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1. Introduction 

 

Owing to ever pressing demand from the growing 

spectra of weigh sensitive and high performance 

engineering applications, there is a strong demand for the 

lightweight and high strength structures that could not only 

withstand environmental hostilities but at the same time 

possess excellent dynamic properties and a small acoustic 

signature. In this respect, the laminated composite sandwich 

structures are exhaustively and favorably being used in a 

wide variety of applications as they have most of the 

desired traits. However, when subjected to external loading, 

the sound emitted by the structure propagates into the 

surrounding medium and interacts with the other structures 

in its path, thereby leaving an acoustic signature of the 

structure. This renders the tailoring of the vibration induced 

acoustic radiation responses of the structures extremely 

crucial in the applications such as aircraft, aerospace, 

defense, naval and nuclear sectors where stealth is of prime 

importance. It is well known that, insertion of sandwiched 

core between two faces influences the overall stiffness, 

toughness and other dynamic properties of the structure. 
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However, to accurately predict the vibration and acoustic 

responses of the panels, it is important to model the 

structure using a kinematics/formulation that allows 

handling the material discontinuities, stresses developed 

and slipping (if at all there is any) at the core-face 

interfaces. Several mathematical models (theories) have 

been developed and used in past in an attempt to model the 

mid-plane kinematics of the structures more accurately 

(Alijani and Amabili 2014). We note various equivalent 

single layer theories for instance the classical laminate 

theory (CLT), the first-order shear deformation theory 

(FOSDT) and the higher-order shear deformation theory 

(HOSDT) are commonly utilized. This is due their 

simplicity in formulation and ease of implementation 

alongside the reasonable accuracy that they offer to 

compute the structural responses of the laminated 

composite and sandwich structures including the effect of 
delamination (Bousahla et al. 2014, Bui et al. 2016, Do et 

al. 2017a, Khalfi et al. 2014, Mahapatra et al. 2015, 

Moradi-Dastjerdi et al. 2017, Nikrad et al. 2016, 2017, 

Nikrad and Asadi 2015, Panda and Mahapatra 2014, Parhi 

and Singh 2017, Yin et al. 2014, 2016). Other theories such 

as the layerwise theory (Ferreira et al. 2013, Tornabene et 

al. 2017), the refined theories (Belabed et al. 2014, 

Bourada et al. 2015, Houari et al. 2016, Noor and Burton 

1990), non-local theories (Kolahchi 2017) and and the 

theories incorporating geometric nonlinearities (Mahapatra 

et al. 2016) have also been proposed and used from time to 

time as each has some benefit over the others. It is 
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imperative that the accuracy of the computation of acoustic 

radiation responses is significantly reliant on the on the 

correctness in obtaining the free vibration responses. This is 

due to the fact that the modal values obtained are utilized in 

predicting the acoustic radiation responses of the vibrating 

structure. It has been established that the HSDT renders 

more realistic modeling of the flexure of the structure so far 

as the shear deformable laminated composite structures are 
concerned (Sharma et al. 2018a, b). Several authors have 

studied and analyzed the vibration induced acoustic 

responses of isotropic, multilayered composite, functionally 

graded flat and curved panels under the ambient and/or 

unlike environment. Layered orthotropic flat panels 

radiating sound in an ambient environment (Sharma et al. 

2017), subjected to thermal loading (Li et al. 2016) and 

hygroscopic loading (Zhao et al. 2013) have been studied 

from time to time. The commercially available software 

packages have also been methodically utilized by many 

researchers to investigate the sound radiation emanating 

from vibrating isotropic flat panels (Jeyaraj et al. 2008), 

laminated composite flat panels (Geng and Li 2014, Jeyaraj 

et al. 2009) in ambient as well as in elevated thermal 
environment (Atalla et al. 1996, Holmström 2001, Johnson 

and Cunefare 2002, Tournour and Atalla 1998). Moreover, 

the coupled FE-BE (finite element-boundary element) 

technique has been proved to be a versatile scheme to for 

computing the acoustic radiation emitted by the structures 

(Geng and Li 2012, Jeyaraj et al. 2011b). 

Numerous studies related to the dynamic (Bui et al. 

2013, Do et al. 2017b, Moradi-Dastjerdi and Payganeh 

2017) and vibroacoustic responses of sandwich composite 

panel structures have been conducted by several researchers 

in past. Liu and Li (2013) studied analytically the vibration 

and acoustic radiation responses of sandwich flat panels 

having face and core made up of isotropic material and 

exposed to uniform temperature loads using the equivalent 

classical theory. Li and Yu (2015) analyzed sandwich flat 

panels of orthotropic materials for their sound radiation 

behavior under thermal environment. The panel kinematics 

was modeled using the piecewise low order shear 

deformation theory and Rayleigh integral formulation was 

used to obtain the sound pressure level in the surroundings. 

Further, simply supported rectangular sandwich flat panels 

with functionally graded (FG) core and metal-ceramic faces 

have been analyzed numerically for their acoustic radiation 

responses using the simplified FOSDT in conjunction with 

the element radiator approach (Chandra et al. 2015). Tong 

et al. (2017) utilized coupled FEM-BEM approach to study 

the sound radiation characteristics of simply supported 

sandwich composite cylindrical shell having viscoelastic 

core. Additionally, the influence of thermal environment on 

the sound emission characteristics of the layered sandwich 

panel with the viscoelastic core has also been investigated 

(Jeyaraj et al. 2011a) using commercial FE software and 

FEM-BEM scheme. Larbi et al. (2015) developed a novel 

FE scheme to study the sound insulation property of 

double-wall sandwich panels with viscoelastic core. Several 

works including the active control of sound power through 

soft-cored sandwich panels using volume velocity 

cancellation (Sahu and Tuhkuri 2014, 2015) and through 

multiple piezoelectric actuators (Sahu et al. 2015) have also 

been reported. 

Literature review affirms that although the vibroacoustic 

behavior of composite as well as the isotropic shell panel 

structures has been extensively studied for several types of 

mechanical excitations and in-situ environments, the 

laminated composite sandwich structure have got less 

attention. Further, numerical studies related to the 

vibroacoustic behavior of laminated composite sandwich 

structure by utilizing the HOSDT mid-plane kinematic 

based structural model has not yet been reported. The 

present research targets to fill this research gap by studying 

the acoustic radiation responses of laminated composite 

sandwich flat panels in the framework of the HOSDT. In 

addition, a MATLAB script has been written to perform the 

modal (eigen frequency) analysis and the coupled FE-BE 

analysis for computing the sound radiation responses. The 

validity of the proposed model is established by comparing 

present results with the available benchmark solutions. 

Appropriate numerical examples have been solved and 

discussed in detail to bring out the influence of core-to-face 

thickness ratio, modular ratio, lamination scheme and the 

support condition on the sound radiation characteristics of 

the vibrating sandwich flat panel. 

 

 

2. Mathematical formulation 
 

The lamination scheme and the geometry of the 

composite sandwich flat panel analysed in this work are 

depicted in Fig. 1. The composite sandwich is considered to 

be made up of an isotropic core layer of thickness ‗tc‘ and 

two laminated composite face layers each of thickness ‗tf‘ 

sandwiching the core from the top and the bottom. 

In the present study, for precise incorporation of the 

effect of shear deformation (as the laminated sandwich 

structures are more susceptible to shear failure over failure 

due to tension and fatigue), the mathematical model of the 

flat shell panels has been developed based on the higher-

order shear deformation theory. The in-plane displacements 

are expanded as cubic functions of the thickness coordinate 

while the transverse displacement is assumed to be 

independent (remain constant) of the plate thickness (Kant 

and Swaminathan 2001) 
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Fig. 1 Definition of lamination scheme and geometry of 

composite sandwich flat shell panel 
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where, p, q and r denote the axial translations of any point 

along the x1, x2 and x3 coordinate axes, respectively; t 

denotes the time; p0, q0 and r0 represent the translations of 

any point lying on the mid-plane; p1 and q1 represent the 

angular displacement of the mid-surface normal w.r.t the x2 

and x1- axes, respectively. The remaining terms p2, q2, p3 

and q3 are defined as the higher order terms in the Taylor 

series expansion. 

Eq. (2) represents the relationship between stress and the 

strain tensors, {ζ} and {ε}, respectively for any kth lamina 

having an orientation ‗θ‘ w.r.t any arbitrary axis 

 

   Q  
   

(2) 

 

where, [𝑄 ] represents the reduced stiffness matrix. The 

strain tensor for any sandwich flat shell panel can also be 

stated as Mahapatra and Panda (2015) 
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(3) 

 

The structural model of the sandwich flat panel has been 

discretized using a nine-noded quadrilateral Lagrangian 

isoparametric element (Cook et al. 2000) with nine degrees 

of freedom at each node. The displacement (δ) of any point 

located on the mid-plane can be written as 

 

 1 2

1

,
n

i i

i

N x x 

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(4) 

 

where, δi represents the nodal displacement vector, 

corresponding to the ith node, defined as {δi} = 𝛿𝑖 =

 𝑝0𝑖
 𝑞0𝑖

 𝑟0𝑖
 𝑝1𝑖

 𝑞1𝑖
 𝑝2𝑖

 𝑞2𝑖
 𝑝3𝑖

 𝑞3𝑖
 
𝑇

 and Ni is the corres-

ponding shape function. 

The matrix form of strain vector {ε} in terms of the 

matrix of thickness coordinates [Te] and the strain vector  

{𝜀 } corresponding to the mid-plane is given as Mahapatra 

and Panda (2015) 

 

   [ ]eT 
 

(5) 

 

The expression in Eq. (5) can further be written as 

Mahapatra and Panda (2015) 

 

    LB 
 

(6) 

 

where, [BL] is the matrix representing the strain-

displacement relation. The global displacement vector can 

be formulated as a function of thickness coordinate ([I]) 
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(7) 

𝑞0 = 𝑟0 = 𝑞1 = 𝑞2 = 𝑞3 = 0  at x1=0 and a;The 

expression for the total strain energy of the laminated 

sandwich flat panel is given as Mahapatra and Panda (2015) 
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(8) 

 

Eq. (8) can be further reformulated by using Eq. (2) and 

Eq. (5) 
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(9) 

 

where,  𝐷 =   [𝑇𝑒]𝑇[𝑄𝑖𝑗 ][𝑇𝑒]𝑑𝑥3
+ℎ/2

−ℎ/2
(refer (Mahapatra 

and Panda 2015) for details). 

The flat panel kinetic energy can be written as Cook et 

al. (2000), Mahapatra and Panda (2015) 
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where, ρ represents the density and {𝛿  } represents first 

order time derivative of the global displacement vector. Eq. 

(7) can also be rewritten using Eq. (10) as 
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where,  𝜍 =     [𝐼]𝑇𝜌𝑘[𝐼] 𝑑𝑥3
𝑥3,𝑘

𝑥3,𝑘=1
𝑛
𝑘=1  is the inertia 

matrix and n is the number of layers. 

The final form of T is derived by replacing Eq. (4) in 

Eq. (11) and written as 
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The stiffness and mass matrices, [K] and [M], 

respectively, of the sandwich flat shell panel can be stated 

as 
3
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(13) 

 

The final form of the system governing equation for the 

freely composite sandwich flat shell panel is obtained by 

using Hamilton‘s principle (Bedford 1985) and expressed as 

 
2

1

2 1( ) 0

t

t

E E dt  
 

(14) 

 

The governing equation is finally expressed in the form 

of stiffness and mass matrices and conceded as 

    { } 0K M 
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 
 

(15) 
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where, 𝛿  is the second-order time derivative of the 

displacement. 

The eigenvalue form of Eq. (15) is derived as in Eq. (16) 

and the modal parameters (frequency ω and mode 

shape{Φ}) are computed. 

 

    2 { } 0K M  
 

(16) 

 

The equation of motion of any elastic structure vibrating 

under the action of external load is given by Atalla and 

Sgard (2015) 
 

[ ]{ } [ ]{ } [ ]{ } ( )K C M t  
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(17) 

 

where, the damping matrix  𝐶 =
2𝜉

𝜔𝑐
[K] is dependent on 

the excitation frequency (ωc) and the panel stiffness, ξ  is 

the structural damping ratio and Γ represents the excitation 

load vector. The vibroacoustic analysis of the sandwich 

panels acted upon by harmonic point excitation is 

conducted to obtain the sound radiation responses via a 

coupled FE-BE technique. The Helmholtz wave equation 

dictates the dynamics of acoustic radiation in stationary 

fluid contiguous to the vibrating panels and is given as 

 
2 2 0p k p  

 
(18) 

 

where, k is the wave number and p is the sound pressure at 

any point in the domain. The discreet form of the Helmholtz 

equation using the boundary elements is conceded as in Eq. 

(19) 

1 2 ps cp i v   
 

(19) 

 

Here, Z1 and Z2 represent the boundary influence 

matrices, p is the matrix comprising the sound pressure 

values, vp holds the nodal velocity of the flat panel along x3 

axis and ρs denotes the density of the contiguous medium. 

The panel velocity, vp, can be expressed as in Eq. (20), in 

the form of displacement vector using the matrix 𝑇  that 

maps the nodal displacement to nodal velocity. 

 

p cv i T 
 

(20) 

 

The final representation of the equation of coupled 

structural finite-elements and acoustic boundary-elements 

(FE-BE) can be stated as (Atalla and Sgard 2015, Mariem 

and Hamdi 1987) 
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where, the matrix L couples the structural finite and 

acoustic boundary-elements. The panel displacement, δ and 

the sound pressure, p at any field point is obtained by 

solving Eq. (21). Once, the displacement field and the 

sound pressure values corresponding to each excitation 

frequency of interest are known, the acoustic response 

indicators can also be computed as follows: 

The radiated sound power can be computed by 

evaluating the following integral over the surface S of the 

panel 
 

real
1

2
prad

s
W pv dS 
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(22) 

 

The sound power level WL can be obtained as 

 

10 log rad

L
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W
W

W
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The reference power Wref equal to 10-12 W. 

The average normal mean square velocity (𝑣𝑛
2) of the 

panel can be written as 
 

2 21
( )

2
pn c

S

v v dS
S
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(24) 

 

The radiation efficiency (Ω) is computed as 

 

2

rad

s n

W

cS v
 

 

(25) 

 

The sound pressure level (SPL) at any point in terms of 

corresponding pressure p can be written as 

 

SPL=20 log
ref

p

p

 
  

 
   

(26) 

 

where, the reference pressure pref is taken equal to 20 μPa. 

 

 

3. Results and discussion 
 

In this section, the vibroacoustic responses of sandwich 

composite flat panels are investigated and discussed in 

detail. A FE model for the sandwich composite flat panel is 

developed based on the HOSDT mid-plane kinematics. A 

MATLAB script is composed to implement the proposed 

formulation. The modal frequencies and the corresponding 

mode shapes are computed by finding the solution to Eq. 

(16) after subjecting the panel model to appropriate 

constraints at the supports. The natural frequencies and 

radiated sound power thus obtained using the current 

numerical formulations are matched with the available 

benchmark solutions. The fundamental frequency in non-

dimensional form is expressed as 

2 2

2( ) fb E h  
, 

where is the natural frequency in rad/s. In order to reduce 

the number of unknowns the various support conditions 

imposed are as follows: 

 

Simply supported edge (S): 

𝑞0 = 𝑟0 = 𝑞1 = 𝑞2 = 𝑞3 = 0  
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at x1 = 0 and a; 

𝑝0 = 𝑟0 = 𝑝1 = 𝑝2 = 𝑝3 = 0 

at x2 = 0 and b. 

 

Clamped edge (C): 

𝑝0 = 𝑞0 = 𝑟0 = 𝑝1 = 𝑞1 = 𝑝2 = 𝑞2 = 𝑝3 = 𝑞3 = 0 

at x1 = 0 and a; at x2 = 0 and b. 

 

Free edge (F): 

𝑝0 = 𝑞0 = 𝑟0 = 𝑝1 = 𝑞1 = 𝑝2 = 𝑞2 = 𝑝3 = 𝑞3 ≠ 0  
at x1 = 0 and a; at x2 = 0 and b. 

 

The support conditions at the edges (taken in order) at x1 

= 0, x2 = 0, x1 = a and x2 = b are chosen to have the 

following combinations: SSSS, CCCC, SCSC, SFSF, CFCF 

and CFFF. 

In the present analysis, the sandwich panels are realized 

by sandwiching an isotropic core in between two faces of 

equal thickness made up of laminated composite material. 

The properties of the face and the core materials utilized in 

the numerical examples are as follows and remain same 

unless specified otherwise: 

 

Core (Liu and Li 2013): 

Ec = 7 GPa, vc = 0.3, ρc = 1000 kg/m3 

 

Face (Kant and Swaminathan 2001): 

Ef,1 = 131 GPa, Ef,2 = 10.34 GPa, 

Gf,23 = Gf,13 = 6.895 GPa, Gf,23 = 6.205 GPa, 

vf,12 = vf,13 = 0.22, vf,23 = 0.49 GPa, ρf = 1627 kg/m3. 

 

The sandwich flat panel is considered to be resting on an 

infinite rigid baffle with geometrical parameters as: a = 0.4 

m, b = 0.3 m and h = 0.01 m where the panel thickness h is 

defined in terms of the core thickness (tc) and face thickness 

(tf) as h = tc + 2tf. The panels are assumed to be vibrating in 

air and subjected to point harmonic excitation equal to 1 N 

at (0.1 m, 0.1 m, 0) on the surface of the panel w.r.t. the 

reference system mentioned in Fig. 1. The SPL is obtained 

at a field location directly above the point of excitation at a 

distance of 2 m along the x2 direction. The sound pressure 

level directivity is observed at the points on a semicircle of 

radius 1 m lying in the plane x2 = b/2 and centred at the 

central point of the vibrating flat panel. A damping ratio ξ = 

0.01 has been considered throughout. 
 

 

3.1 Convergence and validation of natural 
frequency 

 

A simply supported sandwich composite flat panel 

example available in (Kant and Swaminathan 2001) is 

solved to establish the validity of natural frequencies. The 

non-dimensional fundamental frequency parameters are 

computed for different thickness ratio (a/h) values with 

increasing mesh size and the results are listed in Table 1. 

The result of (Kant and Swaminathan 2001) is also listed 

for comparison. It is evident that the present values 

converge well with mesh enhancement. Also, the present 

results agree well with the corresponding reference results 

thus establishing the validity of the proposed structural 

model. Consequently, a (10×10) mesh is used for the 

computation of desired responses all the way through the 

analysis. 
 

3.2 Validation of radiated sound power 
 

In this section, the correctness of the present numerical 

solutions of sound radiation responses of composite 

sandwich panels has been demonstrated by matching the 

obtained results with those available in the published 

literature. In order to do so, the sound power emitted by a 

clamped laminated composite (no core) panel as considered 

by Li et al. (2016) and simply supported sandwich 

composite flat panel as considered by Liu and Li (2013) is 

reproduced using the present approach and the comparison 

is illustrated in Figs. 2(a) and (b), respectively. Additionally, 

the results are also computed via simulation model using 

commercially available FE and BE packages. In the current 

simulation model, the free vibration responses are first 

obtained using ANSYS expending an eight-noded 

isoparametric element 6 dof at each node. The modal values 

contained in ANSYS results file (*.rst file) is then exported 

to LMS Virtual. Lab environment wherein an indirect BEM 

is used to obtain the sound power radiated by the panels. 

It is clearly observed that the present numerical results 

closely follow the reference values both in the case of the 

laminated composite as well as the sandwich composite 

panels. It is essential to mark that the current HOSDT based 

numerical model yields values lesser than the simulation 

(NASTRAN and VA.One) model of Li et al. (2016) and the 

same is evident from Fig. 2(a). However, in the case of 

sandwich composite panels, the present numerical values 

are higher than the reference (Liu and Li 2013) values and 

 

 

Table 1 Convergence and comparison of non-dimensional fundamental frequency parameter of 

simply supported anti-symmetric laminate composite sandwich panel (a/b = 1, tc/tf = 10) 

a/h 

Non-dimensional fundamental frequency parameter 

Mesh size Kant and Swaminathan (2001) 

2×2 4×4 6×6 8×8 10×10 12×12 14×14 
HOSDT 

(12 dof) 

HOSDT 

(9 dof) 

10 4.9921 4.9539 4.9519 4.9515 4.9513 4.9512 4.9512 4.8594 4.8519 

40 12.9295 12.7113 12.7043 12.7037 12.7038 12.7039 12.7039 12.6821 12.6555 

70 15.2151 14.7359 14.7160 14.7137 14.7134 14.7134 14.7135 14.7977 14.7583 

100 16.1331 15.4229 15.3849 15.3795 15.3784 15.3781 15.3781 15.5093 15.4647 
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lesser than the current simulation results as depicted in Fig. 

2(b). This is due to the fact that the reference utilized the 

analytical formulations based on equivalent non-classical 

theory (under estimates displacement) and the current 

simulation model is based on the FOSDT, whereas the more 

general (for the structural modelling purpose) HOSDT 

based coupled FEM-BEM technique has been employed in 

the present scheme. Indeed, the novelty of the current 

research lies in the similar line as well. 

 

3.3 Numerical illustrations 
 

The necessity and accuracy of the proposed scheme to 

obtain the numerical solutions of the acoustic radiation 

responses of vibrating laminated composite sandwich 

structure has been established in the previous section. Now, 

several numerical examples are solved using the present 

scheme to investigate the influence of various geometrical 

parameters, material property and support conditions on the 

sound radiation behaviour of sandwich composite flat 

panels. 

Firstly, the influence of core-to-face thickness ratio (tc/tf) 

is investigated. Simply supported composite sandwich 
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Fig. 3 Influence of core-to-face thickness ratio on natural 

frequency 

 

 

panels having [0°/90°/C/90°/0°] scheme are considered. The 

thickness of core and the thickness of the face are varied 

keeping the total thickness of the panel (h) constant. The 

influence of four different core-to-face thickness ratios (tc/tf 

= 2, 5, 8 and 20) on the natural frequency is shown in Fig. 

3. It is observed that as the tc/tf values increases, the core 

becomes thicker at the expense of the thickness of the faces. 

Consequently, the stiffness of the panels decreases 

leading to reduction in the natural frequencies. It is worthy 

to note that for a 10-fold increase in tc/tf from 2 to 20, the 

first eight natural frequencies decrease by 22.98%, 31.62%, 

19.55%, 21.97%, 33.81%, 26.41%, 12.95%, and 16.24%, 

respectively. 

Fig. 4 depicts the variation of acoustic response 

indicators with core-to-face thickness ratio (tc/tf). Due to 

decreasing stiffness with the increasing tc/tf, the 

displacement corresponding to the excitation location 

increases as is evident from the Fig. 4(a). Also, the 

resonance peaks in the response curves of displacement, 

average root mean square (RMS) velocity and radiated 

sound power shift to lower frequencies as evident from 

Figs. 4(a), (b) and (d), respectively. Further, the average 

RMS velocity of the panels follows a trend similar to that of 

the displacement. The velocity corresponding to first 

resonance peak for tc/tf = 20 exceeds by 36.57%. the 

corresponding velocity for tc/tf = 2. 

Consequently, the panels tend to radiate less efficiently 

with increasing core thickness. The radiation efficiency 

fluctuates more for the panels with a thicker core indicating 

increased sensitivity of the acoustic radiation caused by 

them at higher frequencies. Also, the sound power radiated 

is higher for the panels with a thicker core and the same is 

evident from Fig. 4(d). 

Next, clamped composite sandwich panels with 

[0°/90°/C/90°/0°] scheme are considered for studying the 

influence of core-to-face modular ratio (Ec/Ef) on the sound 

radiation caused by the vibrating panels. The young‘s 

modulus (Ef,1) of the face is kept constant and the young‘s 

modulus of the core (Ec) is varied such that Ec/Ef,1 = 0.05, 

0.5, 0.1 and 1. The acoustic responses of the panels with 

varying modular ratio are shown in Fig. 5. The panels 

become increasingly stiffer with increasing modular ratio 
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Fig. 4 Influence of core-to-face thickness ratio on the acoustic responses: (a) Displacement; (b) Average RMS velocity; 

(c) Radiation efficiency; (d) Radiated sound power 
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Fig. 5 Influence of core-to-face modular ratio on the acoustic responses: (a) Velocity; (b) Radiation efficiency; (c) Sound 

pressure level; (d) Radiated sound power 
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Fig. 7 Deviation of overall radiated sound power with fibre 

orientation [0º/θ/-θ/C/-θ/θ/0º] in different frequency 

bands 

 

 

values. It is useful to note that the velocity of the point of 

excitation decreases with increasing modular ratio. 

However, the peaks in the velocity response curves shift to 

higher frequencies for increasing modular ratio. The 

radiation efficiency of the panels increases with increasing 

Ec/Ef,1 values with Ec/Ef,1 = 1 case being the most efficient 

 

 

radiator. The radiated sound power and the SPL at the field 

point follow similar variation patterns with the excitation 

frequency. The tendency to radiate sound is higher for the 

panels with lesser core modulus and the Ec/Ef,1 = 0.05 case 

causes the most SPL and the radiated sound power in the 

considered frequency range. 

In order to investigate the influence of fibre orientation 

on the sound radiation characteristics laminated composite 

sandwich flat panels under CSCS constraint are considered. 

The lay-up is defined, to have a symmetric configuration, as 

[0º/θ/-θ/C/-θ/θ/0º] where θ takes the values as 0°, 15°, 30°, 

45° and 90°. Fig. 6 depicts the dynamic and sound emission 

characteristics of the panels for varying lamination scheme. 

It is strikingly visible that the resonance peaks in the curves 

cascade to right in the response figures indicating that the 

panels become increasingly stiff with increasing value of 

the fibre angle θ. The nodal velocity of the excitation 

location generally decreases with increasing θ. This is in 

direct contrast to radiation efficiency that increases with 

increasing θ and is the highest for θ = 90°. Also, the SPL at 

the field point decreases with increasing value of the fibre 

angle θ. A similar trend is observed in the variation of 

radiated sound power and the same is evident from Fig. 

6(d). 

Further, to have a more clear indication of the radiation 

behaviour, the overall radiated sound power in frequency 
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Fig. 6 Influence of lamination scheme (0º/θ/-θ/C/-θ/θ/0º): (a) Velocity; (b) Radiation efficiency; (c) Sound pressure level; 

(d) Radiated sound power 
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bands of equal width is computed and shown in Fig. 7. It is 

evident that the different schemes radiate differently in 

different frequency ranges. The radiated sound power 

decreases with increasing fibre angle in (0-250) Hz 

whereas, a reverse trend is observed in the frequency range 

(500-750) Hz. However, it is interesting to note equal sound 

radiation in (750-1000) Hz excitation frequency range 

irrespective of the lay-up schemes. 

Moreover, the sound pressure level directivity patterns 

for different support conditions and corresponding to two 

frequencies of 400 Hz and 1200 Hz are shown in Figs. 9(a) 

and (b), respectively. We note a significant difference in the 

radiation patterns. This is because of the fact that, 

corresponding to 400 Hz only first few modes contribute to 

the vibration, whereas at 1200 Hz the larger numbers of 

modes are excited and hence the pattern is complex. It is 

worthy to note that the CFCF case causes highest and 

CCCC case the least amount of sound pressure in the 

surroundings for 1200 Hz and 400 Hz, respectively. 

 

 

4. Conclusions 
 

Sound radiation characteristics of composite sandwich 

 

 

flat panels under the influence of harmonic point load have 

been investigated with the aid of a novel methodology 

utilizing the HSDT based coupled finite and boundary 

element method using a customized MATLAB script. 

Firstly, the numerical results of the natural frequency and 

the radiated sound power obtained using the present 

formulation is matched with the available benchmark 

solutions to establish its validity. Subsequently, extensive 

numerical experimentations are performed to comprehend 

the influence of core-to-face thickness ratio, core-to-face 

modular ratio and support condition on the acoustic 

radiation responses of composite sandwich flat panels. The 

validation study revealed the necessity of incorporation of 

the higher-order mid-plane kinematics in providing accurate 

numerical solutions of the sound emission responses of 

shear deformable composite sandwich structure. From the 

numerical illustrations it is observed that the natural 

frequency of the panels decrease as the core becomes 

thicker and tend to radiate more sound in comparison to the 

panels with a thinner core. The increasing core-to-face 

modular ratio is found to have a stiffening influence on the 

panels and the panels with core-to-face modular ratio equal 

to unity radiate the least sound power of all the other cases 

considered within the considered excitation frequency 
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Fig. 8 Influence of support condition on the acoustic responses: (a) Displacement; (b) Radiation efficiency; (c) Average 

RMS velocity; (d) Radiated sound power 
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range. The radiation efficiency of the panels decreases with 

decreasing fibre angle and the resonance peaks in the 

response curves shift towards higher frequencies. 

Additionally, the panels radiate less efficiently with the 

lesser constraints at the supports. 
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