5 The effect of Nfgm on natural frequencies of FGM 
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Table 11 Continued 

 
(c) Nfgm = 30 

Mode Donnell Reissner Sanders Novozhilov Teng 

1 26.314 25.637 25.436 25.298 25.380 

2 28.182 27.383 27.163 27.084 27.110 

3 29.546 28.682 28.374 28.327 28.375 

4 33.393 32.394 32.052 31.928 31.991 

5 39.745 38.485 38.079 37.933 38.016 

6 40.709 39.410 38.880 38.740 38.799 

7 49.507 47.923 47.266 47.048 47.065 

8 59.514 57.607 56.691 56.451 56.543 

9 60.369 58.403 57.502 57.208 57.345 

10 70.607 68.306 67.251 66.910 67.007 
 

 

 

variation trend of the shell frequency with changes in the 

thickness is approximately identical with the trend of 

different Nfgms. 

The effect of the power-law index on the different 

results of various theories is demonstrated in Tables 11(a)-

(c) for h = 0.813 mm and L/R = 1. 

The frequency variation increases as Nfgm increases in 

various theories. This indicates the sensitivity of various 

theories to the power-law index, so that, the maximum 

sensitivity to Nfgm belongs to Novozhilov’s theory, while 

Donnell’s theory has the least sensitivity to it. In Table 12, 

the results calculated by the semi-analytical method 

according to the five theories, are compared with an 

analysis done by finite element software ABAQUS. 

It can be observed in Table 12 that the frequency values 

obtained from Sanders and Teng’s theories have the 

maximum conformity with the values obtained from 3D 

analysis, and compared to the other shell theories studied in 

this research, they are more precise in the free vibration 

analysis of cylindrical shells. In the next section, the effects 

of Nfgm on natural frequency for the ratio of L/R = 1 and h 

= 0.813 mm will be investigated. The results have been 

presented in Fig. 5. 

As can be seen in Fig. 5, when Nfgm increases, the 

values of natural frequencies decrease and this is the same 

for all modes. Of course it does not have a certain ratio for 

different thicknesses. 

In general, according to the obtained results, it can be 

concluded that changing of thickness, Nfgm, and length to 

radius ratio have the maximum effects, respectively, on the 

difference among the frequencies obtained from the five 

discussed theories. 

 

 

Table 13 The effect of boundary conditions on natural 

frequencies obtained from different shell theories 
 

(a) Fixed-free 

Nfgm Donnell Reissner Sanders Novozhilov Teng ABAQUS 

0 25.898 24.771 23.551 22.242 20.980 - 

0.5 22.415 21.388 20.259 19.123 17.909 19.831 

1 20.426 19.406 18.303 17.210 16.063 - 

5 16.975 16.106 15.149 14.157 13.196 14.981 

10 16.111 15.273 14.326 13.358 12.433 - 

30 14.744 13.967 13.080 12.124 11.274 13.117 

100 13.784 13.057 12.227 11.257 10.464 - 
 

 
(b) Pined-free 

Nfgm Donnell Reissner Sanders Novozhilov Teng ABAQUS 

0 53.503 51.206 48.590 45.353 42.515 - 

0.5 46.333 44.310 41.926 39.061 36.369 40.005 

1 42.211 40.364 38.066 35.405 32.911 - 

5 34.929 33.231 31.173 28.929 26.851 27.511 

10 32.788 31.133 29.127 26.940 24.910 - 

30 30.060 28.469 26.592 24.565 22.692 26.173 

100 28.437 26.907 25.113 23.092 21.297 - 
 

 
(c) Fixed-fixed 

Nfgm Donnell Reissner Sanders Novozhilov Teng ABAQUS 

0 62.394 59.535 55.898 51.359 47.706 - 

0.5 54.619 52.073 48.751 44.683 41.394 46.194 

1 50.049 47.651 44.442 40.528 37.379 - 

5 40.817 38.798 36.163 32.828 30.199 35.518 

10 38.303 36.293 33.664 30.464 27.912 - 

30 35.049 33.124 30.706 27.715 25.354 29.172 

100 33.026 31.186 28.896 26.058 23.798 - 
 

 
(d) Pined-pined 

Nfgm Donnell Reissner Sanders Novozhilov Teng ABAQUS 

0 62.222 59.439 56.424 52.941 49.964 - 

0.5 54.245 51.803 49.154 46.062 43.436 47.318 

1 49.540 47.284 44.820 41.833 39.350 - 

5 40.306 38.453 36.399 33.914 31.850 35.995 

10 37.934 36.162 34.193 31.856 29.900 - 

30 34.832 33.204 31.258 29.078 27.212 30.818 

100 32.877 31.340 29.484 27.425 25.605 - 
 

 

 

Table 12 Comparison of the tenth frequency obtained by different theories and solid elements for 

various Nfgms 

Nfgm Donnell Reissner Sanders Novozhilov Teng ABAQUS 

0 121.086 119.923 119.500 119.488 119.524 119.553 

5 79.655 77.294 76.854 76.331 76.549 76.804 

30 70.607 68.306 67.251 66.910 67.007 67.111 
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Table 14 The effect of the number of stiffeners on 

fundamental frequencies obtained by different 

shell theories 

Nfgm Donnell Reissner Sanders Novozhilov Teng ABAQUS 

NO. STR = 10 

1 36.689 36.358 36.283 36.245 36.245 36.301 

8 26.122 25.884 25.832 25.793 25.798 25.800 

100 22.716 22.510 22.464 22.428 22.435 22.459 

NO. STR = 15 

1 31.119 30.833 30.746 30.724 30.730 30.528 

8 22.137 21.933 21.867 21.853 21.860 21.869 

100 19.288 19.109 19.045 19.037 19.045 19.003 

NO. STR = 20 

1 27.885 27.625 27.534 27.522 27.531 27.541 

8 19.821 19.633 19.564 19.562 19.568 19.562 

100 17.300 17.135 17.073 17.073 17.078 17.036 

NO. STR = 25 

1 25.725 25.478 25.388 25.386 25.394 25.388 

8 18.265 18.088 18.040 18.032 18.035 18.049 

100 15.964 15.808 15.762 15.753 15.758 15.694 

NO. STR = 30 

1 24.159 23.922 23.854 23.835 23.842 28.855 

8 17.122 16.954 16.896 16.886 16.898 16.896 

100 14.979 14.827 14.780 14.764 14.777 14.781 

NO. STR = 35 

1 22.958 22.724 22.643 22.625 22.620 22.639 

8 16.225 16.048 16.001 15.990 15.978 15.982 

100 14.203 14.042 14.005 13.987 13.978 14.021 

NO. STR = 40 

1 22.000 21.736 21.688 21.665 21.643 21.671 

8 15.480 15.294 15.256 15.238 15.218 15.249 

100 13.549 13.403 13.378 13.305 13.325 13.293 
 

 

 

 

Fig. 6 Three dimensional mesh of a stiffened 

cylindrical shell 
 

 

    (a) 
 

 

    (b) 
 

 

    (c) 

Fig. 7 The effect of the number of stiffeners on natural 

frequency for different length-to-radius ratios: 

(a) L/R = 1; (b) L/R = 3; (c) L/R = 6 

 

 

In the next section, we define 4 different cases of the 

problem based on shell boundary conditions (fixed-free, 

pined-free, fixed-fixed, and pined-pined). The results are 

shown in Tables 13(a)-(d). 

According to Tables 13(a)-(d), it is obvious that the 

theories are also sensitive to support conditions. Among the 

discussed theories, the Novozhilov and Reissner theories 

have the maximum and the minimum sensitivity to support 

conditions, respectively. Among the support conditions, 

fixed-fixed, pinned-free, fixed-free, and pined-pined types 

have the maximum influence, respectively, on the 

differences between the theories. According to Tables 13(a)-

(d), it can be observed that the frequency values obtained 

from Sanders’s theory have the maximum conformity with 

the values obtained from 3D analysis, and in comparison 

with the other shell theories studied in this research, they 

have a higher precision in the free vibration analysis of 

cylindrical shells. 
 

3.2.2 Stiffened cylindrical shells 
In this part of the problem, by considering the geometry 
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    (a) 
 

 

    (b) 
 

 

    (c) 

Fig. 8 The effect of the size of stiffeners on fundamental 

frequency for Nfgm = 0 for different length-to-radius 

ratios: (a) L/R = 1; (b) L/R = 3; (c) L/R = 6 

 

 

introduced in the previous Section 3.2.1, the shell is 

strengthened using longitudinal reinforcement. The volume 

of the stiffeners is equal to 0.1 of the shell volume. 

Boundary conditions are of pined-pined type and the 

stiffener height to width ratio is equal to 1. The effect of the 

number of stiffeners on the difference between frequency 

values obtained from different theories are investigated. The 

obtained results are shown in Table 14. The accuracy of free 

vibration analyses of simply supported stiffened FGM 

cylindrical shells was examined comparing the results with 

those obtained by finite element software ABAQUS (Fig. 6) 

and using solid elements. 

This table shows that the number of stiffeners does not 

have a significant effect on the values obtained from 

different theories. In other words,  the results obtained by 

various shell theories are not very sensitive to the stiffeners 

and their numbers. The results obtained by Sanders’s theory 

are shown in Figs. 7(a)-(c) for different numbers of stiffener 

and three different length-to-radius ratios of the shell. 

As can be seen in Fig. 7 increasing the number of 

stiffeners reduces the frequency of the cylindrical shell and 

this is the same for all Nfgms. Moreover, the mentioned 

process has an identical trend for the three different length-

to-radius ratios. Then, the effect of the stiffener’s three 

height-to-width ratios of 1, 1.5, and 2 with the same 

stiffener volume mentioned above on natural frequency has 

been investigated. The shell has three length-to-radius ratios 

of 1, 3, and 6. The results are presented in Figs. 8(a)-(c) and 

9(a)-(c) for two Nfgms of 0 and 5, respectively. 

As can be seen in Figs. 8(a)-(c) and 9(a)-(c), by 

increasing the height-to-width ratio of the stiffeners for two 

Nfgms and different numbers of stiffeners, the frequency of 

the cylindrical shell increases. 

 

 

4. Conclusions 
 

In this study, the free vibration analyses of FGM 

cylindrical shells were investigated. In order to obtain the 

results, the shell was divided into several closed strips with 

their nodal lines in the circumferential direction. The 

governing equations were derived based on first-order shear 

deformation theory which accounts for through thickness 

shear flexibility. Displacements and rotations in the shell 

middle surface were approximated by combining 

polynomial functions in the meridional direction and 

truncated Fourier series using an appropriate number of 

harmonic terms in the circumferential direction. Different 

systems of equations were used to model the vibration 

behavior of circular cylindrical shells. In this study, 

Donnell, Reissner, Sanders, Novozhilov, and Teng’s 

theories were used to find natural frequencies. A parametric 

study including various shell geometries, different boundary 

conditions, and various functionally graded materials with 

and without stiffeners was carried out. As the result, based 

on the presented results, the reader comprehends the 

importance of choosing a shell theory in designing thin-

walled cylindrical shells. The numerical results support the 

following conclusions: 

 

(1) All of the assumptions in this paper result in a 

reasonable accuracy for different shells and 

materials in the presence or absence of stiffeners. 

(2) Among the theories which have been selected in 

this study, Sanders and Teng’s theories had the best 

results, because they have the maximum conformity 

with the values obtained from 3D analysis. 

(3) The results revealed that changing of thickness had 

the maximum effect on the difference of the 

frequencies obtained from the five discussed 

theories. 

(4) The number of stiffeners did not have a significant 

effect on the values obtained from different theories. 
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