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1. Introduction 
 

In many structures, beam plays a practical and 

significant role. Since this part is rather thin, it should be 

kept safe from the stability phenomena. For this reason, 

many researchers have performed the stability analysis of 

the different beam under the various loading and boundary 

conditions. According to the findings, the axial tension-

compression loads are effective on the bending stiffness of 

beams. On the other hand, these loadings increase or 

decrease the buckling load and unpaired bending vibrations. 

In the past years, many investigators studied the bending 

stability and vibration of the prismatic beams under the 

axial loads (Murthy and Neogy 1969, Gellert and Gluck 

1972, Bokaian 1988, 1990, Leung 1991, Banerjee and 

Fisher 1992, Banerjee and Williams 1994, Hashemi et al. 

1999, Hashemi and Richard 2000a, b, Jun et al. 2004). A 

few of these were performed on the combination effect of 

axial load and the ends bending moment on the stability and 

vibration of beam element (Joshi and Suryanarayan 1984, 

1989, 1991, Pavlović and Kozić 2003, Pavlović et al. 2007). 

Due to the needs, the structural elements can be 

modeled as a beam having complex geometric section. 

These parts can undergo the combination of axial, bending 

and torsional loadings. It is possible that the column having 

thin-walled section twists under the axial load. For this 

case, the buckling load of column should be determined 

based on the bending and torsional buckling simultaneously. 
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Because of necessities, too many researchers have worked 

on the area of the bending-torsional buckling of beams and 

columns. For the same reason, some studies were performed 

on the effect of semi-rigid supports on the elastic bending or 

torsional and bending-torsional buckling of beams and 

columns. Among them, the works of (Winter 1958, Taylor 

and Ojalvo 1966, Nishino et al. 1973, Ioannidis et al. 1993, 

Valentino and Trahair 1998, Pi and Bradford 2002, Gupta et 

al. 2003, Andrade and Camotim 2004, Tsai and Kelly 2005) 

can be noted. Furthermore, the stability and vibration 

characteristics of three-dimensional steady motions of 

translating beams undergoing boundary misalignment were 

studied by Orloske and Parker (2006). In addition, a beam 

theory was suggested by Fatmi (2007) for the non-uniform 

warping analysis, including the effects of torsion and shear 

forces. On the other hand, the lateral buckling of a prismatic 

beam with homogenous section was studied based on the 

hyper-elastic formulation (Attard and Kim 2010). In 

another work, the torsional buckling of Chalipa section 

column, considering plastic deformation, was analyzed 

under the axial compression load (Schurig and Bertram 

2011). Recently, a new and efficient warping displacement 

model was proposed to ensure the continuity of warping in 

beams with discontinuously varying arbitrary cross-sections 

(Yoon and Lee 2014). 

In another research, the bending-torsional buckling of 

the steel beam with continuous lateral bracing was 
investigated (Larue et al. 2007). Moreover, a simple method 

was proposed to lateral-torsional analysis of doubly-

symmetric I-beam considering continuous lateral bracing 

(Khelil and Larue 2008). On the other hand, the lateral-

torsional buckling of I-beam having discrete lateral bracing 

was studied by Nguyen et al. (2010). Under the effect of the 

different loadings, the bending-torsional buckling strength 
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of I-beam with discrete supports was investigated (Nguyen 

et al. 2012). Furthermore, the ultimate strength of mono-

symmetric I-beam was achieved by El-Mahdy and El-

Saadawy (2015). Recently, the lateral-torsional strength of 

mono-symmetric I-beam having discrete lateral bracing was 
obtained (Mohammadi et al. 2016). However, none of the 

researches have studied the lateral-torsional buckling of 

tapered I-beam considering continuous and discrete lateral 

bracing. So far, the effect of functionally graded material, 

lateral bracing and the taper ratio of section on the lateral-

torsional buckling of tapered I-beam was not studied 

simultaneously. 

Due to some applications, investigating the effect of 
functionally graded materials in the static and dynamic 
buckling analysis of non-prismatic members is essential. In 
the past years, buckling analysis of non-prismatic members 
with FGM cross-section has rarely been studied. In 2001, 
the analysis of FGM beam was done by Sankar. The author 
assumed an exponential function for the modulus of 
elasticity variation throughout the height of the cross- 
section (Sankar 2001). In another work, an exact solution of 
free vibration and flexural analysis of the 2D beam on 
Winkler elastic foundation was proposed by Ying et al. in 
2008. Exponential function was assumed for changing the 
modulus of elasticity (Ying et al. 2008). In 2011, buckling 
analysis of non-prismatic column with non-homogenous 
cross-section, which is affected by the axial joint load, was 
studied by Huang and Li (2011). In their study, for various 
columns, the governing differential equation for buckling of 
columns with varying flexural rigidity was reduced to a 
Fredholm integral equation. Flexural rigidity had a variety 
of functions, such as, polynomials, trigonometric and 
exponential functions (Huang and Li 2011). An analytical 
solution for buckling of prismatic Timoshenko and Euler-
Bernoulli non-homogenous beam, which is affected by axial 
load, was found by Li and Batra (2013). Different boundary 
conditions were utilized by these investigators. 
Furthermore, the modulus of elasticity change in the height 
of the cross-section was assumed to be exponentially (Li 
and Batra 2013). 

Recently, some studies were performed about the 

lateral-torsional buckling of tapered I-beam (Ioannidis and 

Avraam 2012, Michaltsos and Raftoyiannis 2012, Kim et al. 

2013). An exact solution was proposed for the stability and 

free vibration analysis of thin-walled laminated beams 

(Kim and Lee 2014). In addition, the lateral-torsional 

buckling analysis of steel tapered I-beam was studied by 

(Kuś 2015). He assumed that the flange and web change 

along the length of the beam, simultaneously. On the other 

hand, the free vibration analysis of thin-walled composite I-

beam was investigated by Vo et al. (2011). To analyze the 

behavior of FG beams under the effects of non-uniform 

torsion, a closed-form solution was proposed by Barretta et 

al. (2015). In order to achieve the optimum design, the 

analysis of flexural–torsional buckling of thin-walled 

composite beams was performed by Nguyen et al. (2015). 

On the other hand, the optimization of lateral buckling and 

free vibration of thin-walled laminated composite beams 

were analyzed by Nguyen et al. (2016). In their research, 

the section of the beam was assumed to be open-channel. In 

another work, nonlinear buckling analysis of thin-walled 

beams was performed by Lanc et al. (2016). They studied 

the effect of functionally graded material on the buckling 

behavior of the beam. It should be added that open cross-

section beam was considered in their research. In another 

paper, a thin-walled beam formulation was presented for the 

dynamic analysis of bridges by Vieira et al. (2014). They 

considered warping effect in their formulation. Moreover, 

the design and construction of the Pre-Engineered Metal 

Building system in Korea were performed by Lee et al. 

(2015). They also evaluated the structural safety by using 

the finite element analysis program. Besides, a theoretical 

model and design procedure of thin-walled simply 

supported steel I-beams with an open cross section were 

incorporated by Aydin et al. (2015). They used energy 

method to obtain the buckling loads. 

This article is devoted to the lateral-torsional buckling 

analysis of the tapered FG I-beam. In this study, the effect 

of concentrated moments at the two ends of the beam is 

considered. Moreover, the structural cross-section height 

changes linearly through the beam length. To develop the 

proposed formulation, the Euler-Bernoulli theory is 

employed. On the other hand, the variations of elastic and 

shear modulus along the height of section and length of the 

beam are defined as power functions. Furthermore, this 

structure is laterally braced throughout the length. To solve 

this problem, the sinusoidal series are utilized for the 

lateral-torsional deformations of beam section. After 

establishing total energy function, the eigenvalue equation 

of unknown constants is obtained. By utilizing this 

equation, the critical bending moment of the beam is 

calculated. Finally, some numerical examples are employed 

to validate the accuracy and correctness of suggested 

formulation. 
 

 

2. Assumptions 
 

Each analytical modeling has some assumptions. These 

are needed to achieve the solution of governing equations 

more easily. However, it is not allowable to ignore the 

factors having direct and intense effects on the results of 

analysis. The following assumptions are considered in this 

research: 
 

(1) The shear deformation effect is neglected. Thus, the 

Euler-Bernoulli beam theory is considered in the 

proposed formulation. The base of the formulation 

is bending deformations and torsional rotations. 

(2) The section of I-beam is doubly symmetric. In other 

words, the shear center is the same as the centroid. 

(3) The large deformation effect is ignored in this paper. 

Therefore, the strains are assumed to be small. 

(4) Two concentrated moments are applied at the two 

ends of beam element. 

(5) The elastic and shear modulus change linearly along 

the length of the beam. 

(6) The changes of elastic and shear modulus are 

formulated by a power function through the height 

of cross-section. 

(7) dmIt should be added that cross-section keeps the 

main shape after the buckling. 
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3. Lateral-torsional buckling 
 

Based on the previous researches, a beam element may 

lose its stability because of lateral-torsional buckling. In this 

failure mode, the buckling load of structure decreases, 

because its torsional stiffness is not adequate. It should be 

added that the traditional theory of the beam cannot 

consider both effects of the bending and torsion, 

simultaneously. Based on the energy method, the lateral-

torsional analysis for this problem can be performed. To 

find the results, the total energy function should be 

minimized. In this study, the geometry of tapered I-beam 

and its cross-section, which is shown in Fig. 1, are utilized. 

At this stage, the method of calculating torsion energy is 

presented. Fig. 1 shows the change of elastic modulus 

through the height of section. It should be added that the 

functions of changes of elastic and shear modulus are 

defined as follows 
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where the factor n is called the power constant. x is the 

longitudinal axis. On the other hand, the elastic modulus of 

start and end section of the beam are defined as Ef,s and Ef,L, 

respectively. Furthermore, Gf,s and Gf,L are the shear 

modulus at the start and end section of structure. The 

parameter h is the height of section. In addition, the change 

of cross-section height through the length of the beam is 

estimated by the following function 
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in which hs and hL are used for the height of section at the 

start and end point of the beam. The length of the beam is 

defined by L. By including the boundary conditions of the 

simply supported beam, the twisting angle and lateral 

deformation functions can be estimated by sinusoidal series, 

such as below 
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(4) 

 

 

   

(a) Beam element (b) Cross-section (c) FGM 

Fig. 1 The geometry of tapered FG I-beam 

where wk and ϕk are the general coordinates defined for the 

lateral deformation and torsioanl angle of the beam section, 

respectively. It is obvious that number of buckling modes 

considered for the element is equal to m+1. It should be 

noted that the boundary conditions are satisfied by the 

assumed functions. 

 

3.1 Linear strain energy 
 

The strain energy density function is defined by the 

symbol U0. The total linear strain potential energy of the 

beam is expressed in the below form 
 

0

1 1

2 2
ij ij ij ij

V V V

U U dv dv dv       
 

(5) 

 

In this relation, σij and τij are the normal and shear 

stresses, respectively. In addition, V is the volume of the 

beam. Based on the last equality, the following expression 

can be used for linear bending strain energy (Mohammadi 

et al. 2016) 
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in which w″ is the curvature of the beam. The moment of 

inertia about the y-axis Iy is formulated in the next shape 

(Yoo and Lee 2011) 
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In this equation, bf and  tf define the flange width and 

thickness of I-section, respectively. The angle α is shown in 

Fig. 1. By inserting the Eqs. (2), (4) and (7) into relation 

(6), the lateral bending potential energy Ub can be obtained 

in the below form 

 

 
(8) 

 

On the other hand, the torsional strain potential energy 

is found for two cases. The first one is the St. Venant’s 

torsion, and the second one is warping. To obtain the 

general relation, the torsional stresses and strains are 

calculated explicitly and then, they are substituted in the Eq. 

(5). It should be added that the section of the beam is 

assumed to be open cross-section. Fig. 2 shows the lateral-

torsional deformation pattern of beam having open cross-

section. 

It is reminded that the St. Venant’s torsion moment 𝑀𝑥
𝑠𝑡  

is expressed in the subsequent relation (Yoo and Lee 2011) 
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where ϕ′ is the warping angle. Furthermore, the shear 

modulus and torsional constant are defined by Gf and J, 

respectively. Therefore, the St. Venant’s torsion potential 

energy caused by free torsion of the beam can be written in 

the next form (Yoo and Lee 2011) 
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Fig. 2 The lateral-torsional deformation of beam section 
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Where, Gf(x) is the function of shear modulus change 

along the structural length. Moreover, J(x) is the torsional 

constant which is given by Yoo and Lee (2011) 
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in which ne is the number of I-shaped section elements. bi 

and ti are the width and thickness of each element of I-shape 

section. The resultant of relation J(x) is obtained, as follows 
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where n is the power constant in the function of elastic and 

shear modulus, which presents the change through the 

height of section. h(x) is determined based on the Eq. (3). 

Also, tw is the web thickness of I-section. The other 

geometric properties of section are demonstrated in Fig. 1. 

The relation of J(x) is determined in Appendix. By 

substituting the relations Eqs. (2), (4) and (12) into the Eq. 

(10), the following St. Venant’s torsional potential energy 

Ust can be developed. 

 

 

(13) 

 

Another part of the linear strain energy is the related to 

the restrained torsion of the beam. To include this effect, the 

torsional potential energy Uw created by warping of the 

beam section is found, as follows (Yoo and Lee 2011) 
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where the definition of Iw is as below (Yoo and Lee: 2011) 
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In the current equality, h(x) is determined based on the 

Eq. (3). Iy has been also defined in Eq. (7). By employing 

Eqs. (2), (4) and (15) in Eq. (14), the limited torsional 

potential energy of the tapered beam can be rewritten in the 

succeeding form 
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3.2 Total energy of tapered beam 
 

The lateral-torsional analysis of beam element can be 

performed by summation of lateral bending and St. Venant’s 

torsional potential energy. It should be added that cross-

section keeps the main shape after the buckling. According 

to the Fig. 3(a), the taper beam is under the concentrated 

moments and continues lateral bracing. In this figure, the 

lateral bracing is modeled by torsional spring through the 

beam length. The stiffness of torsional spring is defined by 

the coefficient R. On the other hand; the 3D combination of 

lateral and torsion deformations of cross-section is shown in 

Fig. 3(b). 

By summation of Eqs. (6), (10) and (14), the elemental 

strain potential energy, in which the shear deformation and 

warping effect is ignored, can be expressed, as follows 

(Mohammadi et al. 2016) 
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where the last term in Eq. (17) is the potential energy 

caused by the lateral bracing of the beam. R is the lateral 

bracing stiffness factor. There are two parallels coordinates 

for an open cross-section beam element. One of them is 

defined at the area center, and the other is stayed at the 

shear center. It should be added that the bending and 

torsional supports of the beam element are assumed to be 

simple. For this kind of the supports, the following 

boundary conditions should be considered 
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Based on the Ritz method, the total potential energy of 

element was minimized. Due to variation of elastic modulus 

and cross-section properties along the length of the element, 

it was not easy to use variational principles for achieving 

the governing differential equation. Hence, by assuming 

trigonometric functions for the displacement’s field and 

minimizing the total energy of element, the critical moment 

of element is obtained directly. On the other hand, the 

energy of external loading T can be calculated in the next 

shape (Yoo and Lee 2011) 
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It should be mentioned that the well-known total energy 

of element is obtained, as follows 
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By inserting Eqs. (17) and (19) into relation (20), the 

succeeding total energy function can be developed 
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To obtain the equilibrium, the derivatives of total energy 

function with respect to the general coordinates, wk and ϕk , 

should be equal to zero. Therefore, the following relations 

are found 
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where the factor of k can changes from 1 to m+2. By using 

the relation Eq. (22), the next system of equations can be 

established in the matrix form 
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It should be noted that once the relation of Eq. (23) is 

evaluated, it is required that the determinant of coefficients 

[C] be equal to zero (|C| = 0) with respect to the critical 

bending moment M. Based on this fact, the critical bending 

moment of tapered FG I-beam can be achieved in the below 

shape 

 

 

(24) 

 

The direction of this resultant moment is about the z-

axis. So it can be the same as Mz. It is worth mentioning 

that effect of continuous lateral bracing of the tapered beam 

is defined by the factor of R. Based on this parameter, when 

the value of R tends to zero, the Eq. (24) expresses the 

relation of critical bending moment of the tapered I-beam 

without lateral bracing. 
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(a) The concentrated moments and continuum lateral bracing (b) The combination of lateral-torsional deformation model 

Fig. 3 The model of tapered beam 
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4. Numerical examples 
 
In this section, to validate the proposed formulation, 

some numerical examples are analyzed. Then, the obtained 

results are compared with the others’ answers. In addition, 

the effect of torsional stiffness and functionally graded 

material on the lateral-torsional buckling of the tapered 

beam is investigated, separately. 

 

4.1 Prismatic I-shaped beam 
 

To verify the proposed formulation, the lateral-torsional 

buckling of doubly-symmetrically prismatic I-beam without 

any lateral bracing is first studied. The concentrated 

moments are considered at the two ends of the beam. It 

should be added that the supports of the beam are simple. 

The model of I-beam is shown in Fig. 4. In 1943, the 

relation of buckling moment of prismatic I-beam was 

obtained by Schrader and Hill (1943). To apply the 

proposed formulation for the prismatic I-beam with 

homogenous section and without lateral bracing, the 

following values are utilized 
 

, ,

, ,

Prismatic state

0 Isotropic through height

Isotropic through length

s L

f s f L

f s f L

h h h

n

E E E

G G G

 



 


   

(25) 

 

By substituting the quantities of Eqs. (25) into (24), the 

critical moment of prismatic I-beam is achieved, as follows 
 

 

(26) 

 

Based on this formula, it can be concluded that the 

 

 

  

(a) Three-dimensional view (b) Two-dimensional view 

Fig. 4 The model of I-shape beam with homogenous section 

 

 

I-Beam

 L. 

hs=50 cm hL= r×hs

M

M

 

Fig. 5 The model of tapered I-shape beam with 

homogenous section 

proposed formulation can estimate the exact solution for the 

lateral-torsional buckling of homogenous I-beam. This 

solution clearly demonstrates the validation of the proposed 

scheme for the lateral-torsional analysis of prismatic I-beam 

(Schrader and Hill 1943). 

 

4.2 Tapered I-shaped beam 
 

To show the generality of authors’ formulation, a simply 

supported tapered I-beam is considered in this part. The 

beam element is under the effect of concentrated moment at 

the two ends. Fig. 5 demonstrates this model of the tapered 

I-beam. 

It should be added that the lateral bracing of the beam is 

neglected. Therefore, the value of coefficient R is equal to 

zero. The height of cross-section changes linearly through 

the beam length. All sections of the beam are assumed to be 

homogenous, and the elastic modulus is equal to E = 105 

MPa. Also, the Poisson’s ratio is equal to 0.3. The cross-

section height ratio at the end to the beginning of the beam 

is defined by r. This ratio is called taper ratio. Based on 

this, the following relation is existed for the angle of α 

 

2 2 2

2
cos( )

( 1) 4s

L

h r L
 

 
 

(27) 

 

The height of cross-section at the start of the beam (hs) 

is equal to 50 cm. In this case, the concentrated moments 

(M) are applied at the two ends of the beam. Furthermore, 

the geometric properties of beam section and the material 

characteristics are reported in Table 1. 

For different values of the taper ratio and length, the 

beam critical moments are found and inserted in Table 2. As 

it is shown in this table, the results of first three modes of 

buckling are reported. To compare the outcomes, Figs. 6-8 

are provided, as well. These figures show the changes of the 

beam critical moment versus taper ratio for different 

lengths. It should be noted that the Figs. 6-8 show the 

related results for three first modes of buckling, 

respectively. 

It is obvious that the critical moment of beam increases 

by increasing the taper ratio. According to the results, the 

rate of critical moment growth decreases by increasing the 

taper ratio greater than 1.5. In other words, progression of 

the section height ratio at the end of the beam, more than 

1.5 is not effective on the critical moment, significantly. 

 

4.3 Continuously laterally supported 
prismatic I-shaped FG beam 

 

At this stage, a simple supports prismatic FG I-beam 

 

 

Table 1 The geometric properties of section at the start 

of the beam and mechanical characteristics of 

materials 

Property G (MPa) E (MPa) hs (cm) tw (cm) tf (cm) bf (cm) 

Value 
50000

13
 105 50.0 1.0 2.0 25.0 
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Fig. 6 The critical moment of first mode vs. taper ratio for 

various lengths of beam 

 

 

 

Fig. 7 The critical moment of second mode vs. taper ratio 

for various lengths of beam 
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Table 2 The critical bending moment of tapered I-shape beam considering different taper ratio and beam length 

(N.m) 

Taper ratio 

(r) 

Buckling mode 

(k) 

Length of beam (m) 

20.0 15.0 10.0 8.0 4.0 2.0 1.0 

0.1 

1 8.882E+04 1.233E+05 2.041E+05 2.774E+05 8.363E+05 2.974E+06 1.093E+07 

2 1.901E+05 2.743E+05 4.898E+05 6.947E+05 2.374E+06 8.917E+06 3.332E+07 

3 3.138E+05 4.728E+05 9.024E+05 1.328E+06 4.829E+06 1.856E+07 6.977E+07 

0.3 

1 8.879E+04 1.227E+05 2.016E+05 2.723E+05 8.059E+05 2.851E+06 1.066E+07 

2 1.931E+05 2.800E+05 5.042E+05 7.214E+05 2.483E+06 9.413E+06 3.597E+07 

3 3.246E+05 4.943E+05 9.571E+05 1.418E+06 5.220E+06 2.024E+07 7.782E+07 

0.5 

1 8.918E+04 1.232E+05 2.019E+05 2.723E+05 8.028E+05 2.843E+06 1.080E+07 

2 1.976E+05 2.890E+05 5.278E+05 7.606E+05 2.661E+06 1.019E+07 3.963E+07 

3 3.390E+05 5.230E+05 1.030E+06 1.536E+06 5.729E+06 2.239E+07 8.759E+07 

0.7 

1 8.997E+04 1.245E+05 2.050E+05 2.775E+05 8.275E+05 2.957E+06 1.138E+07 

2 2.035E+05 3.010E+05 5.593E+05 8.131E+05 2.896E+06 1.118E+07 4.405E+07 

3 3.565E+05 5.577E+05 1.116E+06 1.677E+06 6.327E+06 2.488E+07 9.850E+07 

0.9 

1 9.116E+04 1.268E+05 2.110E+05 2.876E+05 8.778E+05 3.180E+06 1.236E+07 

2 2.108E+05 3.157E+05 5.975E+05 8.763E+05 3.174E+06 1.234E+07 4.897E+07 

3 3.767E+05 5.973E+05 1.214E+06 1.835E+06 6.992E+06 2.761E+07 1.100E+08 

1.0 

1 9.190E+04 1.282E+05 2.149E+05 2.944E+05 9.113E+05 3.326E+06 1.297E+07 

2 2.149E+05 3.239E+05 6.188E+05 9.113E+05 3.326E+06 1.297E+07 5.152E+07 

3 3.877E+05 6.188E+05 1.267E+06 1.919E+06 7.343E+06 2.903E+07 1.158E+08 

1.5 

1 9.694E+04 1.384E+05 2.427E+05 3.421E+05 1.139E+06 4.281E+06 1.657E+07 

2 2.392E+05 3.723E+05 7.411E+05 1.111E+06 4.173E+06 1.634E+07 6.398E+07 

3 4.497E+05 7.378E+05 1.553E+06 2.376E+06 9.220E+06 3.644E+07 1.430E+08 

2.0 

1 1.039E+05 1.527E+05 2.809E+05 4.062E+05 1.427E+06 5.406E+06 2.002E+07 

2 2.685E+05 4.296E+05 8.816E+05 1.336E+06 5.099E+06 1.982E+07 7.388E+07 

3 5.202E+05 8.704E+05 1.865E+06 2.870E+06 1.120E+07 4.380E+07 1.635E+08 

3.0 

1 1.224E+05 1.896E+05 3.746E+05 5.590E+05 2.059E+06 7.561E+06 2.359E+07 

2 3.369E+05 5.593E+05 1.189E+06 1.823E+06 6.998E+06 2.600E+07 8.139E+07 

3 6.755E+05 1.157E+06 2.525E+06 3.905E+06 1.517E+07 5.656E+07 1.772E+08 
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Fig. 8 The critical moment of third mode vs. taper ratio for 

various lengths of beam 

 

 

  

(a) Simply-supported beam with lateral bracing (b) Cross-section 

Fig. 9 The model of simple supports I-beam considering 

functionally graded section 

 

 
Table 3 The geometric properties of section and mechanical 

characteristics of materials 

Characteristic 
Gf,s 

(MPa) 

Ef,s 

(MPa) 

hs 

(cm) 

tw 

(cm) 

tf 

(cm) 

bf 

(cm) 

Value 
50000

13
 105 80.0 1.0 2.0 25.0 

 

 

 

considering continuum lateral bracing is analyzed. The 

length of the beam in this example is assumed to be equal to 

10 m. Fig. 9 shows this structure. 

It should be added that the elastic and shear modulus 

change functionally graded along the height of section and 

length of the beam. The change of elastic and shear 

modulus follows up a power function. For this problem, the 

power constant of function is defined by n. On the other 

hand, the change of elastic and shear modulus is assumed to 

vary linearly through the beam length. According to 

prismatic beam geometry, the value of angle α is equal to 

zero. For this structure, the geometric properties of cross-

section and the mechanical characteristics of material are 

provided in Table 3. It should be noted that a dimensionless 

coefficient, which called RT, is defined for the lateral 

bracing stiffness (Masoodi and Moghaddam 2015, 

Shooshtari et al. 2015, Rezaiee-Pajand and Masoodi 2016). 

The relation of lateral bracing coefficient is as follows 
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(28) 

 

where Gf,s  and  Js are the shear modulus and torsional 

constant at the start section of the beam, respectively. It 

should be noted that the factor of β is used for the ratio of 

elastic modulus at the end to the beginning section of the 

beam. In other words, the elastic and shear modulus at the 

end of the beam are calculated as below. 
 

, ,

, ,

f L f s

f L f s

E E

G G


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


     

, ,

, ,

f L f s

f L f s

E E
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


 (29) 

 

The results of critical moment are reported in Tables 4 

and 5 for different cases of the factors β and n. All values of 

the dimensionless coefficient of RT are given in these tables. 

To compare the outputs of analysis, the changes of the beam 

critical moment versus the power constant and ratio of 

elastic modulus for different values of RT are shown in Figs. 

10 and 11, respectively. The relation of lateral bracing 
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Table 4 The critical bending moment of I-beam for different power constants and lateral bracing 

stiffness (β = 1.0) (N.m) 

Power constant 

(n) 

Buckling mode 

(k) 

Dimensionless coefficient (RT) 

0.8 0.6 0.4 0.2 0.0 

0.0 

1 4.496E+05 3.493E+05 3.087E+05 2.862E+05 2.719E+05 

2 9.650E+05 9.225E+05 9.079E+05 9.006E+05 8.961E+05 

3 1.959E+06 1.938E+06 1.931E+06 1.928E+06 1.926E+06 

1.0 

1 4.421E+05 3.445E+05 3.051E+05 2.833E+05 2.694E+05 

2 9.595E+05 9.186E+05 9.045E+05 8.974E+05 8.931E+05 

3 1.955E+06 1.935E+06 1.928E+06 1.925E+06 1.923E+06 

2.0 

1 4.371E+05 3.413E+05 3.027E+05 2.814E+05 2.678E+05 

2 9.558E+05 9.159E+05 9.023E+05 8.954E+05 8.912E+05 

3 1.952E+06 1.932E+06 1.926E+06 1.923E+06 1.921E+06 

3.0 

1 4.335E+05 3.390E+05 3.010E+05 2.800E+05 2.667E+05 

2 9.532E+05 9.141E+05 9.007E+05 8.939E+05 8.898E+05 

3 1.950E+06 1.931E+06 1.924E+06 1.921E+06 1.919E+06 
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Fig. 10 The critical moment of first mode vs. power 

constant for different stiffness of lateral bracing 

 

 

 

Fig. 11 The critical moment of first mode vs. ratio of elastic 

modulus for different stiffness of lateral bracing 

 

 

stiffness considering the effect of power constant on the 

torsional constant is obtained, as follows 

 

 

(30) 

 

It is harvested that the variation of critical moment, 

caused by lateral bracing stiffness, is more noticeable for 

the first mode compared to the others. In other words, the 

effect of lateral bracing stiffness on the critical moment is 

not significant for the third mode of buckling. According to 

Fig. 11, the critical moment changes versus the factor β 

follow a linear pattern. Therefore, by growing up the factor 

β, the critical moment of the beam is increased. 

 

 

5. Conclusions 
 

In this study, the lateral-torsional analysis of doubly-

symmetrically tapered I-beam is performed. The beam 

section is made of functionally graded material. The power 

functions are considered for the variation of elastic and 

shear modulus through the height of section and beam 

length. Based on the St. Venant’s torsional and Euler-

Bernoulli bending theories, the total energy of tapered I-

beam under the effects of concentrated moments is 

formulated. By minimizing the total potential energy, the 

governing equation of beam element is obtained. The effect 

of continuous lateral bracing of the beam on the critical 

moment is investigated. To validate the Author’s scheme, 

some practical numerical examples are solved. By 

comparing the obtained results with the other available 

ones, the accuracy and correctness of the present 

formulation are revealed. Furthermore, parametric studies 

conclude the following points: 
 

(1) By increasing the length of the beam, the effect of 

taper ratio on the critical moment is decreased. In 

Table 5 The critical bending moment of I-beam for different ration of elastic modulus and lateral 

bracing stiffness (n = 0.0) (N.m) 

Coefficient 

(β) 

Buckling mode 

(k) 

Dimensionless coefficient (RT) 

0.8 0.6 0.4 0.2 0.0 

1.0 

1 4.496E+05 3.493E+05 3.087E+05 2.862E+05 2.719E+05 

2 9.650E+05 9.225E+05 9.079E+05 9.006E+05 8.961E+05 

3 1.959E+06 1.938E+06 1.931E+06 1.928E+06 1.926E+06 

2.0 

1 5.387E+05 4.329E+05 3.913E+05 3.688E+05 3.546E+05 

2 1.255E+06 1.212E+06 1.197E+06 1.190E+06 1.185E+06 

3 2.591E+06 2.570E+06 2.563E+06 2.560E+06 2.558E+06 

3.0 

1 6.260E+05 5.161E+05 4.739E+05 4.513E+05 4.372E+05 

2 1.544E+06 1.501E+06 1.486E+06 1.479E+06 1.474E+06 

3 3.223E+06 3.202E+06 3.195E+06 3.192E+06 3.190E+06 

4.0 

1 7.121E+05 5.992E+05 5.565E+05 5.339E+05 5.198E+05 

2 1.833E+06 1.790E+06 1.775E+06 1.768E+06 1.763E+06 

3 3.855E+06 3.834E+06 3.827E+06 3.824E+06 3.822E+06 
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other words, for the beam element with more than 

10 m length, the growth of taper ratio up to the 

value 3 is not significantly effective. 

(2) The critical moment of the beam is increased by 

raising the value of taper ratio. It should be added, 

the rate of critical moment increasing is reduced 

when the taper ratio of the beam grows up more 

than 3. 

(3) By increasing the ratio of elastic modulus along the 

beam length, the structural critical moment is raised. 

For the different values of lateral bracing stiffness, 

the rate of critical moment increasing via the 

growing of the elastic modulus ratio is constant. 

Therefore, the lateral bracing stiffness is not 

effective on the rate of critical moment increasing 

via the growing the ratio of elastic modulus. 

(4) According to Fig. 10, when the power constant of 

elastic and shear modulus variation function is 

increased, the critical moment of beam element is 

decreased. It is noted that the pattern of variation of 

elastic and shear modulus along the height of 

section is assumed to be symmetrical. 

(5) By increasing the stiffness of lateral bracing of the 

beam, the effect of power constant on the variation 

of critical moment is amplified. In other words, the 

rate of critical moment decreasing via the growing 

the value of power constant is more for the high 

values of lateral bracing stiffness. 
 

Based on the results of Tables 4 and 5, it is obvious that 

the effect of lateral bracing stiffness increasing on the 

critical moment of first mode is more than that of the other 

modes. On the other hand, the effect of lateral bracing 

stiffness on the critical moment is not significant for the 

third mode of buckling. 
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Appendix 
 

To obtain the relation of J(x), the following procedure 

can be used. First of all, when a web-tapered I-beam twists 

about the x axis with a twisting angle ϕ, the twisting angle 

of top flange ϕf about is found below. 

 

cosf  
 (31) 

 

The resultant free torsional torque of top flange is given 

by 
2'cosf fT GJ  

 (32) 

 

where Jf is defined by the following expression. 
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(33) 

 

Due to symmetric distribution of elastic modulus 

through the height of cross-section, the torque of section 

caused by free torsional deformation is found as follow. 

 

2 cos ( ) ( ) 'f w fT T T G x J x   
 (34) 

 

where Tw defines the free torsional torque of web. The 

formulation of this factor is given by. 
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(35) 

 

By substituting the relation (1) into equation (35), the 

following expression is released. 
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(36) 

 

By using relations (34) and (36), the equivalent free 

torsional constant of section J(x) is obtained in Eq. (12). 
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