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1. Introduction 

 
Sandwich structures with a core made of metal foam are 

the subject of contemporary research, as is evident in 
numerous publications. Because of their excellent 
properties, for example the good acoustic absorption, high 
impact and heat resistance, vibration reduction and easy 
assembly these structures are widely used in automotive, 
aerospace, rail and shipbuilding industry. Allen (1969) 
described the bases of the theory of sandwich structures. 
Ashby et al. (2000) described the mechanical properties of 
metal foams. Banhart (2001) provided a comprehensive 
description of various manufacturing processes of metal 
foams and porous metallic structures. Altenbach and 
Eremeyev (2011) described various plate theories used in 
thin-walled structures made of foams. Małachowski et al. 
(2012) presented the experimental investigations and 
numerical modelling of closed-cell aluminium alloy foam 
(Alporas). Thai and Choi (2013) proposed a simple first 
order shear deformation theory for laminated composite 
plates. Altenbach et al. (2015) analysed three-layer 
laminates with thin and soft core layer with the use of the 
first order shear deformation plate theory. Belica et al. 
(2011) presented an analysis of the dynamic stability of a 
metal foam circular cylindrical shell subjected to combined 
loads. Jasion et al. (2012), Jasion and Magnucki (2012) 
studied analytically, numerically and experimentally the 
global and local buckling of the face sheets of sandwich 
beams. Jasion and Magnucki (2013) analysed the local 
buckling problem of sandwich beams under pure bending. 

                                          

∗Corresponding author, Ph.D., 
E-mail: mikolaj.smyczynski@put.poznan.pl 

 

 
Magnucki et al. (2006) carried out analytical investigations 
of bending and buckling of a rectangular plate made of a 
porous material. Magnucka-Blandzi (2009) presented a 
theoretical study on dynamic stability of a metal foam 
circular plate. Magnucka-Blandzi and Magnucki (2007) 
optimized the sandwich beam with metal foam core under 
strength and stability constrains. Magnucki et al. (2013) 
studied three-layer beams with corrugated core subjected to 
compression and four point bending. Magnucki et al. 
(2013), Smyczynski and Magnucka-Blandzi (2016, 2018) 
presented the strength analysis of a simply supported five 
layer sandwich beams with a metal foam core. Kim et al. 
(2013) studied a dynamic stability behavior of the shear-
flexible composite beams based on finite element model 
using Hermitian beam elements. Magnucka-Blandzi (2011) 
compared the results of vibration problem of a sandwich 
beams for the three different modified Timoshenko 
hypotheses of deformation. Paczos et al. (2016) studied 
experimentally and numerically a problem of elastic three-
point bending of five-layered trapezoidal beams. Farkas and 
Jarmai (1998) compared the optimized versions of a three 
and a five layers sandwich beams in terms of strength and 
minimum material cost. Grygorowicz et al. (2015) 
analytically and numerically studied elastic buckling of a 
three-layered beam with variable mechanical properties of 
the core. Pawlus (2007, 2011) presented the computational 
results of critical loads calculations of annular three-layered 
plates with a soft core. Lee and Fan (1996) elaborated the 
mathematical model of finite element with shear effect, and 
analyzed numerically bending and vibration of composite 
sandwich plates. Yang et al. (2012) analyzed the dynamic 
stability for composite laminated beams with delaminations. 
Yu et al. (2003) investigated experimentally the response 
and failure of dynamically loaded sandwich beams with an 
aluminum foam core. Mohanty et al. (2012) presented the 
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Fig. 1 Scheme of five layer beam subjected to an axial force 
 
 
evaluation of static and dynamic behavior of functionally 
graded Timoshenko beams. Zenkour (2005) presented the 
sinusoidal shear deformation plate theory, the buckling and 
free vibrations problems of the simply supported 
functionally graded sandwich plate. 

The paper presents the stability analysis of a simply 
supported five layer sandwich beam, which consists of: two 
thin faces (aluminium sheets) of a thickness tf, one core 
(aluminium foam) of a thickness tc and two thin binding 
layers (e.g., glue) of a thickness tb. Each type of layer of the 
beam has different mechanical properties. The beam has the 
length L, the width b and the depth H. The beam carries a 
compressive axial load N(t) varying in time as shown in 
Fig. 1. This load is assumed as follows 

 

( ) 0
0

,tN t N
t

=
 

(1) 

 
where N0 = Ncr - critical load, t0 - time base. 

The mathematical and numerical model is elaborated. 
Most of the work known from the literature omits the 
binding layers. The main goal of the paper is among others 
examine the influence of binding layers on stability of a five 
layer sandwich beam. In the literature there are not many 
papers on analytical studies of stability of sandwich beams. 
Most of them concern the sandwich plates and numerical 
investigations. In the paper the shear effect is taken into 
account, not only in the main core of the beam, but in the 
binding layers too. This has been realized by formulating a 
nonlinear hypothesis of deformation of the beam’s cross 
section which is a generalization of the classical “broken-
line” hypothesis presented for example in (Jasion and 
Magnucki 2013, Magnucki et al. 2014). The proposed 
hypothesis also generalize the nonlinear hypotheses in 
(Magnucka-Blandzi and Magnucki 2007, Magnucka-
Blandzi 2011), which are devoted to three layer beams. 
Carrera and Brischetto (2009) presented a survey of the 
theories for the analysis of sandwich plates. Based on 
extensive research they concluded that the classical 
lamination theory (CLT) and the first order shear 
deformation theory (FSDT) cannot be effectively used for 
the analysis of sandwich structures. 

In the paper the binding layers are taken into account, so 
the considered beam is five layer one. In the above 
mentioned papers the binding layers are omitted. Finally the 
analytical results (critical loads) are verified by numerical 
(ANSYS) and experimental ones. Moreover the equilibrium 
paths for static and dynamic loads are determined. A 
novelty of study is the analytical description of stability of 
five-layer sandwich beams including two thin binding 
layers between facings and a core. 

 
Fig. 2 The field of displacement – a nonlinear hypothesis 

 
 

2. Nonlinear hypothesis of deformation of the flat 
cross section of the beam 
 
The field of displacement for the flat cross section of the 

five layer beam, is presented in Fig. 2. Assuming the 
nonlinear hypothesis the shear effect is taken into account. 

The longitudinal displacements are formulated as 
follows: 

 

(1) for the upper face 
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(2) for the upper binding layer 
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(4) for the lower binding layer 
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(5) for the lower face 
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where 
x1 = tb/tc, x2 = tf/tc ‒ dimensionless parameters, 
ζ = z / tc – dimensionless coordinate, 
ψ1(x, t) = u1(x, t) / tc, ψ2(x, t) = u2(x, t) / tc, ψ3(x, t) – 

dimensionless functions of displacement, which determine 
the field of displacements. 

If ψ3 ≡ 0 then the proposed nonlinear hypothesis 
becomes the broken line hypothesis. So the assumed 
hypothesis is a generalization of the classical one described 
in (Magnucki et al. 2013, Smyczynski and Magnucka-
Blandzi 2015). 

Strains of the layers of the five layer beam are defined 
assuming nonlinear relations between strains and 
displacements, as follows 

21
2x
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x x
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so 
 

(1) for the upper face 
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(2) for the upper binding layer 
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(3) for the core 
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(4) for the lower binding layer 
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(5) for the lower face 
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Stresses in all layers of the beam, according to Hooke’s 

law, for individual layers are 
 

,    .x x xz xzE Gσ ε τ γ= =  (12) 
 
 

3. Equations of equilibrium 
 
Basing on the Hamilton’s principle 
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2
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t

t
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the system of four stability equations was obtained. The 
kinetic energy is 
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L
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The potential energy of the elastic strain of the beam is 
 

1 ( ) .
2 x x xz xz

V

U dVε ε σ γ τ= +∫∫∫
 

(15) 

 
The work W of the external compressive load N(t) is the 

following 

( )
2

0

1 .
2

L wW N t dx
x
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(16) 

 
The system of four equations of motion takes the 

following form 
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4. Stability of the five layer beam 
 
4.1 Analytical solution 
 
Unknown functions w, ψ1, ψ2 and ψ3 are assumed in the 

following forms 
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The functions ψ1, ψ2 and ψ3 describe a transverse shear 

effect and transverse forces. Each of the above functions 
(18)-(19) identically satisfy boundary conditions 
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where Mb(x, t) = N(t) ∙ w(x) is a bending moment. 

Moreover dimensionless functions (19) satisfy 
conditions 
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Substituting these assumed functions (18) and (19) into 

the system of equilibrium (17) gives 
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From the second, third and fourth algebraic equations of 

the system (22) unknown functions ψa1, ψa2 and ψa3 could 
be calculated, namely 
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where 
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And W, Wψa1, Wψa2 and Wψa3 are the following 

determinants 
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Substituting functions (23) into the first equation of the 

system (22) and the use of the Bubnov-Galerkin’s method 
gives the following equation of motion 
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From Eq. (24) the static critical load could be obtained 
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(25) 

 
Additionally, from the above equation, the equilibrium 

path for a static load may be determined 
 

( )
2

2
15

1 .
3a cr c c aN w N bt E a w

L
π = +  
   

(26) 
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4.2 Numerical calculations 
 
In the numerical calculations the Runge-Kutta’s method 

was used, and a small deflection was assumed, which is 
necessary to use this method. The amplitude of deflection of 
the beam is shown in Figs. 3 and 4 (the equilibrium paths), 
for the below assumed parameters: thickness of the faces tf 
= 1 mm, thickness of the core tc = 17.8 mm, thickness of the 
binding layers tb = 0.1 mm, Young’s modulus of the faces Ef 
= 65600 MPa, mass density of the faces ρf = 2.7×10-6 
kg/mm3, mass density of the core ρc = 2.7×10-7 kg/mm3, 
mass density of the binding layers ρb = 1×10-6 kg/mm3, the 
length L = 800 mm, the width b = 50 mm, Poisson’s ratios 
νc = νb = 0.3, time base t0 = 3s and the compressive load (1). 

The Fig. 3(a) shows equilibrium paths for various 
Young’s moduli of the binding layers <200 MPa, 500 MPa, 
1000 MPa, 1500 MPa> with constant Young’s modulus of 
the core Ec = 1200 MPa. The Fig. 3(b) shows equilibrium 
paths for various Young’s moduli of the core <200 MPa, 
500 MPa, 1000 MPa, 1200 MPa> with constant Young’s 

 
 

 
Fig. 3 Equilibrium paths for a static load for few 

different Young’s modulus of binding layers (a); 
and of a core (b) 

 
 

 
Fig. 4 Equilibrium paths 

modulus of the binding layers Eb = 1500 MPa. It can be 
seen, that binding layers have not a significant impact on 
static equilibrium paths. Graphs for various mechanical 
properties of the binding layers or of the core are very close 
to each other (overlaping). 

The Fig. 4 shows the static and dynamic paths. The 
parabola corresponds the equilibrium path for a static load. 
The curve oscillating around this path is the dynamic 
equilibrium path, which is the solution of the differential 
Eq. (24) obtained by Runge-Kutta’s method. 

According to the Eq. (25), critical loads have been 
analytically calculated for various Young’s moduli of the 
binding layers < 50 MPa, 100 MPa, 250 MPa, 500 MPa, 
1000 MPa, 1500 MPa > with constant Young’s modulus of 
the core Ec = 1200 MPa, and for various thicknesses of 
binding layers < 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 
mm> with constant total thickness H = 20 mm. 

 
 

Table 1 Critical loads for various Young’s moduli of the 
binding layers 

Eb [MPa] 50 10 250 500 1000 1500 

𝑁𝑁𝑐𝑐𝑐𝑐
(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 )

 [N] 9335 9359 9374 98382 9390 9397 

𝑁𝑁𝑐𝑐𝑐𝑐
(𝐹𝐹𝐹𝐹𝐹𝐹)

 [N] 9358 9375 9388 9397 9407 9414 

Relative error 0.25% 0.17% 0.15% 0.16% 0.18% 0.18% 
 

 
 

Table 2 Critical loads for various thicknesses of binding 
layers 

hb [MPa] 0.1 0.2 0.3 0.4 0.5 

𝑁𝑁𝑐𝑐𝑐𝑐
(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 )

 [N] 9397 9401 9405 9408 9412 

𝑁𝑁𝑐𝑐𝑐𝑐
(𝐹𝐹𝐹𝐹𝐹𝐹)

 [N] 9414 9419 9423 9427 9431 

Relative error 0.18% 0.19% 0.19% 0.20% 0.20% 
 

 
 

 
Fig. 5 Critical loads: (a) for various Young’s modulus; 

(b) for various thickness of binding layers 
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Moreover, critical loads obtained analytically are 
verified numerically (a description of FEM model is 
presented in Section 5.1). Critical loads obtained 
analytically and numerically are shown in Tables 1 and 2 
and in Fig. 5. 

In line with increasing Young’s moduli of the binding 
layers, the critical load also increases (by 0.7%). The 
increase in thickness of the binding layers causes only slight 
growth of critical load (by 0.2%). Therefore, it may be seen, 
that the change in mechanical properties or a thickness of 
binding layers has not significant impact on critical loads. 
Furthermore, discrepancies between the results obtained 
analytically and numerically do not exceed 1%. 

 
 

5. Stability – verification of the results 
 
The dimensions of a cross-section of the beam are as 

follows: the width b = 50.2 mm the total thickness H = 
19.68 mm thickness of the faces tf = 1 mm. Particular layers 
of the beam was glued together - thickness of the binding 
layers tb = 0.1 mm. The distance between supported ends of 
the beam was 933 mm. The material constants for the 
aluminium alloy of the faces is Ef = 65600 MPa, and for the 
binding glue layers: Eb = 1500 MPa. The Young’s modulus 
for the aluminium foam core, based on the experimental 
tests described in details in the monograph by (Magnucki et 
al. 2012), is Ec = 216 MPa. 

 
5.1 FEM analysis 
 
The finite element model of the five layer sandwich 

beam has been elaborated. Eight- noded 3D brick elements 
(SOLID185) have been used to model the core and two 
binding layers. Two faces have been modelled with the use 
of four-noded 2D shell elements (SHELL181). The faces 
were offset from the binding layers about half of the 
thickness. Between particular layers the tie conditions have 
been imposed. The entire beam has been modelled. 
According to the analytical model the discretized model of 
the beam was simply supported on the two outer edges of 
the beam. 

 
 

 
Fig. 6 Scheme of: (a) the FEM model of a sandwich 

beam; (b) results of buckling analysis 

 

 
Fig. 7 Cross section of the tested beam 

 
 

 
Fig. 8 Test stand: (a) buckled beam; (b) results 

 
 
As to the axially compressed beam the linear buckling 

analysis has been performed. The results of this analysis are 
shown in Fig. 6. 

 
5.2 Experimental investigations 
 
In order to verify analytical and numerical model, the 

experimental test has been performed. In the experimental 
investigations a sandwich beam with a metal foam core was 
axially compressed. The aluminium faces were glued to the 
metal foam core with glue of the thickness tb = 0.1 mm. A 
part of this glue layer is quite well visible on Fig. 7. 

The test stand is shown in Fig. 8(a). The dimensions of 
the beam as well as the material properties were the same as 
in the example considered in the subsection 5.1. 

Axial compression process of a beam was recorded – the 
axial displacement-shortening and the axial force N0 have 
been measured. The obtained results are given in Fig. 8b in 
the relation between the axial load and the shortening of the 
beam. 

 
5.3 Comparison of the results 
 
The buckling analysis has been carried out for axially 

compressed beam. The critical loads have been obtained 
with the use of three methods: analytically, numerically 
(FEM, ANSYS) and experimentally. The dimensions of the 
beam as well as the material properties were the same for 
each method and had values as in the example considered in 
the subsection 5.1. The critical load obtained analytically is 
𝑁𝑁0,𝐶𝐶𝐶𝐶

(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ) = 6.10 𝑘𝑘𝑘𝑘. The critical load obtained numerically 
(FEM) is 𝑁𝑁0,𝐶𝐶𝐶𝐶

(𝐹𝐹𝐸𝐸𝐸𝐸) = 6.09 𝑘𝑘𝑘𝑘, and the critical load obtained 
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Table 3 Critical loads 

Method Analytical FEM Experimental 
N0,CR [kN] 6.10 6.09 6.06 

ε [%] – 0.2 0.7 
 

 
 

experimentally is 𝑁𝑁0,𝐶𝐶𝐶𝐶
(𝐸𝐸𝐸𝐸𝐸𝐸 ) = 6.06 𝑘𝑘𝑘𝑘. The relative error has 

been calculated according to the formula 
 

( ) ( )

( )
0, 0,

0,

100%,  
Analit i
CR CR

Analit
CR

N N

N
ε

−
= ⋅

 
(27) 

 

where 
 

𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹,𝐸𝐸𝐸𝐸𝐸𝐸. 
 
A good agreement can be seen between the critical loads 

obtained from these three methods – the differences are less 
than 1%. 

 
 

6. Conclusions 
 
The study is devoted to the analysis of dynamic stability 

of a simply supported five later sandwich beam under 
compression. The main goal is to elaborate a mathematical 
model of the beam in which the binding layers will be 
treated as separate layers. This way the influence of the 
thickness and the mechanical properties of the binding 
layers can be investigated what is usually omitted when 
sandwich structures are analyzed. A nonlinear hypothesis 
has been assumed to describe the deformation of the flat 
cross section of the beam. Such approach allowed obtaining 
a formula with which the stability problem of the five 
layered beam can be solved. The stability problem is 
mathematically solved. 

Based on the studies there are very small discrepancies 
in equilibrium paths for different values of Young’s 
modulus of the core and binding layers. 

The analytical results were compared with this obtained 
numerically (FEM) and experimentally. A good agreement 
can be seen between the critical loads obtained from these 
three methods – the differences are less than 1%. 

The proposed hypothesis for the five-layer beam can be 
generalized and adapted to sandwich plates. 

The proposed method enables the derivation of the 
system of equation of motion and determination of the 
critical loads and the static equilibrium paths (the one 
formula for critical loads, and quadratic function describing 
the load dependence with respect to maximum deflection). 
By this method, the equation of motion was also obtained 
(the differential equation of the second order). The solution 
of this equation is a dynamic equilibrium path. 
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