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1. Introduction 
 

Functionally graded materials (FGMs) which contain 

continuous and gradual changes in composition, structure 

and properties in different directions are intensively 

investigated in recent years. For most of these materials, the 

properties are assumed to obey the power law, non-linear or 

exponential patterns. Design process of such materials 

requires accurate structural analysis. For this reason, 

analysis of structures made of FGM and similar composites 

with variable properties has been an active area of research 

in the past two decades 

Jabbari et al. (2003) presented a general thermoelastic 

solution of a functionally graded hollow cylinder under 

non-axisymmetric thermal and mechanical loads. They used 

the separation of variables and complex Fourier series to 

solve the governing equations. One can find that the 

proposed method was applicable for special boundary 

conditions. Shao et al.  (2008) studied non-axisymmetric 

thermo-mechanical behavior of functionally graded hollow 

cylinders subjected to transient heat conduction and 

mechanical loads. They employed Laplace transformations 

and complex Fourier series in their analysis. The obtained 

results lead to a steady state case when time approaches to 

infinity. 

In another research, asymmetric transient thermal and 

mechanical loads were applied to a hollow FGM cylinder in 

which separation of variable method and Bessel function 

were used to derive constitutive equations (Jabbari et al. 
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2008). Functionally graded hollow spheres subjected to 

non-axisymmetric loads were analyzed by Poultangari et al. 

(2008). The Legendre polynomials and Euler differential 

equations were used to solve the problem. Fesharaki et al. 

(2012) investigated the effects of electrical fields as well as 

thermal and mechanical loadings on the non-axisymmetric 

behavior of a hollow cylinder made of functionally graded 

piezoelectric materials (FGPM). Ootao and Ishihara (2013) 

studied the asymmetric transient thermal stresses of a 

functionally graded hollow cylinder. They presented an 

exact solution and demonstrated the effect of functionally 

grading index on thermal stress distributions. Elastic 

analysis of an infinite length FGM cylinder under arbitrary 

non-uniform mechanical loadings was studied by Li and 

Liu (2014). Sahan (2015) presented an alternative analytical 

method for transient vibration analysis of doubly-curved 

laminated shells subjected to dynamic loads.  The cylinder 

was divided into some finite sub cylinders and the 

continuity conditions were applied between the layers. The 

obtained results showed that the effect of non-symmetric 

pressure is very important and significantly changes the 

stress distribution. Arani et al. (2015) studied non-

axisymmetric behavior of a composite cylinder reinforced 

by carbon nano-tube under thermo-mechanical and uniform 

electro-magnetic loadings. They examined two dimensional 

elastic stress distribution using Mori-Tanaka theory. The 

effect of magnetic field and inhomogeneity on the non-

axisymmetric thermo mechanical response of a FG cylinder 

was studied by Loghman et al. (2017). They showed that 

employing suitable magnetic field and inhomogeneity index 

can enhance thermoelastic response of such vessels. Free 

vibration analysis of micro and nanobeam subjected to 

magneto-electric loads was studied by Arefi and Zenkour 
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(2016a, b). In addition, influence of magnetic loads as well 

as thermal and electrical loads was studied on the various 

structures (Arefi and Zenkour 2017a-i). 

Although many researchers have studied elastic and 

thermo-elastic behavior of cylinders subjected to non-

axisymmetric loadings but none of them have so far 

considered the time-dependent creep response of such 

cylinders. Loghman and Wahab (1996) studied creep 

damage in thick-walled tubes made of isotropic materials. 

Theta projection concept as well as Robinson’s model was 

employed in their analysis. Yang (2000) investigated elastic 

and time-dependent creep behavior of the cylinder with a 

thin coating of functionally graded material. He obtained 

the constitutive differential equation in terms of 

displacement rate using the equations of equilibrium, 

compatibility, Norton’s law and Prandtl-Reuss relations. 

Steady state creep in thick-walled FGM cylinder was 

carried out by You et al. (2007). They examined the effect 

of parameters involved in Norton’s law on radial, 

circumferential and axial stresses. As a new research, 

Loghman et al. (2010) considered the effect of uniform 

magnetic and temperature fields on the time-dependent 

creep response of a FGM cylinder subjected to inner 

pressure. In this work the creep behavior of the thick-walled 

FGM cylinder was described by Norton’s law. They found 

that the inhomogeneity parameter of the material has a 

significant influence on redistribution of circumferential 

and effective stresses. Time-dependent creep on a radially 

polarized piezoelectric cylinder developed by Arani et al. 

(2011). Electro-thermo-mechanical loads were considered 

for a PZT5 hollow cylinder. A semi-analytical and a 

successive elastic solution method were employed for 

solution of the governing differential equations of the 

system. Time-dependent creep analysis of a rotating disk 

made of functionally graded material was studied by 

Loghman et al. (2013). The disk was subjected to electro-

thermo-magnetic loads and temperature gradient. Steady-

state creep analysis of a FG rotating cylinder made of an 

aluminum matrix reinforced with silicon carbide particles 

has been studied by Mangal et al. (2013). They showed that 

influence of silicon carbide particles on stress components 

is considerable. Using Norton’s creep law, Nejad and 

Kashkoli (2014), investigated the effect of heat flux on time 

dependent creep of a rotating FGM hollow cylinder. They 

determined stresses at any time iteratively and their results 

was presented for different values of pressure and Norton’s 

power law exponent. Golmakaniyoon and Akhlaghi (2016) 

performed time-dependent steady state creep modeling of 

FGM beams under thermal loading using successive 

approximation method. In addition, some time-dependent 

creep analysis for different materials and geometries based 

on mathematical and experimental analyses were presented 

by the references (Gallo et al. 2016, Brnic et al. 2016, 

Ginder et al. 2018). 

Time-dependent creep analysis is necessary for the life 

assessment of structures subjected to various types of 

loading operating at high temperatures. The creep analysis 

gives the history of stresses and strains which can be used 

to damage analysis and predict the remnant life of the 

structure. A review of literature indicates that the time 

dependent creep analysis of a functionally graded cylinder 

subjected to non-axisymmetric thermal and mechanical 

loadings is not yet considered. In this work, a semi-

analytical approach based on separation of variables and 

Fourier series together with a numerical procedure is 

employed to obtain history of stresses, strains, radial and 

circumferential displacements in a cylinder subjected to 

non-axisymmetric thermomechanical loadings and uniform 

magnetic field. The effect of material grading index, 

magnetic intensity and thermomechanical loadings is 

investigated on the responses. 

 

 

2. Geometry, loading and material properties 
 

An FGM hollow cylinder with inner and outer radii (a, 

b) is considered. Non-axisymmetric thermo-mechanical 

loadings and uniform magnetic field 𝐻   (0, 0, 𝐻𝑧)  are 

applied on the cylinder as shown in Fig. 1. The origin of 

cylindrical coordinate system is located at the center of the 

cylinder. 

All mechanical, thermal and magnetic properties except 

Poisson’s ratio are assumed to be variable along the radial 

direction based on the power law variation as (Arefi and 

Rahimi 2011a, b, 2012a, b, c, d, Rahimi et al. 2012, 2014a, 

b, Arefi et al. 2012, 2017, Arefi and Nahas 2014, Arefi 

2014, 2015, 2016a, b, Arefi and Allam 2015, Zenkour and 

Arefi 2017, Loghman et al. 2017, 2018). 
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In which, Ei, αi, Ki, μi are Young’s modulus, coefficient 

of thermal expansion, thermal conductivity and magnetic 

permeability at the inner radius respectively. Also βi (i = 1, 

 

 

 

Fig. 1 The schematic of hollow FGM cylinder under non-

axisymmetric thermo-mechanical loads and uniform 

longitudinal magnetic fields 
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2, 3, 4) are material in-homogeneity parameters. The 

material creep constitutive model obeys the Norton's power 

law, 𝜀 𝑒
𝑐 = 𝐵(𝑟)𝜎𝑒

𝑛(𝑟)
, in which 𝜀 𝑒

𝑐 , ζe are the effective 

creep strain rate and the effective stress. B(r) and n(r) are 

the material creep parameters which must be obtained by 

experiment for different materials (Loghman et al. 2010). 

In this paper B(r) = b0r
b1 and n(r) is considered to be a 

constant n(r) = n0. 

 

 

3. Governing equations 
 

In this section, the fundamental relations for time-

dependent creep analysis of a hollow FGM cylinder under 

two-dimensional thermo-mechanical loadings and uniform 

magnetic field are presented. For a non-axisymmetric 

problem under plane strain condition, the strain-

displacement relations using radial and circumferential 

displacement components are written as (Sadd 2009) 
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Where, u and v are the radial and circumferential 

displacements respectively. using the constitutive relations 

( ) 2 ( ) (3 2 ) Tc c

ij kk kk ij ij ij ijG G                 for a 

structures subjected to thermal loads, the stress components 

can be derived as follows (Mendelson 1968, Penney and 

Marriott 1971) 
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In which, ζij, εij and 𝜀𝑗
𝑐  (i, j = r, θ, z) are stress, total 

strain and creep strain tensors respectively, ΔT is 

temperature gradient with respect to reference temperature 

(T0), λ is Lamé’s constant, δij is the Kronecker delta and G is 

the shear modulus of the material. λ, G are expressed in 

terms of Modulus of elasticity (E) and Poisson’s ratio (υ). 

The equilibrium equations in cylindrical coordinates with 

considering body forces are written as follows 
 

1
0

1 2
0

r rr

r

r

r

f
r r r

f
r r r

 

 
 

  



 




 
   

 

 
   

 

 (4) 

In which, fr and fθ are the Lorentz’s force components in 

radial and circumferential directions. 

The Lorentz’s force is produced under the effect of 

magnetic field mentioned by the governing electrodynamics 

Maxwell equations as (Arefi et al. 2011, Firouz-Abadi et al. 

2014) 
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In which 𝑕  , 𝑈   , 𝐻   , 𝑒 , 𝜇, 𝑗  and 𝑓  are perturbation of 

magnetic field vector, displacement vector, magnetic vector, 

perturbation of electric field vector, magnetic permeability, 

electric current density vector and Lorentz’s force vector. 

Imposing a uniform longitudinal magnetic field 

𝐻   (0, 0, 𝐻𝑧) in axial direction, the Lorentz’s force 

components in terms of radial and circumferential 

displacements are written as 
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Substituting Eq. (3) into Equilibrium Eq. (4) and 

considering the Lorentz’s force components Eq. (6) leads to 

the governing differential equations in terms of displace-

ments containing creep strains as shown 
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In which β4 is considered equal to β1. In addition, the 

constants s1 to s22 are given in Appendix A. Complex 

Fourier series for the radial and circumferential 

displacements, temperature distribution and creep strains 

are considered as ℜ 𝑟, 𝜃 =  ℜ𝑛 𝑟 𝑒
𝑖𝑛𝜃+∞

𝑛=−∞  in which 
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𝑐 , 𝜀𝜃,𝑛

𝑐 , 𝜀𝑟𝜃 ,𝑛
𝑐  are the coefficients of the 

complex and n is number of terms (Lee and Fenner 1986, 

Jabbari et al. 2003). Substituting the assumed terms as 

complex series in to equilibrium relations yields 
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4. Solution of the differential equation 
 
4.1 Heat conduction problem 
 

The steady state heat transfer equation without heat 

generation in cylindrical coordinate system of an FG 

cylinder is expressed (Jain and Singh 2009) as follows 
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Boundary condition of heat transfer equation are defined 

in general linear form (Jain and Singh 2009) which can be 

simplified for different types of conduction, convection and 

radiation processes or combination of them as 
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χij (i, j = 1, 2) are the constants depending on thermal 

conductivity and thermal convection coefficients. F1(θ) and 

F2(θ) are known arbitrary functions on the inner and outer 

radii, respectively. The steady state heat conduction 

problem is solved by the following solution (Hetnarski et 

al. 2009, Loghman et al. 2017). 
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Where the unknown coefficients of An1 and An2 can be 

determined by thermal boundary conditions as presented in 

Appendix A. 

 

4.2 Magneto-thermo-mechanical analysis of 
hollow cylinder 

 

To investigate the thermo-elastic response of the 

cylinder, creep strains are ignored in Eq. (8). Substituting 

temperature distribution based on the Eq. (11)  in Eq. (8), 

two governing differential equations of the system in terms 

of radial and circumferential displacements are derived as 
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Eq. (12) are a system of non-homogeneous ordinary 

differential equations which have general and particular 

solutions. The general solution consists of two cases n = 0 

and n ≠ 0. The differential equations for n = 0  are 

uncoupled. The solution is obtained from sum of the general 

and particular solutions as 
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(a) For n ≠ 0 
 

General homogeneous solution of the problem is 

considered as 
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where, C and D are constants which can be obtained from 

boundary conditions. Substituting Eq. (14) into Eq. (12), 

yields two algebraic equations for obtaining the constants C 

and D. The non-trivial solution of the problem is obtained 

by setting the determinant of the coefficient equal to zero. 

Equating the determinant to zero yields eigen-values of the 

problem (γn1 to γn4) as 
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In which Nnj is the relation between constants Cnj, Dnj. 
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To derive the particular solution, considering the right 

hand side of Eq. (12) the polynomial functions are assumed 

as 
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By substituting Eq. (17) into Eq. (12) and rearranging 

the terms with the same power, the unknown amplitudes 

defined in Eq. (17) are obtained as 
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(b) For n = 0 
 

In this case Eq. (12) is decoupled to ordinary differential 

equations containing the non-homogeneous and 

homogeneous Euler equations for radial and circumferential 

displacements, respectively which is solved as (Boyce et al. 

1969) 
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The terms G0,j of particular solution is derived by 

equating the same terms as follows 
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By adding the obtained solutions for n = 0, n ≠ 0  the 

general solution for u(r, θ) and v(r, θ) are expressed as 
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Substituting Eq. (22) into Eq. (3) and ignoring creep 

strains, the stress components for elastic solution are 

obtained as 
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(23) 

 

Where the constants K1 to K14 are given in the Appendix 

A. There are four unknown constants Cnj (j = 1, 2, 3, 4) in 

the stress and displacement relations which must be 

determined using four boundary conditions for 

displacements or stresses at the inner and outer radii. 

Expanding the given boundary conditions in complex 

Fourier series gives 
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4.3 Time-dependent magneto-thermo-mechanical 
creep behavior of hollow cylinder 

 

As mentioned previously, the creep strains are 

depending on the time, temperature and current stresses. 

The well-known Prandtl-Reuss equations demonstrate the 

relationship between the creep strain rates, effective stress, 

current stresses and creep behavior of the material. In 

cylindrical coordinate system these relations are expressed 

as (Mendelson 1968) 
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In which, effective Von Mises stress is defined as 

follows 
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Considering the plane-strain case, the axial strain 

component is considered to be zero and consequently based 

on the Norton’s law, the Prandtl-Reuss equations are 

simplified as follows 
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Considering Eq. (8) in the rate form and substituting 

Prandtl-Reuss Eq. (28) the following time dependent 

differential equations are obtained 
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(29) 

 

Where q1 to q8 are variables given in Appendix B. Eqs. 

(29) are a system of ordinary differential non-homogeneous 

equations which their general and particular solutions are 

assumed similar to thermo-elastic solution procedure. 

Hence homogeneous and particular solution of Eqs. (29) in 

case n ≠ 0 is presented as 
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Substituting Eq. (31) into Eq. (29) yields Hn1 to Hn4 as 

follows 
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Where the parameters h1 to h12 are written in Appendix 

B. 

In case n = 0, the Eq. (29) are decoupled to ordinary 

differential equations as 
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The homogeneous solution of Eq. (33) is derived as 
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To obtain particular solutions, as mentioned at the 

beginning of the previous section, coefficients on the right 

hand side of the governing equations are not constant, so 

method of variation of parameters has been employed in 

this regard (Rice and Do 2012). This method is based on 

the premise that the particular solutions are linearly 

independent general solutions, therefore, particular 

solutions are assumed as 
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Where the unknown functions p0,j (j = 1, 2, 3, 4) are 

obtained as 
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We need to point out that in Eqs. (36) 𝑊(𝑢 0
𝑔1 , 𝑢 0

𝑔2) and 

𝑊(𝑣 0
𝑔1 , 𝑣 0

𝑔2)  are defined as 
 

 

 

1 2

2 1

1 2 1 2
1 2

1 2

2 1

1 2 1 2
1 2

0 0

0 0

0 0 0 0
0 0

0 0

0 0

0 0 0 0
0 0

,

,

g g

g g

g g g g
g g

g g

g g

g g g g
g g

u u
du du

W u u u udu du
dr dr

dr dr

v v
dv dv

W v v v vdv dv
dr dr

dr dr

  

  

 (37) 

 

With combining Eqs. (30)-(37) one can obtain the 

complete solution of Eqs. (29) as 

 

     

     

0 1 1

0 1 1

2 4
2 1

0 , 0 0 , 0 0 0 1 2

1 1

4 4
2 1

0 , 0 0 , 0 0 0 3 4

3 1

( )

( )

j nj

j nj

b bg g p p

n n n n n j j nj n n

j j

b bg g p p

n n n n n j j nj nj n n

j j

u r u u u u C P r C r H r H r

v r v v v v C P r N C r H r H r

 

 

 

 

 

 

 

 

        

        

 

 

 

     

     

0 1 1

0 1 1

2 4
2 1

0 , 0 0 , 0 0 0 1 2

1 1

4 4
2 1

0 , 0 0 , 0 0 0 3 4

3 1

( )

( )

j nj

j nj

b bg g p p

n n n n n j j nj n n

j j

b bg g p p

n n n n n j j nj nj n n

j j

u r u u u u C P r C r H r H r

v r v v v v C P r N C r H r H r

 

 

 

 

 

 

 

 

        

        

 

 

 

     

     

0 1 1

0 1 1

2 4
2 1

0 , 0 0 , 0 0 0 1 2

1 1

4 4
2 1

0 , 0 0 , 0 0 0 3 4

3 1

( )

( )

j nj

j nj

b bg g p p

n n n n n j j nj n n

j j

b bg g p p

n n n n n j j nj nj n n

j j

u r u u u u C P r C r H r H r

v r v v v v C P r N C r H r H r

 

 

 

 

 

 

 

 

        

        

 

  

     

     

0 1 1

0 1 1

2 4
2 1

0 , 0 0 , 0 0 0 1 2

1 1

4 4
2 1

0 , 0 0 , 0 0 0 3 4

3 1

( )

( )

j nj

j nj

b bg g p p

n n n n n j j nj n n

j j

b bg g p p

n n n n n j j nj nj n n

j j

u r u u u u C P r C r H r H r

v r v v v v C P r N C r H r H r

 

 

 

 

 

 

 

 

        

        

 

 
 

(38) 

 

The Eq. (8) can be written in the rate form. Substituting 

Eq. (38) into rate form of Eq. (8), the complete solutions for 

displacement rates 𝑢 (𝑟, 𝜃) and 𝑣 (𝑟, 𝜃)  are obtained as 
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Substitution of Eq. (39) into rate form of Eq. (3) and 

using rate form of Eq. (8) for creep strains rates yields the 

stress rates as presented in Appendix B. 

The initial elastic stress distribution at zero time may be 

obtained from the elastic solution. 

 

4.4 Boundary conditions 
 

Unknown constants Cnj (j = 1, 2, 3, 4) in displacement 

and stress relations can be obtained by applying four 

displacement and stress boundary conditions at inner and 

outer surfaces of FGM hollow cylinder. Furthermore two 

thermal boundary conditions are required for thermal 

unknown constants Anj (j = 1, 2). Thus thermo-mechanical 

boundary conditions at the inner and outer radii are 

expressed as 
 

2( , ) 100cos ( )MPar a    ( , ) 0r a    

(40) ( , ) 0u b    ( , ) 0v b    

 ( , ) 500 50cos(2 )T a C     ( , ) 400T b C    

 

 

Substituting the first four boundary conditions of Eq. 

(40) into displacement and stress relations and using the 

Eqs. (24) and (25), the unknown coefficients Cnj (j = 1, 2, 3, 

4)  are calculated. Also using thermal boundary conditions 

and Eq. (A3) in Appendix A the unknown constants Anj (j = 

1, 2) are determined. 

 

4.5 Numerical method 
 

We have employed a numerical procedure to obtain 

histories of stresses, strains and displacements. Using the 

obtained stress rates from Section 4.3 we can calculate 

histories of stresses at any time ti iteratively as Yang (2000). 

 
( ) ( 1) ( 1) ( )

1 1( ) ( ) ( ).i i i i

ij i ij i ij it t t t   

     (41) 

 

We need to point out that the initial elastic stresses at 

zero time will be redistributed due to creep. Having history 

of stresses from Eq. (41) one can determine strains and 

displacements histories using step by step procedure based 

on the flowchart presented in Fig. 2. 

 

 

 

Fig. 2 Flowchart of time-dependent creep analysis of the cylinder 
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5. Results and discussion 
 

5.1 Verification and validation 
 

There are no results available in the literature for history of 

stresses and deformations of non-axisymmetric FGM 

cylinders. However with some simplification, our numerical 

results are compared with results presented by Loghman et 

al. (2010). The creep analysis of this problem was 

performed using the same method (Yang 2000) and the 

same creep constitutive model. Table 1 indicates 

comparison between the present results and Loghman et al. 

(2010) for similar material properties and boundary 

conditions at θ = 0. In another attempt, to validate the 

numerical results of the current problem, the results of creep 

analysis at zero time are compared with elastic solutions of 

the previous researches. For this purpose, the materials 

properties and boundary conditions are assumed in 

consistence with the existing literature. Figs. 3 and 4 

illustrate temperature distribution and circumferential 

displacement of hollow FGM cylinder based on the data 

reported by Jabbari et al. (2003). The figures are identical to 

those reported in Figs. 1 and 3 of Jabbari et al. (2003) for 

the functionally graded hollow cylinder without any 

magnetic load (𝐻   = 0). 

 

5.2 Numerical results 
 

The results presented in this paper are based on the 

following data of a thick-walled FGM cylinder (Xuan et al. 

2009, Loghman et al. 2010). 

 

 

Table 1 Comparison between present results and results of 

literature (Loghman et al. 2010 for the case β = +2 

at θ = 0 after 3×108 seconds) 

Dimensionless 

radius (r/b) 
0.5 0.6 0.7 0.8 0.9 1 

ζr (Loghman 

et al. 2010) 
-1 -0.9468 -0.7699 -0.5371 -0.2645 0 

ζr (Present study) -1 -0.9465 -0.7697 -0.5368 -0.2641 0 
 

 

 

 

Fig. 3 Two dimensional non-symmetric temperature 

distribution of hollow FGM cylinder based on the 

data reported by Jabbari et al. (2003) 
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Fig. 4 Two dimensional non-symmetric distribution of 

circumferential displacement of hollow FGM 

cylinder based on the data reported by Jabbari et 

al. (2003) 
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For simplicity of the analysis, power-law exponents of 

material properties have considered to be the same as β1 = 

β2 = β3 = β4 = β. Using boundary conditions and Eqs. (24)-

(25) all terms except the terms associated with n = 0 and n = 

2 do not contribute to stresses and displacements 

distributions. According to the procedure of numerical 

analysis outlined in Section 4, all outputs including initial 

magneto-thermo-elastic responses and time-dependent 

creep stress, displacement redistributions and magnetic field 

component redistributions depicted in Figs. 5 to 16 are 

derived for functionally graded materials with β = 2. It is 

worth noting that dimensionless radial, circumferential and 

shear stresses are assumed as divide stress into absolute 

value of ζr (a, 0) where it is 100 Mpa. 

 

5.2.1 History of stresses and displacements 
The two dimensional steady state temperature 

distribution in terms of dimensionless radius r/b and θ is 

illustrated in Fig. 5. As expected in applying the boundary 

conditions, the temperature at outer radius is constant and at 

inner radius of the cylinder changes based on the cosine 

functions. One can find that the maximum temperature is 

located at θ = 0  π. 

Dimensionless radial, circumferential and shear stresses 

d i s t r ibu t ions  ve r sus  d imens ion less  r ad ius  a re 

demonstratedin Figs. 6-8, respectively. The obtained results 

indicate that the maximum radial, circumferential and shear 

stresses across the thickness direction are located at θ = 

mπ/4 where m = 0, 4, m = 2 and m = 1, 3 respectively. It is 

observed that the circumferential and radial stresses along 

the circumferential direction at the outer surface are less 

than corresponding values at the inner surface. In addition, 

it is concluded that maximum variation of the shear stress is 
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Fig. 5 Two dimensional non-symmetric distribution of 

temperature based on the thermal boundary 

condition considered in the present work 
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Fig. 6 Variation of initial radial stress of the FGM cylinder 

for the case β = 2 

 

 

occurred at the outer surface and it is zero at the inner 

surface. 

The redistribution of the radial stress at different creep 

times at θ = 0 may be observed in Fig. 9(a). It is obvious 
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Fig. 7 Variation of initial circumferential stress of the 

FGM cylinder for the case β = 2 
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Fig. 8 Variation of initial shear stress of the FGM cylinder 

for the case β = 2 

 

 

from this figure that the radial stresses satisfy the boundary 

condition at the inner radii and are not zero at the outer 

surface due to zero displacement boundary condition at the 

outer radii. The numerical results show that maximum 

radial stress is occurred at location r/b = 0.58 for zero time. 

This point moves to inner surface after 50 years of creep. 

Furthermore, we can conclude that the absolute values of 
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(a) Radial stress redistribution (b) The rate of radial stress redistribution 

Fig. 9 Radial creep stress and the rate of it for the FGM cylinder at θ = 0 from initial case up to 50 years 

for the case β = 2 
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Furthermore, we can conclude that the absolute values of 

radial stress are decreased with increase of creep time and 

finally reach to steady state condition. The rate of time-

dependent creep radial stress at θ = 0 is illustrated in Fig. 

9(b). It is concluded that this rate is decreased with increase 

of creep time and is arrived to steady state condition for 

long interval of creep times. 

The redistribution of circumferential stress at different 

creep times are plotted in Figs. 10(a) and (b) at θ = 0 and θ 

= π/2, respectively. This figure indicates that the value of 

circumferential stresses is decreased with increase of creep 

time. It is concluded that for the case θ = π/2 the location of 

maximum circumferential stress is moved to outer surface 

 

 

 

 

while for θ = 0, it is moved toward inner surface as the time 

is increased. It could be argued that the results due to non-

axisymmetric loading are not same for different angles. 

Time dependent creep shear stress redistributions at θ = 

π/4 for the case β = 2 is presented in Fig. 11. The obtained 

results in this figure indicate that the absolute value of shear 

stress is decreased with increase of creep time. For 

comparison, the numerical values of radial, circumferential 

and shear stresses after 50 years at different angular 

positions are presented in Table 2. 

History of radial and circumferential displacements 

versus dimensionless radius is plotted in Figs. 12 and 13 

respectively. The boundary conditions are satisfied at the 
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(a) θ = 0 (b) θ = π/2 

Fig. 10 The redistribution of circumferential creep stress of FGM cylinder at θ = 0 and θ = π/2 from initial 

elastic case up to 50 years for the case 

Table 2 The values of dimensionless radial, circumferential and shear stresses at different angles 

after 50 years 

Dimensionless 

stress 
Angle 

Dimensionless radius (r/b) 

0.5 0.6 0.7 0.8 0.9 1 

r  

0 -1 -0.9831 -0.9325 -0.8088 -0.5796 -0.2249 

30 -0.75 -0.7014 -0.6397 -0.5472 -0.4119 -0.2236 

45 -0.5 -0.3954 -0.3284 -0.2823 -0.2486 -0.2232 

60 -0.25 -0.0759 -0.0094 -0.0151 -0.0858 -0.2235 

90 0 0.2337 0.3027 0.2531 0.0812 -0.2247 

  

0 0.1324 0.321 0.4050 0.3587 0.1826 -0.1171 

30 0.0776 0.1655 0.1804 0.1347 0.0345 -0.1188 

45 -0.0676 -0.0735 -0.0836 -0.0985 -0.1069 -0.1194 

60 -0.2741 -0.3516 -0.3627 -0.3280 -0.2479 -0.1188 

90 -0.4767 -0.6016 -0.6281 -0.5628 -0.3948 -0.1170 

r  

0 0 0 0 0 0 0 

30 0 -0.0805 -0.1417 -0.2358 -0.3603 -0.5018 

45 0 -0.1403 -0.2139 -0.2952 -0.3978 -0.5278 

60 0 -0.1311 -0.1902 -0.2698 -0.3749 -0.5018 

90 0 0 0 0 0 0 
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Fig. 11 Redistribution of creep shear stress of the FGM 

cylinder at θ = π/4 from initial elastic up to 50 

years for the case 
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Fig. 12 Redistribution of radial displacement of the 

FGM cylinder at θ = 0 from initial elastic case 

up to 50 years for the case β = 2 
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Fig. 13 Redistribution of circumferential displacement 

of the FGM cylinder at θ = π/4 from initial 

elastic case up to 50 years for the case β = 2 

exterior surface of the FGM cylinder in two figures. The 

maximum values of radial displacements are occurred at the 

inner surface while circumferential displacement has a 

maximum value located almost at one third portion of the 

thickness near to inner surface. 
 

5.2.2 History of magnetic field components 
Based on Eq. (5), Lorent’z force, perturbation of 

magnetic field vector and perturbation of electric field 

vector are depending on the radial and circumferential 

displacements. Fig. 14 demonstrates the history of radial 

Lorent’z force at θ = 0 from initial elastic solution up to 50 

years. As it can be seen, the radial Lorent’z force is 

increased with increase of creep time. 

Initial magnetothermoelastic circumferential Lorent’z 

force at zero time are showed in Fig. 15.  Our 

numericalresults indicate that circumferential Lorent’z force 

is approximately stationary with time and is assumed equal 

to elastic case. The axial perturbation of magnetic field, hz, 

is depicted in Fig. 16(a). As can be seen in this figure the 

maximum hz at θ = 0, π and θ = π/2 are equal in magnitude 

but opposite in sign. In addition, the history of hz at θ = 0 is 
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Fig. 14 Redistribution of radial Lorentz force of FGM 

cylinder at θ = 0 from initial elastic case up to 

50 years for the case β = 2 
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Fig. 15 Distribution of circumferential Lorentz force of 

FGM cylinder at zero time for the case β = 2 
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Fig. 17 Effect of material inhomogeneity index and 

magnetic field on radial displacement of the 

cylinder at θ = 0 after 50 years 
 

 

presented in Fig. 16(b). This figures indicates that changes 

of this parameter at inner radius is very significant rather 

than one at outer radius due to imposing the inner boundary 

conditions. 

 

5.2.3 Effect of material inhomogeneity index and 
magnetic field 

The effect of in-homogeneity parameter, β, and 

magnetic field on displacements and stresses along the 

radius of cylinder after 50 years are studied in Figs. 17-21. 

From Fig. 17, one can conclude that increase of in-

homogeneity index leads to decrease of radial displacement 

throughout thickness for two cases of with and without 

magnetic field. This decrease is due to increase of stiffness 

of material that prevents the further displacement. Also the 

presence of magnetic field almost increases the amount of 

radial displacement. 

Shown in Fig. 18 is the circumferential displacement of 

cylinder for various values of in-homogeneity index with 
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Fig. 18 Effect of material inhomogeneity index and 

magnetic field on circumferential displacement 

of the cylinder at θ = π/4 after 50years 
 

 

and without magnetic field. As can be seen, existence of 

magnetic field leads to basically changes of the behavior of 

curves. In addition, the behavior of circumferential 

displacement due to change of in-homogeneity index is 

strongly depending on the radial location. However these 

results confirm that the maximum and minimum values of 

circumferential displacement belong to β = ‒2 and β = 2 

respectively. 

Figs. 19-21 show the influence of in-homogeneity index 

and magnetic field on the radial, circumferential and shear 

stresses after 50 years. It can be concluded that for β = ‒2, 

employing the magnetic field leads to lower radial stress 

while for β = 0 and β = 2 radial stress decreases in the 0.74-

1 and 0.91-1 range of r/b respectively. In general, radial 

stress is decreased at outer surface with existence of 

magnetic field. In addition, it is observed that increase of in-

homogeneity index significantly increases the radial stress. 

To clarify the effect of magnetic field and β at various 

angles, the distribution of circumferential stress is plotted at 

θ = 0 and θ = π/2 in Fig. 20. The change of magnetic field, 
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(a) Distribution of longitudinal magnetic perturbation at zero time (b) Redistribution of longitudinal magnetic perturbation at θ = 0 

Fig. 16 Distribution and redistribution of longitudinal magnetic perturbation of the FGM cylinder for the case β = 2 
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Fig. 19 Effect of material inhomogeneity index and 

magnetic field on dimensionless radial stress of 

the cylinder at θ = 0 after 50 years 

 

 

in-homogeneous index and radial location leads to 

significant and interesting change of responses as depicted 

in Figs. 20(a) and (b). It is observed that the behavior of 

circumferential stress for β = 2 is basically differs from one 

for β = 0, ‒2. It is concluded that the circumferential stress 

for β = 2 has a maximum value at middle of the wall of 

cylinder while for β = 0, ‒2 the circumferential stress is 

decreased along the thickness direction. In addition, 

addition of magnetic field leads to significant increase of 

circumferential stress. 

Fig. 21 indicates that in presence of magnetic field, the 

absolute value of shear stress is increased significantly. The 

minimum and maximum of shear stress in the FGM vessel 

belong to β = ‒2 and β = ‒2 respectively. 

 

 

6. Conclusions 
 

Time-dependent magnetothermoelastic creep stress 
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Fig. 21 Effect of material inhomogeneity index and 

magnetic field on shear stress of the cylinder at 

π/4 after 50 years 

 

 

redistribution analysis of a functionally graded cylindrical 

vessel subjected to non-axisymmetric thermo-mechanical 

and uniform magnetic loadings was studied in this paper. 

Two governing differential equations of system were 

derived based on two dimensional non-axisymmetric 

displacement field with considering thermal effects. The 

important results of the present paper may be classified as 

follows: 

 

(1) It was concluded that the maximum values of 

radial, circumferential and shear stresses through-

thickness are located at θ = mπ/4 where m = 0, 4, 

m = 2 and m = 1, 3 respectively. 

(2) As a main conclusion based on the obtained results 

of Figs. 9-11, we can conclude that the absolute 

values of radial, circumferential and shear stresses 

are decreased with increase of creep time and 

finally reach to steady state condition. 

(3) Both radial and circumferential displacements are 
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(a) θ = 0 (b) θ = π/2 

Fig. 20 Effect of material inhomogeneity index and magnetic field on dimensionless circumferential stress in the FGM 

cylinder at θ = 0 and θ = π/2 after 50 years 
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increased with increase of creep during so that they 

finally approach to steady state condition. Also the 

lower values of radial and circumferential 

displacements are occurred for β = 2. 

(4) It was found that with existence of magnetic field 

and increasing the material inhomogeneity index, 

the radial displacement is decreased across the 

cylinder thickness; however, the behavior of 

circumferential displacement, radial and 

circumferential stresses are strongly depending on 

the material in-homogeneity index. 
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Appendix A 
 

The constants in Eq. (7) are written as 
 

 

Where 
 

 

The unknown constants in Eq. (11) are 
 

 

The constants and powers in Eq. (18) are 
 

 

The constants in Eq. (23) are 
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The coefficients in Eq. (29) are 

 

 

The parameters in Eq. (32) are 
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