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1. Introduction 

 
Tubular structures are promising candidates for a wide 

range of civil and space applications (Shao 2016, Kharoob 
and Taman 2017, Wang et al. 2017). As their low volume 
requirements when it is used in space, it should be 
deployable to from foldable booms. Booms can be used to 
support the reflector of an antenna or form the structural 
framework for solar arrays and solar sails (Cadogan et al. 
1999, Lichodziejewski et al. 2003). 

Origami is an art of paper folding. In the past three 
decades, it has found a wide range of engineering 
applications (Filipov et al. 2015, Chen et al. 2015, Schenk 
et al. 2014, Thrall and Quaglia 2014, Kamrava et al. 2017). 
An important problem in applying origami to engineering is 
the rigid foldability issue. For the rigid origami, the facets 
and crease lines can be seen as rigid panels and hinges. In a 
rigid origami, all panels are not allowed to stretch or bend 
during the movement (Wu and You 2010). Some cylindrical 
deployable structures based on rigid origami patterns have 
been proposed by Tachi (2010). Based on the quaternion 
rotation sequence method and the dual quaternion method, 
Cai et al. (2016) studied the rigid foldability of the 
cylindrical-shaped origami patterns. Liu et al. (2016) 
presented a general kinematic model of rigid origami and 
proposed a family of rigidly foldable prismatic structures. 
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However, there are also many origami patterns for 
cylindrical booms, which cannot be rigidly foldable. 
Therefore, they require some elastic deformations of the 
material during the folding or deploying (Schenk 2014). But 
we can also use this feature by designing bistable or multi-
stable cylindrical booms, which are free of stresses in two 
or multi configurations (You and Cole 2006, Cai et al. 
2015a). Guest and Pellegrino (1994a, b, 1996) studied the 
bistable behavior of foldable thin-walled cylinders with 
twisted Yoshimura patterns. The geometric design of a 
cylindrical shell based on the Kresling pattern was studied 
by Cai et al. (2015a), and they also investigated the 
mechanical behavior, especially the bistable configurations 
of the cylinder. Kim et al. (2015) presented a self-deploying 
tubular origami, which can switches between two 
distinctive configurations, using this bistable behavior. 

The most famous origami pattern is the Miura origami 
as shown in Fig. 1 (Miura 1980). Every vertex of Miura-ori 
has four creases, three ridge folds (solid lines in Fig. 1) and 
one valley fold (dashed lines in Fig. 1) or one ridge fold and 
three valley folds. The deployment of the Miura-ori pattern 
is given in Fig. 2. It can be found that the middle plane of 
the structure during its deployment is flat. However, for a 
cylinder, the system should have a curvature during the 
motion. Then the classical Miura-ori pattern is improved by 
varying the angles of the reverse folds from row to row as 
shown in Fig. 3 to form a curved foldable structure 
(Piekarski 2000). Sogame and Furuya (2000) have studied 
the geometrical properties of cylindrical deployable space 
structures, which consist of the revised Miura-ori pattern. 
Using detailed geometrical analysis, You and Cole (2006) 
pointed out that the deployment of cylinders with revised 
Miura-ori patterns shows strain variation within the folds. 
The strain peak appears during the deployment though the 
structure remains strain free when it is fully packaged or 
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Fig. 1 Miura origami 
 
 

Fig. 2 Movement of Miura-ori 
 
 

Fig. 3 Modified Miura-ori pattern 
 
 

open. The geometry and deployment kinematics of a family 
of cylinder with reverse folds and double-reverse folds have 
been studied by Schenk et al. (2013). Senda et al. (2006) 
carried out the deployment experiments of inflatable tubes 
with different origami patterns. However, the link between 
the fold pattern and deployment characteristics was not 
fully understood. Cai et al. (2015b) have studied the 
geometric and mechanical behavior of a deployable 
cylinder with Miura origami. However, in this study, they 
assume that the elastic deformation can only occur in one 
type of elements. Then most of the elements are rigid. This 
condition may lead to significant errors. Moreover, the 
influence of the imperfection on the deployment behavior of 
the origami cylindrical boom has not been studied in the 
previous literatures. 

In the present paper, a dynamic analysis of a foldable 
cylindrical boom based on Miura origami will be carried 
out. Firstly, the mechanical behavior of a segment of the 
cylinder during the deployment will be studied. Then the 
effect of geometrical parameters on the dynamic behavior 
will be investigated. In order to obtain more insights into 
the deployment sequence and the corresponding material 
deformations, finite element simulations of multi-storey 
cylinder will be carried out. Finally, the influence of 
manufacturing imperfections will be studied. 

 
 

2. Geometry design of cylinders with Miura 
origami 
 
The geometry of a cylindrical boom based on the 

modified Miura-ori pattern as shown in Fig. 4, which is also 
discussed in Cai et al. (2015b), is studied in this section. 
Fig. 5(a) shows a cylinder with six storeys. The creases 
between the storeys are outlined by thick solid lines and 

    

Fig. 4 Origami cylinder 
 
 

  

(a) Cyilnder 
 

(b) Type A 
creases 

(c) Type B 
creases 

(d) Type C 
creases 

Fig. 5 Cylinder with modified Miura origami and creases
 
 

Fig. 6 Origami pattern for foldable cylinders 
 
 

thick dashed lines, which are denoted by Type A creases as 
shown in Fig. 5(b). The adjacent storeys are symmetry of 
the polygon formed by Type A creases. As given in Figs. 
5(c) and (d), Type B and Type C creases are diagonal 
bracing fold lines. In this model, Type B creases are ridge 
lines and Type C creases are valley lines. The origami 
pattern of the cylinder, as shown in Fig. 6, can be obtained 
by cutting along one of Type B creases. The length of this 
origami pattern is L and the height of half storey is H. Each 
half storey has 2n quadrilateral panels (n = 6 for the model 
shown in Fig. 6). 

 
 

3. Deployment of one segment 
 
In this section, one storey of the boom is chosen as a 

basic segment to study the mechanical behavior of the 
deployable cylinder. The cylinders are modeled as pin-
jointed frameworks, where bars and pin-joints respectively 
represent fold lines and vertices in the crease pattern. As the 
basic unit of the cylinder is a quadrilateral plate, then it is 
important to avoid trivial internal mechanisms. In this 
paper, two additional bars, which are dash lines shown in 
Fig. 7, are added on the diagonal lines of the quadrilateral to 
eliminate redundant internal mechanisms. The angles 
between the diagonal folds and horizontal folds are defined 
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Fig. 7 Pin-jointed frameworks for the basic element of 
Miura-ori pattern 

 
 

as α and β. 
The deploying of the basic storey of the foldable boom 

is simulated with nonlinear finite element analysis using 
ABAQUS. For simplicity, truss elements are used with 
constitutive model defined by logarithmic strain measure. 
The outer vertices of the bottom polygons are constrained in 
the vertical and radial directions. The inner vertices of the 
bottom polygon are only constrained in the vertical 
directions. The analysis is carried out with displacement 
control, by defining vertical displacement at the outer 
vertices of the top polygons. Then for each incremented 
value of displacement, the axial strains of bars, external 
nodal loads and nodal displacements are calculated using 
the arc length method. The Young’s modulus of the bars is 
E = 2.1 × 105 MPa and the cross-section area of bars is A = 
393 mm2. In the initial fully closed configuration, the 
lengths of bars EF, DE, BE are given as lEF = 500 mm, lDE = 
2265.61 mm, lBE = 2517.29 mm. Then if the angles α, β and 
the number of the Miura-ori elements n are given, the 
lengths of other bars in the initial configuration can be 
obtained with a geometric method. 

 
3.1 Influence of α and β 
 
The results of four cases, α = 40° and β = 10°, α = 50° 

and β = 20°, α = 60° and β = 30°, α = 70° and β = 40°, are 
presented in this section. The number of Miura-ori elements 
n is assumed to be 6. The bar strains during the deployment 
are given in Fig. 8. It can be seen from this figure that the 
change trend of strains of these bars can be classified into 
two groups. Group I contains bars AB, EF, AE, BD, BF, CE, 
BE and Group II have bars BC, DE, CF. For the cases of α 
= 40° and β = 10°, α = 50° and β = 20°, α = 60° and β = 30°, 
the bars of Group I have a negative strain, and hence under 
compression and the bars of Group II have a positive strain, 
showing a tension. The absolute values of strains increase 
with the increase of the applied nodal displacements. 
Moreover, the absolute values of strains decrease with the 
increase of α and β when the systems have the same nodal 
displacement. For the case of α = 70° and β = 40°, the bars 
of Group I have a positive strain, which corresponds to a 
tension. The bar strains increase firstly and then descends 
with the increase of the applied nodal displacement. Fig. 8 
also shows that the bars of AB, BC, DE, EF, CF and BE, 
which are corresponding to the ridge and valley lines, have 
higher strains than bars of AE, BD, CE and BF, which are 
related to the bending behavior of the quadrilateral plate. 

In this numerical simulation, the nodal displacements 
are applied on the vertices of the polygon. In addition, for 
practical engineering cases, nodal loads are investigated 

 
(a) Bar AB (b) Bar BC 

 

(c) Bar DE (d) Bar EF 
 

 
(e) Bar AE (f) Bar BD 

 

 
(g) Bar BF (h) Bar CE 

 

 
(i) Bar CF (j) Bar BE 

Fig. 8 Bar strains during the deployment with different 
angles α and β 

 
 

when external nodal forces/loads are applied on these 
vertices. It can be seen from Fig. 9 that the deployment 
forces on vertices F and E have the opposite direction. For 
the cases of α = 40° and β = 10°, α = 50° and β = 20°, α = 
60° and β = 30°, the absolute values of deployment forces 
increase with the increase of the applied nodal 
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(a) Vertex F (b) Vertex E 

Fig. 9 Deployment forces during the deployment with 
different angles α and β 

 
 

 

Fig. 10 Energy of the boom during the deployment with 
different angles α and β 

 
 

displacements. For the case of α = 70° and β = 40°, the 
deployment forces increase firstly and then descending with 
the increase of the applied nodal displacement. Moreover, 
when the booms have the same nodal displacement, the 
absolute values of deployment forces decrease whilst α and 
β are raised. However, the absolute maximal values of 
deployment forces increase with the rise of α and β. 

 
3.2 The influence of number of elements n 
 
In order to discuss the influence of the number of 

elements n on the structure, four cases are studied. The 
numbers of elements n are assumed to be 5, 6, 8 and 9, 
respectively. The angle β is chosen to be 30°. Thus the 
corresponding angles α are 66°, 60°, 52.5° and 50°. As bars 
AB, EF, AE, BD, BF, CE, BE behaves similarly and bars 
BC, DE, CF also have similar behavior, only strains of bars 
AB and BC during the deployment are shown in Fig. 11. 
For the cases of n = 6, 8, 9, the bar AB have a negative 
strain, i.e., under compression and the bar BC have a 
positive strain and hence in tension. The absolute values of 
strains increase with the rise of the applied nodal 
displacements. Moreover, the absolute values of strains 
increase with the increase of n when the booms have the 
same nodal displacement. For the case of n = 5, the bar AB 
firstly have a positive strain and then becomes a negative 
strain. The bar strains initially increases with u till it reach 
the maximum and then reduces to zero followed by a 
further decrease. This is a bistable phenomenon, which 
shows another zero point of the bar strain curves except for 
the initial stable unstressed configuration. 

(a) Bar AB (b) Bar BC 

Fig. 11 Bar strains during the deployment with different n
 
 

(a) Vertex F (b) Vertex E 

Fig. 12 Deployment forces during the deployment with 
different n 

 
 

Fig. 13 Energy of the boom during the deployment with 
different n 

 
 
The nodal loads applied on Vertices F and E during the 

deployment are shown in Fig. 12. It can be seen from this 
figure that the deployment forces on vertices F and E have 
the opposite direction. For the cases of n = 6, 8, 9, the 
absolute values of deployment forces increase with the 
increase of the applied nodal displacements. For the case of 
n = 5, the deployment forces increase firstly and then 
descend to zero and then change direction. Moreover, the 
absolute maximal values of deployment forces during the 
motion increase with the increase of n. 

The energy variation of the basic storey of the boom 
during the motion with different n is shown in Fig. 13. It 
can be seen from this figure that the energy increases during 
the deployment for the cases of n = 6, 8, 9. However for n = 
5, the energy goes up first and then goes down to the 
minimum energy point and then increase. In other words, 
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there are two stable configurations corresponding to the 
minimum energy points. 

With a further study, it can be found that for a boom 
with n = 4, the energy also have two minimum points. 
When n = 3, if the angle β = 30°, the corresponding angles 
α is then larger than 90°. Therefore, only the booms with n 
= 3 and 4, it has a bistable behavior when the β = 30°. 

To investigate the motion path and dynamic behavior of 
the multi-storey foldable booms, a four-storey boom is 
chosen as an example. The pin-jointed frameworks of the 
four-storey boom are given in Fig. 14. In order to trace the 
equilibrium path of the uniform motion, additional vertical 
restraints are added at the vertices of each horizontal 
polygon. The geometry of the basic element is the same as 
those given in Section 3. 

The deployment process of the four-storey boom with α 
= 60° and β = 30° is shown in Fig. 15. In the final fully 
deployable configuration, the height of the boom is 4000 
mm and the height of every storey is 1000 mm. Therefore, 
the displacement applied in the top nodes of the boom is 
4000 mm. The four stories of the boom following the 
sequence from bottom to top are defined as 1st floor to 4th 
floor. The vertical nodal displacements of each storey are 
given in Fig. 16. It can be found that the boom deploys 
uniformly. 

Four cases, α = 40° and β = 10°, α = 50° and β = 20°, α 
= 60° and β = 30°, α = 70° and β = 40°, are studied in this 
section to investigate the influence of the geometry on the 
dynamic behavior of the boom. The number of Miura-ori 
elements n is chosen as 6. The required nodal loads applied 
on the top facet of the boom are given in Fig. 17. It can be 
found from this figure the changing trend of the boom is 
similar as those of the basic storey given in Section 3. 

 
 

 

Fig. 14 Pin-jointed frameworks for the basic element of 
four-storey booms 

 
 

  

Fig. 15 The deployment process of four-storey booms 
 

Fig. 16 Vertical nodal displacement during the 
deployment 

 
 

 
(a) Vertex 1 (b) Vertex 2 

Fig. 17 Deployment forces of the boom 
 
 

 

Fig. 18 The folding process of four-storey booms 
 
 
The folding process of the boom when α = 60°, β = 30° 

and n = 6 is shown in the Fig. 18. In order to prevent the 
storey passing through each other, an additional shell is 
defined in the center of each polygon of every storey. The 
contact pairs are set between the adjacent shells. The 
vertical displacements of all vertices of every storey are 
attached to the shell. Therefore, there will be contact forces 
between the adjacent shells when they come into contact 
each other. When the two shells approach each other, the 
contact force increases and keep the storey from 
disengaging from the folded configuration. 

 
 

4. Effects of imperfection 
 
Imperfections always have great influence on the 

structural behavior (Ghazijiahani et al. 2015, Li and Wu 
2017). For the boom, the inaccuracy in construction and 
installation may have a great influence on the mechanical 
behaivor of the structure. Guest and Pellegrino (1996) 
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studied the effect of misaligning the final seam of a foldable 
cylinder during manufacture. These errors were simulated 
by imposing an initial strain on the bars which cross the 
final join-line of the cylinder. However, this error is an 
imperfection of the element. In this study, a system 
imperfection is considered. The consistent imperfection 
mode method is chosen to investigate the geometrical 
imperfections. The imperfection distribution is assumed to 
be consistent with the eigenvalue buckling modes. As 
suggested in Cai et al. (2017), we have set up the first ten 
eigenvalue buckling modes of imperfections for foldable 
masts. 

The initial height of the boom is 4000 mm and the 
height of every storey is 1000 mm. The number of Miura 
elements n is assumed to be 5, 6, 8 and 9, respectively. The 
angle β is assumed to be 30º thus giving the angles α 66°, 
60°, 52.5° and 50°. The finite element model was get by 
modifying the joint coordinates of the initial geometry 
model according to the eigenvalue buckling modes. The 
maximal value of the imperfection assumed as one of three 
hundreds of the length of the boom. Therefore, the maximal 
value of the imperfection is 13.3 mm in this paper. 

Fig. 19 shows the curve of energy versus the imposed 
nodal displacement of the perfect and imperfect booms 
during the folding when n = 5. Under different imperfectio. 

 
 

Fig. 19 Energy of perfect and imperfect booms during 
the folding when n = 5 

 
 

 

(a) Configuration corresponding 
to the maximal energy 

(b) Final fully deployable 
configuration 

Fig. 20 Effects of imperfections when n = 5 

 
(a) 1st (b) 5th (c) 8th 

Fig. 21 Eigenvalue buckling modes when n = 5 
(Undeformed configurations in black and 
deformed configurations in blue) 

 
 

modes, the energy curves of the boom are almost similar 
They firstly rise and then drop. They all have maximal 
points. The relative error of the energy during the folding of 
the boom is given in Fig. 20. In this figure, ‘0’ denotes the 
perfect boom and ‘1’ denotes the imperfect boom based on 
the first eigenvalue buckling mode. Then E0 represents the 
energy of the perfect boom and Ei represents the energy of 
the imperfect boom based on the ith eigenvalue buckling 
mode. The relative error of the energy is defined as (Ei-
E0)/E0, which is used to measure the influence of 
imperfection. The relative error of the energy corresponding 
to the maximal energy is shown in Fig. 20(a) and the 
relative error of the energy in the final configuration is 
shown in Fig. 20(b). It can be found that the imperfections 
based on the 1st, 5th and 8th modes have a bigger influence 
on the energy of the model. These eigenvalue buckling 
modes when n = 5 are shown in Fig. 21. It can be seen from 
Fig. 21 that the 1st, 5th and 8th eigenvalue buckling modes 
deform in the z direction. 

For the boom with n = 6, the relations between the 
energy of the perfect and imperfect mast and the nodal 
displacements are shown in Fig. 22. The relative error of the 
energy corresponding to the maximal energy is shown in 
Fig. 23(a) and the relative error of the energy in the final 
configuration is shown in Fig. 23(b). It can be found that 
the energy increases firstly and then reduces slightly. 

 
 

Fig. 22 Energy of perfect and imperfect booms during 
the folding when n = 6 
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(a) Configuration corresponding 
to the maximal energy 

(b) Final fully deployable 
configuration 

Fig. 23 Effects of imperfections when n = 6 
 
 

  
(a) 1st (b) 8th (c) 9th 

Fig. 24 Eigenvalue buckling modes when n = 6 
(Undeformed configurations in black and 
deformed configurations in blue) 

 
 

Fig. 25 Energy of perfect and imperfect booms during 
the folding when n = 6 

 
 

Moreover, the energy of the boom with imperfections based 
on the 1st, 7th and 9th eigenvalue buckling modes are of great 
difference from that of the perfect mast. These eigenvalue 
buckling modes of the mast are given in Fig. 24. It can be 
seen from Fig. 24 that the 1st, 7th and 9th eigenvalue 
buckling modes deform in the z direction. 

For the boom with n = 8, the relations between the 
energy of the perfect and imperfect boom and the nodal 
displacements are shown in Fig. 25. It can be found that the 
energy increases as the boom folds. The relative error of the 
energy in the final deployable configuration is shown in 
Fig. 26. It can be seen from this figure that the influence of 

Fig. 26 Effects of imperfections when n = 8 
 
 

 
(a) 1st (b) 2nd 

Fig. 27 Eigenvalue buckling modes when n = 8 
(Undeformed configurations in black and 
deformed configurations in blue) 

 
 

Fig. 28 Energy of perfect and imperfect booms 
during the folding when n = 9 

 
 

imperfection on the mechanical behaivor of the boom is 
small except for the imperfect system based on the 1st and 
2ndeigenvalue buckling modes. These two eigenvalue 
buckling modes of the mast are given in Fig. 27. It can be 
seen from Fig. 27 that the 1stand 2nd eigenvalue buckling 
modes deform in the z direction. 

For the boom with n = 9, the relations between the 
energy of the perfect and imperfect boom and the nodal 
displacements are shown in Fig. 28. It can be found that the 
energy increases when the boom gradually folds. The 
relative error of the energy in the final deployable 
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Fig. 29 Effects of imperfections when n  =9 
 
 

  
(a) 1st (b) 2nd (c) 9th 

Fig. 30 Eigenvalue buckling modes when n = 9 
(Undeformed configurations in black and 
deformed configurations in blue) 

 
 

configuration is shown in Fig. 29. It can be seen from this 
figure that the influence of imperfection on the mechanical 
behaivor of the boom is small except for the imperfect 
system based on the 1st, 2nd and 9th eigenvalue buckling 
modes. These eigenvalue buckling modes of the mast are 
given in Fig. 30. It can be seen from Fig. 30 that the 1st, 
2nd and 9th eigenvalue buckling modes deform in the z 
direction. 

It can be found from the previous results that when there 
is imperfection in the z direction, it has greater effects on 
the energy in the folding process of the multi-storey booms. 

 
 

5. Conclusions 
 
This paper studied the dynamic behavior of the 

deployment and folding process of a foldable boom based 
on the Miura origami pattern. Firstly, mechanical behavior 
of the boom during the motion is investigated by a 
numerical method. Moreover, the influence of the geometry 
parameters and the number of Miura-ori elements n on the 
dynamic behavior of the boom is also studied. Finally, the 
influence of the imperfection on the dynamic behavior is 
also studied. The results show that: 

 

 For the case n = 6, when the angle α varies between 
65° to 85° (whilst the corresponding β changes from 
35° to 55°), the energy of the boom rises at first and 
decreases afterwards. Therefore, there exists a stable 
configuration during the deployment. For the case n 
= 4 and 5, if β = 30°, there will be two local minimal 
energy during the motion of the boom. 

 The deployment of multi-storey booms is almost 

uniform for all the cases studied in this paper. 
Therefore, the behavior of multi-storey booms is 
similar as the single storey boom. 

 The influence of the imperfection on the folding 
behavior of the foldable mast is significant. The 
imperfection in the z direction affects the energy 
significantly. 
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