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1. Introduction 

 

Due to cyclic loads or environmental effects, internal 

matrix cracks and delamination may develop in laminated 

structures at strain levels well below the failure strain. 

These cracks lead to the main low-stress damage modes that 

are the main cause of reduction in the stiffness and strength. 

For the design of laminated composites, the effect of matrix 

cracking needs to be considered, which is likely to cause the 

changes of stiffness. 

Budiansky and O’Connell (1976) reported a noteworthy 

study of solids with cracks by developing a self-consistent 

model to compute the elastic moduli of cracked isotropic 

solids. Laws and Dvorak (1988) proposed a shear-lag model 

to investigate the progressive transverse cracking of the 

matrix. Lee and Daniel (1990) proposed a simplified shear 

lag analysis using a progressive damage scheme for cross-

ply composite laminates under uniaxial tensile loading. 

Gudmundson and Weilin (1993) presented an analytical 

model for the prediction of the thermoelastic properties of 

composite laminates containing matrix cracks which is 

parallel to the fiber direction or perpendicular to the 

laminate plane. For delaminated composite plates, Nikrad 

and Asadi (2015) examined the thermal instability and 

thermal postbuckling of rectangular delaminated composite 

plates by taking into consideration the von Karman 

geometrical nonlinearity. Nikrad et al. (2017) investigated 

the mechanical stability of L-section and T-section 
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composite struts with single edge delamination. With 

considering off-center delaminations, the postbuckling 

behavior and the delamination growth of geometrically 

imperfect composite plates was studied by Nikrad et al. 

(2016). Kashtalyan and Soutis (2013) described an 

analytical approach to predict the effect of intra- (matrix 

cracking and splitting) and inter-laminar (delamination) 

damage on the residual stiffness properties of the laminate, 

which can be used in the post-initial failure analysis, taking 

full account of damage mode interaction. Gayathri et al. 

(2010) presented static and dynamic analysis of a laminated 

composite plate model based on first order shear 

deformation theory with matrix cracks introduced into the 

finite element model by considering changes in the different 

matrices of composites. Makins and Adali (1991) presented 

a bending analysis for cross-ply laminates containing matrix 

cracks which are assumed to be statistically homogeneous 

corresponding to an average crack density. The effect of 

matrix cracks on the buckling of unsymmetrical, cross-ply 

laminates is investigated in Adali and Makins (1991). 

Numerous studies showed that carbon nanotubes 

(CNTs) have excellent mechanical, electrical and thermal 

properties. Many studies have been presented about 

mechanical properties of single layer CNT-reinforced 

composite beams, plates and shells Mehri et al. (2016a, b), 

Asadi (2017), Asadi et al. (2017), Asadi and Wang (2017a, 

b), Mehri et al. (2017). Disparate the above-mentioned 

studies, only limited work has been reported on the 

laminated CNTR-FG composite plates. For static analysis 

laminated FG-CNT reinforced composite rectangular plates, 

detailed stress analysis is presented in Lei et al. (2016a). 

Bahrami et al. (2018) examined the in-plane and out-of-

plane forced vibration of a curved nanocomposite 
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microbeam. Using the element-free kp-Ritz method, 

Ebrahimi and Farazmandnia (2018) presented thermo-

mechanical buckling of sandwich beams with a stiff core 

and face sheets made of functionally graded carbon 

nanotube-reinforced composite (FG-CNTRC) within the 

framework of Timoshenko beam theory. With CNTR-FG 

composite structures integrated with piezoelectric layers, 

the mechanical properties of vibration, and postbuckling 

were studied in detail by Keleshteri et al. (2017a, b), 

Mohammadzadeh-Keleshteri et al. (2017), Keleshteri et al. 

(2018). Arani et al. (2018) investigated buckling and free 

vibration analysis of sandwich micro plate (SMP) integrated 

with piezoelectric layers embedded in orthotropic 

Pasternak. Moradi-Dastjerdi and Payganeh (2017) studied 

thermoelastic dynamic behavior of functionally graded 

carbon nanotube reinforced composite (FG-CNTRC) 

cylinders subjected to mechanical pressure loads, uniform 

temperature environment or thermal gradient loads. 

Tahouneh (2018) examined free vibration characteristics of 

sandwich sectorial plates with multiwalled carbon 

nanotube-(MWCNT)-reinforced composite core. For CNT 

reinforced functionally graded rotating laminated 

cylindrical panels, a parametric analysis of frequency is 

presented in Lei et al. (2016b). 

This paper presented the buckling analysis of a hybrid 

laminated plate with matrix cracks. In this study, the 

laminated plate is composed of perfectly bonded with 

carbon nanotube reinforced functionally graded (CNTR-

FG) layers and conventional fiber reinforced composite 

(FRC) layers. In CNTR-FG layers, the CNTs is uniformly 

distributed or functionally graded in the thickness direction. 

A self-consistent model is employed to describe the 

stiffness reduction due to the matrix cracking. The 

governing eigenvalue equation for buckling analysis is 

derived based on the first-order shear deformation theory 

(FSDT) and the kernel particle approximation via the Ritz 

procedure. The numerical illustrations show the influences 

of matrix crack density, CNTs distributions, CNT volume 

fraction, plate aspect ratio and plate length-to-thickness 

ratio, boundary conditions and number of layers on 

buckling behaviors of hybrid laminated plates containing 

CNTR-FG layers. 
 

 

2. Problem definition 
 

In this study, a hybrid laminated composite plate 

composed of perfectly bonded CNTR-FG layers and FRC 

layers with thickness t and N layers, as shown in Fig. 1. N is 

the total number of layers and each layer has thickness h0. 

For each CNTR-FG layer, three types of distributions of 

CNT are considered. UD represents the uniform distribution 

and FG-O and FG-X denote the other two functionally 

graded distributions. The hybrid laminated plate has length 

a, width b, thickness t, with an arbitrary combination of 

boundary conditions along the four edges. 
 

2.1 Material properties of FRC layers 
 

A micromechanical model is introduced to describe the 

material properties of a FRC layer by Shen (2009a) 

 

Fig. 1 Geometry of a hybrid laminated composite plate 

composed of perfectly bonded CNTR-FG layers and 

FRC layers 
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where 𝐸11
𝑓

, 𝐸22
𝑓

, 𝐺𝑖𝑗
𝑓

 and 𝑣
𝑓

 are the Young’s moduli, 

shear moduli and Poisson’s ratio of the fiber, while 𝐸𝑚 , 

𝐺𝑚  and 𝑣𝑚  are corresponding properties for the matrix. 

𝑉𝑓  and 𝑉𝑚  are the fiber and matrix volume fractions. 

 

2.2 Material properties of CNTR-FG layers 
 

Distributions of CNTs along the thickness direction of 

each CNTR-FG layer are given as 
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It is assumed the CNTR-FG laminated plates are made 

of a mixture of SWCNTs and an isotropic matrix. The 

following material properties for the matrix are used: 𝑣𝑚 =
0.34 , 𝛼𝑚 = 45(1 + 0.0005∆𝑇) × 10−6/𝐾 and 𝐸𝑚 =
(3.52 − 0.0034𝑇) GPa, where T = T0 + ΔT and T0 = 300 K 

(room temperature). The CNTs selected in this paper are the 

type of armchair (10,10) SWCNTs with material properties: 

𝐸11
𝐶𝑁𝑇 = 5.6466 𝑇𝑃𝑎 , 𝐺22

𝐶𝑁𝑇 = 7.0800 𝑇𝑃𝑎 . According to 

the extended rule of mixture of Shen (2009b), the effective 

material properties of CNTR-FG layer can be expressed as 
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where 𝐸11
𝐶𝑁𝑇 , 𝐸22

𝐶𝑁𝑇  and 𝐺12
𝐶𝑁𝑇  are the Young’s moduli and 

shear modulus of SWCNTs, respectively, and 𝐸𝑚  and 𝐺𝑚   

are the corresponding properties of the isotropic matrix. 

𝜂𝑗 (𝑗 = 1, 2, 3) , the CNT efficiency parameters are 

calculated by matching the effective properties obtained 

from the MD simulations with those from the rule of 

mixture. 

Also, using the rule of mixture, thermal expansion 

coefficients, Poisson’s ratio and the density can be 

calculated as 
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where 𝑣12
𝐶𝑁𝑇  and 𝑣𝑚  are Poisson’s ratios of the CNT and 

matrix, respectively. 

 

2.3 Modeling for matrix cracks 
 

On the macro-scale, the cracked unidirectional 

composite of Fig. 1 can be regarded as an orthotropic 

homogeneous solid. The elastic properties of the matrix are 

identical with those of the fibrous composite and can be 

easily evaluated. When cracks are introduced, the 

macroscopic or overall elastic moduli of the solid are 

changed. According to Laws et al. (1983), with the cracks 

are introduced, the self-consistent estimates for the overall 

compliance matrices S can be given as 
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in which β is the crack density parameter which is defined 

by Ref. Dvorak et al. (1985). 

The matrix Λ has only three nonzero components, 

which are expressed in terms of compliances Sij as 
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where α1 and α2 are roots of the following equation 
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These results imply that only three compliance 

coefficients S22, S44, and S66 are affected by the introduction 

of cracks, the remaining six terms in S are unchanged, i.e., 

they remain equal to those of the uncracked fiber 

composite. 

In particular 
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Once the values of Sij are computed, the reduced 

stiffness components Qij are obtained by inverting the 

compliance matrix. 
 

 

3. Theoretical formulations 
 

3.1 Energy formulation 
 

Based on the FSDT, the displacement field is defined as 
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where u0, v0 and w0 denote the translation displacements of 

a point at the mid-plane, respectively; φx and φy represents 

rotations of a transverse normal about positive y and 

negative x axes. The linear strain-displacement relationships 

are given by 
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The linear constitutive relations are expressed as 
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and ΔT is the temperature change, E11 and E22 are effective 

Young’s moduli of hybrid laminated plates; G12, G13 and 

G23 are the shear moduli; α11 and α22 are the thermal 

expansion coefficients; and ν12 and ν21 are the Poisson’s 

ratios. 

The strain energy of the hybrid laminated plates is given 

by 
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where K is the transverse shear correction coefficient, 

which is suggested as K = 5 / (6 ‒ (v1V1 + v2V2)) for FGMs 

Efraim and Eisenberger (2007). 

For a laminated plate, the stiffnesses can be expressed as 
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where 𝑄 𝑖𝑗
𝑘  is the transformed reduced stiffness matrix for 

the kth layer where 
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where θ is the lamination angle. 

The potential energy due to in-plane loads is given by 
 

0
1

0Ω
2

01
dΩ

2 0

x

g

y

w

Nw w x
W

wx y N

y





 
     
            
  



 

(34) 

 

Thus the total energy functional of the hybrid laminated 

plates can be expressed as 
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3.2 Discrete system equations 
 

The approximated discretized displacement is expressed 

as 
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Eq. (37) can be written as 
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The cubic spline function is selected as the weight 
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The shape function thus is obtained as 
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determined. With the same procedure, other order derivative 

of the shape function can also be obtained. 
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x x L x  

   

    u u u u

 
(57) 

 

where 
 

T

1

ˆ ( ) ( )
NP

K KI I

I

x L x 




 

(58) 

 

Note that 
 

T T

1 1

ˆ ( ) ( )
NP NP

I J IK K J IK KJ IJ

I I

x L x L L   

 

   
 

(59) 

 

Substituting Eq. (36) into Eq. (35) and performing the 

Ritz procedure to the total energy functional, we obtain 

 g K K u 0
 

(60) 

 

where 
 

b m s  K K K K , 
T

Ω
dΩb b b

IJ I J K B DB
 

(61) 

 
T T T

Ω Ω Ω
dΩ dΩ dΩm m m m b b m

IJ I J I J I J    K B AB B BB B BB
 

(62) 

 
T

Ω
dΩs s s s

IJ I J K B A B ,
 

T

Ω
dΩg I J K G NG

 
(63) 

 

The stiffness matrices in Eqs. (61)-(63) are computed 

via the stabilized nodal integration and direct nodal 

integration. 
 

T

1

( ) ( )
NP

b b b

IJ I L J L L

L

A


K B x DB x

 
(64) 

 
T T

T

1

( ) ( ) ( ) ( )

( ) ( )

m m m bNP
I L J L I L J Lm

IJ L
b m

L
I L J L

A


 
  

  


B x AB x B x BB x
K

B x BB x
 

(65) 

 

T

1

( ) ( )
NP

s s s s

IJ I L J L L

L

A


K B x A B x

 
(66) 

 

T

1

( ) ( )
NP

g

I L J L L

L

A


K G x NG x

 
(67) 

 

where 
 

0 0 0 ( ) 0
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 
  
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4. Numerical results and discussion 
 
Numerical results are presented in this section for 

buckling of hybrid laminated plates. First, it is needed to 

determine the effective material properties of FRC and 

 

 

Table 1 Nc/Nu of cracked four-layered laminates [0o/90o/ 

90o/ 0o] made of graphite/epoxy material for the 

case β0 = 0.5, β90 = 0.5 (γ2/γ1 = 0) 

a/b 

γ2 / γ1 = 0 γ2 / γ1 = 0 

Present 
Adali and Makins 

(1991) 
Present 

Adali and Makins 

(1991) 

0.5 0.9815 0.980 0.9195 0.918 

0.6 0.9716 0.972 0.9069 0.885 

0.8 0.9550 0.948 0.9346 0.936 

1.0 0.9369 0.918 0.9331 0.918 
 

 

 

CNTR-FG. It is assumed that FRC and CNTR-FG have the 

same matrix material. For the FRC ply, the volume fraction 

of graphite fibers is 0.6, and the material properties of 

which are: 𝐸11
𝑓

= 233.05 GPa, 𝐸22
𝑓

= 23.1 GPa, 𝐺12
𝑓

= 8.96 

GPa and 𝑣
𝑓

= 0.2. In addition, we assume that the out-

plane shear moduli G12 = G13 and G23 = 1.2G13. In this 

study, the boundary conditions are movable and defined as 
 

Simply supported (S): 
 

At x = 0, a: v0 = w0 = ϕy = 0, 

At y = 0, b: u0 = w0 = ϕx = 0. 
 

Clamped (C): 
 

At x=0, a: v0 = w0 = ϕx = ϕy = 0, 

At y=0, b: u0 = w0 = ϕx = ϕy = 0. 
 

Firstly, buckling analysis Nc/Nu of cracked four-layered 

laminates [0o/90o/90o/0o] made of graphite/epoxy material 

for the case β0 = 0.5, β90 = 0.5 is provided to demonstrate 

the validity and accuracy of the proposed method. The 

material properties of the plate are E1 = 132.4 GPa, E1 = E3 

= 10.8 GPa, G12 = G13 = 5.65 GPa, v12 = v13 = 0.24 and v12 = 

0.49. β0 and β90 refer to the average crack densities of the 0° 

and 90° layers, respectively. The results for the cracked 

laminates are given relative to the uncracked case by 

considering the ratio Nc/Nu, where Nc and Nu denote the 

buckling loads of the cracked laminate and the 

corresponding uncracked laminate. As shown in Table 1, it 

can be seen that the present results are in good agreement 
 

 

Table 2 𝑁 𝑐  and 𝑁 𝑢  for cracked and uncracked various types of [0C/90F/90F/0C] plates (a/b = 1.0, 

b/h = 10) under uniaxial compression (γ1 = ‒1, γ2 = 0) in different CNT volume fraction and 

boundary conditions 

 
CNT pattern VCNT 

Buckling load parameter 

SSSS CCCC SCSC SFSF CFCF 

𝑁 𝑐  

UD 

0.11 23.2179 31.2386 28.5327 9.6292 21.0273 

0.14 27.8623 38.4769 35.4991 13.1466 27.1022 

0.17 32.9307 42.9094 40.7497 18.13913 32.5435 

FG-O 

0.11 22.9884 29.6411 28.2712 9.3763 20.7371 

0.14 27.6073 38.4102 35.2942 12.8336 26.8327 

0.17 32.8958 42.7429 40.3914 17.9214 31.9204 

FG-X 

0.11 23.4255 31.4890 28.8524 10.0285 21.3515 

0.14 28.2521 38.8921 35.9744 13.5022 27.5637 

0.17 33.6920 43.9955 41.7976 18.7246 33.4677 

𝑁 𝑢  

UD 

0.11 24.6944 37.0834 36.2528 10.7975 24.9055 

0.14 29.4604 44.6355 40.0449 14.4634 31.3578 

0.17 35.0677 49.8939 46.3960 19.9510 37.7317 

FG-O 

0.11 24.4436 36.8354 36.0258 10.5260 24.5486 

0.14 29.1622 44.4823 39.7208 14.1139 31.0038 

0.17 34.9302 49.6083 45.8018 19.6313 36.9836 

FG-X 

0.11 24.9752 37.4030 36.5466 11.0727 25.2897 

0.14 29.8796 45.1117 40.6135 14.8459 31.8791 

0.17 35.8452 51.0031 47.5055 20.5579 38.6842 
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with Adali and Makins (1991) based on the classical thin 

plate theory. 

After demonstrating the accuracy of the proposed 

method, numerical simulations are performed to examine 

the effects of CNT volume fraction, CNT distribution, plate 

length-to-thickness, plate aspect ratio, No. of layers, and 

boundary conditions on the buckling load parameters. For 

convenience and generality, the following non-dimensional 

parameters are introduced in the study: 𝑁 𝑐 = 𝑁𝑐 𝑏2 /

(64𝐸𝑚 ℎ0
3) and 𝑁 𝑢 = 𝑁𝑢 𝑏2 /(64𝐸𝑚 ℎ0

3). 

In Table 2, buckling load parameter 𝑁 𝑐  and 𝑁 𝑢  for 

cracked and uncracked various types of cross-ply 

[0C/90F/90F/0C] hybrid laminated plates (a/b = 1.0, b/h = 10) 

under uniaxial compression (γ1 = ‒1, γ2 = 0) in different 

CNT volume fraction and boundary conditions is presented. 

Superscripts C and F denote CNTRC layer and FRC 

layer, respectively. The matrix crack density for is 

expressed NTR-FG layer and FRC layer by βC and βF. 

In the present study, the value for βC and βF is selected 

as βC = 0 and βF = 0.5.The corresponding results of cracked 

and uncracked cross-ply [0C/90F/90F/0C] hybrid laminated 

plates under biaxial compression (γ1 = ‒1, γ2 = ‒1) is listed 

in Table 3. It is observed from the results that the buckling 

load parameters 𝑁 𝑐  and 𝑁 𝑢  for cracked and uncracked 

various types of cross-ply [0C/90F/90C/0F] hybrid laminated 

plates increases with the increase of CNT volume fraction, 

and the buckling load parameters 𝑁 𝑐  and 𝑁 𝑢  under 

uniaxial compression (γ1 = ‒1, γ2 = 0) are larger than those 

under biaxial compression (γ1 = ‒1, γ2 = ‒1). 

 

 

 

Fig. 2 𝑁 𝑐  for cracked various types of [45C/-45F/45C/-45F] 

hybrid laminated plates (a/b = 1.0, b/h = 10) under 

biaxial compression (γ1 = ‒1, γ2 = ‒1) in different 

CNT volume fraction and boundary conditions 
 

 

Furthermore, effect of CNT volume fraction on buckling 

load parameters 𝑁 𝑐  and 𝑁 𝑢  for cracked and uncracked 

angle-ply [45C/-45F/45C/-45F] hybrid laminated plates (a/b = 

1, b/h = 10) under biaxial compression (γ1 = ‒1, γ2 = ‒1) 

with different boundary conditions is presented in Figs. 2-3. 

Tables 4 and 5 show the buckling load parameters 𝑁 𝑐  

and 𝑁 𝑢  for cracked and uncracked various types of cross- 

Table 3 𝑁 𝑐  and 𝑁 𝑢  for cracked and uncracked various types of [0C/90F/90F/0C] plates (a/b = 1.0, 

b/h = 10) under biaxial compression (γ1 = ‒1, γ2 = ‒1) in different CNT volume fraction and 

boundary conditions 

 
CNT pattern VCNT 

Buckling load parameter 

SSSS CCCC SCSC SFSF CFCF 

𝑁 𝑐  

UD 

0.11 11.9237 24.3546 19.4507 4.7586 9.7930 

0.14 14.2311 29.2054 22.9443 6.3824 12.3350 

0.17 16.8149 32.4075 25.7653 8.4272 14.2495 

FG-O 

0.11 11.8048 22.9669 19.2931 4.6571 9.6858 

0.14 14.0982 29.1097 22.8517 6.2602 12.2344 

0.17 16.7809 32.0398 25.5991 8.3626 13.9492 

FG-X 

0.11 12.2231 24.5527 19.6113 4.8662 9.9187 

0.14 14.4285 29.5138 23.1795 6.5345 12.5218 

0.17 17.1920 33.1220 26.3092 8.6925 14.6442 

𝑁 𝑢  

UD 

0.11 12.5697 26.5760 20.1975 5.4385 11.5799 

0.14 14.9547 31.4359 23.6934 7.1353 14.2175 

0.17 17.7804 34.9125 26.7674 9.3602 16.2377 

FG-O 

0.11 12.4425 26.3991 20.0826 5.3297 11.4552 

0.14 14.8025 31.3165 23.5971 7.0003 14.1121 

0.17 17.7061 34.6337 26.4485 9.2647 16.1162 

FG-X 

0.11 12.7117 26.7945 20.3485 5.5556 11.7213 

0.14 15.1661 31.7497 23.9436 7.2976 14.4111 

0.17 18.1684 35.5979 27.3104 9.6333 16.7170 
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Fig. 3 𝑁 𝑢  for uncracked various types of [45C/-45F/ 

45C/-45F] hybrid laminated plates (a/b = 1.0, b/h 

= 10) under biaxial compression (γ1 = ‒1, γ2 = 

‒1) in different CNT volume fraction and 

boundary conditions 

 

 

ply [0C/90F/90F/0C] hybrid laminated plates (a/b=1.0) under 

uniaxial compression (γ1 = ‒1, γ2 = 0) and biaxial 

compression (γ1 = ‒1, γ2 = ‒1) in different plate length-to-

thickness ratio (a/h) and boundary conditions. It is evident 

that as the boundary condition changes from the fully 

clamped to simply- supported and/or free for the corres- 

 

 

ponding support edges, for example from CCCC to SFSF, 

the buckling load parameter becomes lower. 

This is because a higher constraint at the edge increases 

the plate flexural rigidity, resulting in a higher buckling 

load. It is found that with the increase of plate length-to-

thickness ratio, the buckling load parameters increase. 

Effect of plate length-to-thickness ratio (a/h) on buckling 

load parameters 𝑁 𝑐  and 𝑁 𝑢  for cracked and uncracked 

various types of angle-ply [45C/-45F/45C/-45F] hybrid 

laminated plates (a/b = 1.0) under biaxial compression (γ1 = 

‒1, γ2 = ‒1) are presented in Figs. 4-5. 

The effect of plate aspect ratio a/b on the buckling load 

parameters 𝑁 𝑐  and 𝑁 𝑢  for cracked and uncracked 

various types of cross-ply [0C/90F/90F/0C] hybrid laminated 

plates (b/h = 10) under uniaxial compression (γ1 = ‒1, γ2 = 

0) and biaxial compression (γ1 = ‒1, γ2 = ‒1) are given in 

Tables 6 and 7. It can be seen that the buckling load 

parameters 𝑁 𝑐  and 𝑁 𝑢 decrease with the increasing 

thickness ratio. For hybrid laminated plates containing UD, 

FG-O and FG-X types of CNTR-FG layers. We can also 

observe that the buckling load parameters 𝑁 𝑐  and 𝑁 𝑢  

for FG-O hybrid laminated plates is a little lower than UD 

hybrid laminated plates, while that of FG-X hybrid 

laminated plates is a little higher than UD hybrid laminated 

plates. Effect of plate aspect ratio on buckling load 

parameters 𝑁 𝑐  and 𝑁 𝑢  for cracked and uncracked 

various types of angle-ply [45C/-45F/45C/-45F] hybrid 

laminated plates (b/h = 10) under uniaxial compression (γ1 

= ‒1, γ2 = 0) and biaxial compression (γ1 = ‒1, γ2 = ‒1) 

Table 4 𝑁 𝑐  and 𝑁 𝑢  for cracked and uncracked various types of [0C/90F/90F/0C] plates (a/b = 1.0) 

under uniaxial compression (γ1 = ‒1, γ2 = 0) in different length-to-thickness ratio and 

boundary conditions 

 
CNT pattern a/h 

Buckling load parameter 

SSSS CCCC SCSC SFSF CFCF 

𝑁 𝑐  

UD 

10 23.2179 31.2386 28.5327 9.6292 21.0273 

20 30.6169 71.8806 54.1852 12.0976 38.0636 

50 33.4838 108.4726 72.7975 13.0452 49.2838 

FG-O 

10 22.9884 29.6411 28.2712 9.3763 20.7371 

20 30.2342 70.7145 53.1167 11.7022 37.0730 

50 33.0331 106.4985 71.0608 12.5851 47.6128 

FG-X 

10 23.4255 31.4890 28.8524 10.0285 21.3515 

20 31.0280 73.1651 55.2687 12.4954 39.0745 

50 33.9605 110.4784 74.2103 13.5065 50.9605 

𝑁 𝑢  

UD 

10 24.6944 37.0834 36.2528 10.7975 24.9055 

20 31.8848 80.4605 59.1687 13.1818 42.7365 

50 34.6760 114.1441 77.5587 14.0590 53.4970 

FG-O 

10 24.4436 36.8354 36.0258 10.5260 24.5486 

20 31.4916 78.5248 58.0954 12.7757 41.6565 

50 34.2233 112.2212 75.6005 13.5971 51.7982 

FG-X 

10 24.9752 37.4030 36.5466 11.0727 25.2897 

20 32.3059 80.8547 60.2848 13.5896 43.8307 

50 35.1548 116.1218 79.5214 14.5218 55.2005 
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Table 5 𝑁 𝑐  and 𝑁 𝑢  for cracked and uncracked various types of [0C/90F/90F/0C] plates (a/b = 1.0)  

under biaxial compression (γ1 = ‒1, γ2 = ‒1) in different length-to-thickness ratio and 

boundary conditions 

 
CNT pattern a/h 

Buckling load parameter 

SSSS CCCC SCSC SFSF CFCF 

𝑁 𝑐  

UD 

10 11.9237 24.3546 19.4507 4.7586 9.7930 

20 15.3955 45.9124 35.1378 6.0065 18.2937 

50 16.7678 61.0135 46.2914 6.4984 24.1163 

FG-O 

10 11.8048 22.9669 19.2931 4.6571 9.6858 

20 15.2040 45.3998 34.9702 5.8372 17.8768 

50 16.5427 60.1694 46.0969 6.2983 23.4008 

FG-X 

10 12.2231 24.5527 19.6113 4.8662 9.9187 

20 15.6013 46.4718 35.3511 6.1804 18.7231 

50 17.0058 61.8957 46.5324 6.7026 24.8898 

𝑁 𝑢  

UD 

10 12.5697 26.5760 20.1975 5.4385 11.5799 

20 16.0178 48.4958 35.7815 6.6886 20.6216 

50 17.3616 63.3297 46.9014 7.1596 26.3523 

FG-O 

10 12.4425 26.3991 20.0826 5.3297 11.4552 

20 15.8213 47.9532 35.6125 6.5144 20.1768 

50 17.1355 62.4712 46.7072 6.9587 25.6058 

FG-X 

10 12.7117 26.7945 20.3485 5.5556 11.7213 

20 16.2283 49.0847 35.9971 6.8671 21.0762 

50 17.6007 64.2320 47.1363 7.3649 27.1011 
 

Table 6 𝑁 𝑐  and 𝑁 𝑢  for cracked and uncracked various types of [0C/90F/90F/0C] laminated plates 

(b/h = 10) under uniaxial compression (γ1 = ‒1, γ2 = 0) in different plate aspect ratio and 

boundary conditions 

 
CNT pattern a/h 

Buckling load parameter 

SSSS CCCC SCSC SFSF CFCF 

𝑁 𝑐  

UD 

1 23.2179 31.2386 28.5327 9.6292 21.0273 

1.25 22.9097 30.5856 28.4860 6.8282 17.1423 

1.5 22.0858 30.3744 28.4542 5.0400 13.9849 

FG-O 

1 22.9884 29.6411 28.2712 9.3763 20.7371 

1.25 22.5950 29.6131 28.1402 6.6320 16.8345 

1.5 21.8068 29.0152 28.2064 4.8864 13.6867 

FG-X 

1 23.4255 31.4890 28.8524 10.0285 21.3515 

1.25 23.2396 30.9144 28.6967 7.0270 17.4705 

1.5 22.3946 30.6790 28.6569 5.1964 14.2954 

𝑁 𝑢  

UD 

1 24.6944 37.0834 36.2528 10.7975 24.9055 

1.25 24.3610 35.6309 34.1802 7.5683 19.9332 

1.5 24.2759 34.9852 32.4299 5.5415 16.0237 

FG-O 

1 24.4436 36.8354 36.0258 10.5260 24.5486 

1.25 23.9986 35.3251 31.5384 7.3594 19.5707 

1.5 23.9533 34.6853 32.1361 5.5481 15.6841 

FG-X 

1 24.9752 37.4030 36.5466 11.0727 25.2897 

1.25 24.8321 35.9922 34.7738 7.7789 20.3111 

1.5 24.6248 35.3430 32.7769 5.7040 16.3725 
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Fig. 4 𝑁 𝑐  for cracked various types of [45C/-45F/45C/ 

-45F] laminated plates (a/b = 1.0) under biaxial 

compression (γ1 = ‒1, γ2 = ‒1) in different plate 

length-to-thickness ratio and boundary 

conditions 
 

 

 

Fig. 5 𝑁 𝑢  for uncracked various types of [45C/-45F/ 

45C/-45F] laminated plates (a/b = 1.0) under 

biaxial compression (γ1 = ‒1, γ2 = ‒1) in 

different plate length-to-thickness ratio and 

boundary conditions 

 

 

under different boundary conditions are presented in Figs. 

6-7. 

Buckling load parameters 𝑁 𝑐  and 𝑁 𝑢  for cracked 

and uncracked various types of cross-ply […0C/90F/ 

90F/0C…] hybrid laminated plates (a/b = 1) under uniaxial 

compression (γ1 = ‒1, γ2 = 0) and biaxial compression (γ1 = 

‒1, γ2 = ‒1) in different No. of layers and boundary 

conditions are presented in Tables 8 and 9. It can be seen 

that the buckling load parameters 𝑁 𝑐  and 𝑁 𝑢  increase 

quickly with the increase of No. of layers. Effect of No. of 

layers on buckling load 𝑁 𝑐  and 𝑁 𝑢  for cracked and 

uncracked various types of angle-ply […45C/-45F/45C/-

45F…] hybrid laminated plates (a/b=1) under uniaxial 

compression (γ1 = ‒1, γ2 = 0) and biaxial compression (γ1 = 

 

Fig. 6 𝑁 𝑐  for cracked various types of angle-ply 

[45C/-45F/45C/-45F] hybrid laminated plates 

(a/b = 1) under biaxial compression (γ1 = ‒1, 

γ2 = ‒1) in different No. of layers and boundary 

conditions 

 

 

 

Fig. 7 𝑁 𝑢  for uncracked various types of angle-ply 

[45C/-45F/45C/-45F] hybrid laminated plates (a/b 

= 1) under biaxial compression (γ1 = ‒1, γ2 = 

‒1) in different No. of layers and boundary 

conditions 

 

 

‒1, γ2 = ‒1) are illustrated in Figs. 8 and 9. It can be seen 

that the buckling load parameters 𝑁 𝑐  for cracked hybrid 

laminated plates are lower than 𝑁 𝑢  for uncracked hybrid 

laminated plates. That is because the introduction of matrix 

crack leads the reduction of the stiffness of the hybrid 

laminated plates. 

 

 
5. Conclusions 

 

In this study, the buckling behavior of a hybrid 

laminated plates containing CNTR-FG layers is studied. 

The cracks are modeled as aligned slit cracks across the ply 

thickness and transverse to the laminate plane, and the 
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Fig. 8 𝑁 𝑐  for cracked various types of angle-ply 

[...45C/-45F/45C/-45F...] hybrid laminated plates 

(a/b = 1) under biaxial compression (γ1 = ‒1, 

γ2 = ‒1) in different No. of layers and boundary 

conditions 
 

 

 

distribution of cracks is assumed to be statistically 

homogeneous corresponding to an average crack density. 

The formulation of the governing eigenvalue problem is 

based on the first-order shear deformation theory and the 

kp-Ritz method. Detailed parametric studies are presented  
 

 

 

 

Fig. 8 𝑁 𝑢  for uncracked various types of angle-ply 

[...45C/-45F/45C/-45F...] hybrid laminated plates 

(a/b = 1) under biaxial compression (γ1 = ‒1, 

γ2 = ‒1) in different No. of layers and boundary 

conditions 
 

 

 

to investigate the effect matrix crack density, CNTs 

distributions, CNT volume fraction, plate aspect ratio and 

plate length-to-thickness ratio, boundary conditions and 

number of layers on buckling behaviors of hybrid laminated 

plates. 
 

 

 

Table 7 𝑁 𝑐  and 𝑁 𝑢  for cracked and uncracked various types of [0C/90F/90F/0C] laminated plates 

(b/h = 10) under uniaxial compression (γ1 = ‒1, γ2 = 0) in different plate aspect ratio and 

boundary conditions 

 
CNT pattern a/b 

Buckling load parameter 

SSSS CCCC SCSC SFSF CFCF 

𝑁 𝑐  

UD 

1 11.9237 24.3546 19.4507 4.7586 9.7930 

1.25 11.2010 23.1159 19.2286 2.7530 6.436 

1.5 11.1488 22.4098 18.9102 1.6935 4.2766 

FG-O 

1 11.8048 22.9669 19.2931 4.6571 9.6858 

1.25 11.1321 22.9735 18.7484 2.6910 6.3425 

1.5 11.1086 22.2661 18.7347 1.6553 4.2020 

FG-X 

1 12.2231 24.5527 19.6113 4.8662 9.9187 

1.25 11.2854 23.3020 19.4133 2.8185 6.5406 

1.5 11.2048 22.5879 19.1268 1.7339 4.3572 

𝑁 𝑢  

UD 

1 12.5697 26.5760 20.1975 5.4385 11.5799 

1.25 11.5502 24.6643 19.7331 3.1417 7.5527 

1.5 11.3796 23.8123 19.4060 1.9365 4.9775 

FG-O 

1 12.4425 26.3991 20.0826 5.3297 11.4552 

1.25 11.4765 24.4376 19.6377 3.0759 7.4436 

1.5 11.3180 23.6784 19.3211 1.8967 4.8925 

FG-X 

1 12.7117 26.7945 20.3485 5.5556 11.7213 

1.25 11.6391 24.8794 19.8651 3.2110 7.6707 

1.5 11.4102 23.9948 19.6112 1.9787 5.0676 
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Table 8 𝑁 𝑐  and 𝑁 𝑢  for cracked and uncracked various types of [...0C/90F/90F/0C...] laminated 

plates (a/b = 1) under uniaxial compression (γ1 = ‒1, γ2 = 0) in different No. of layers and 

boundary conditions 

 
CNT pattern 

No. of 

layers 

Buckling load parameter 

SSSS CCCC SCSC SFSF CFCF 

𝑁 𝑐  

UD 

4 23.2179 31.2386 28.5327 9.6292 21.0273 

6 49.9678 53.4714 51.2591 25.6613 41.7122 

8 69.7656 75.8935 72.1640 44.7641 61.6297 

FG-O 

4 22.9884 29.6411 28.2712 9.3763 20.7371 

6 49.9515 53.3742 51.2041 25.4937 41.6450 

8 69.7281 75.7979 72.1450 44.6892 61.5842 

FG-X 

4 23.4255 31.4890 28.8524 10.0285 21.3515 

6 50.1357 53.5906 51.3695 25.8735 41.8995 

8 69.9104 75.9790 72.2402 44.9445 61.7911 

𝑁 𝑢  

UD 

4 24.6944 37.0834 36.2528 10.7975 24.9055 

6 59.6926 65.8884 62.9912 29.4809 50.7872 

8 87.3936 91.8606 89.1257 52.7912 76.2287 

FG-O 

4 24.4436 36.8354 36.0258 10.5260 24.5486 

6 59.5958 65.8809 62.8142 29.2740 50.6729 

8 87.4848 91.6917 89.0579 52.6754 76.2046 

FG-X 

4 24.9752 37.4030 36.5466 11.0727 25.2897 

6 59.9227 66.0659 63.0628 29.7240 51.0112 

8 87.5466 91.9885 89.3013 52.9980 76.4087 
 

Table 9 𝑁 𝑐  and 𝑁 𝑢  for cracked and uncracked various types of [...0C/90F/90F/0C...] hybrid 

laminated plates (a/b = 1) under biiaxial compression (γ1 = ‒1, γ2 = ‒1) in No. of layers and 

boundary conditions 

 
CNT pattern 

No. of 

layers 

Buckling load parameter 

SSSS CCCC SCSC SFSF CFCF 

𝑁 𝑐  

UD 

4 11.9237 24.3546 19.4507 4.7586 9.79305 

6 30.7895 46.4778 40.3783 12.5529 19.1528 

8 52.6218 67.2803 61.9115 21.9890 28.4280 

FG-O 

4 11.8048 22.9669 19.2931 4.6571 9.6858 

6 30.7272 46.3959 40.3330 12.4929 19.1410 

8 52.6204 67.2049 61.8490 21.9725 28.3991 

FG-X 

4 12.2231 24.5527 19.6113 4.8662 9.9187 

6 30.9121 46.6177 40.5201 12.6407 19.2239 

8 52.7466 67.4247 62.0576 22.0666 28.4949 

𝑁 𝑢  

UD 

4 12.5697 26.5760 20.1975 5.4385 11.5799 

6 32.8397 52.4455 42.5706 14.6712 23.1515 

8 56.8525 77.4900 66.4972 26.2664 34.7928 

FG-O 

4 12.4425 26.3991 20.0826 5.3297 11.4552 

6 32.7605 52.4181 42.5067 14.5708 23.1275 

8 56.8340 77.3783 66.4553 26.2383 34.7739 

FG-X 

4 12.7117 26.7945 20.3485 5.5556 11.7213 

6 32.9785 52.5966 42.7262 14.7746 23.2316 

8 56.9891 77.6356 66.6542 26.3524 34.8634 
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