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1. Introduction 
 

Functionally graded materials (FGMs) are micro-

scopically inhomogeneous composite materials that possess 

continuous variation of material properties from one surface 

to another with a spatial gradient of macroscopic material 

properties of mechanical strength and thermal conductivity. 

FGMs have various advantages, for instance, minimization 

or elimination of stress concentration developed in classical 

laminated composites, and increased bonding strength along 

the interface of two different materials. Subsequently, a 

number of studies have been carry out to analyze the static, 

vibration, and buckling of advanced composite structures 

due to the increased relevance of the FGMs structural 

components in the design of engineering structures (Ait 

Amar Meziane et al. 2014, Mahi et al. 2015, Ait Yahia et al. 

2015, Bourada et al. 2015, Kar and Panda 2016, Kar et al. 

2016, 2017, Mahapatra et al. 2017, Boukhari et al. 2016, 

Madani et al. 2016, Bennoun et al. 2016, Bouderba et al. 

2016, Bellifa et al. 2016, Kolahchi et al. 2016a, 2017a, 

Tounsi et al. 2016, Hajmohammad et al. 2017, Shokravi 

2017a, b). Recently, the high-order polynomial shear 
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deformation theory (HSDT) has been utilized in a different 

environment to achieve the structural responses of the 

functionally graded carbon nanotube reinforced composite 

plate and shell structures, see for example (Mehar and 

Panda 2016a, b, 2017a, b, Mehar et al. 2016, 2017a, b). 

Today, engineering nanostructures such as nanorods, 

nanobeams and nanoplates have large kinds of applications 

due to their high mechanical, thermal, chemical, and 

electronic characteristics (Ekinci and Roukes 2005, 

Rahmani et al. 2017). Amid the application of nano-

structures can be referred to micro/nano electro-mechanical 

systems (MEMS/NEMS) and nano actuators. Led to an 

abrupt momentum in modeling of micro and nano scale 

structures. However, size effects on the mechanical and 

physical properties of nanostructures have been observed at 

small sizes both in experimental investigation, (Lam et al. 

2003, McFarlan et al. 2005, Babaei et al. 2009) and in 

numerical simulations (Duan and Wang 2007, Agrawal et 

al. 2008). In these applications, size effects become very 

prominent. It should be noted that classical continuum 

mechanics theory does not suitable for nanostructures due 

to neglecting size influence in nanosize structures. To 

overcome this problem, various non-classical continuum 

theories imply additional material length scale parameters 

were developed, such as nonlocal elasticity theory (Eringen 

1972, 1983), strain gradient theory (Mindlin 1964, 1965, 

Papargyri-Beskou et al. 2003) and nonlocal strain gradient 
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theory (Askes and Aifantis 2009). However, the studies of 

size-dependence effects on the buckling behaviour of FG 

elastic materials with micro/nano-structure should be 

related to both internal lengths and external dimensions and 

are always of fundamental significance. In contrast to 

classical elasticity theory, the stress of non local elasticity 

theory at a reference point accounts for not only the strain at 

the reference point, but also the strains at all points in the 

whole body (Eringen 1983). In this context, a large number 

of studies have been performed to study the mechanical 

responses of nanostructures. Peddieson et al. (2003) first 

used nonlocal Eringen elasticity theory (Eringen 1983) to 

analyze Euler-Bernoulli nanobeams. Wang and Liew (2007) 

investigate static response of size-dependent structures 

based on nonlocal elasticity using two different beam 

theories. Various shear deformation beam theories were also 

reformulated by (Reddy 2007) using nonlocal differential 

constitutive relations. A generalized nonlocal beam theory, 

to study mechanical analysis of nanobeams, was presented 

by Aydogdu (2009). Pradhan and Murmu (2010) have used 

the differential quadrature method (DQM) to obtain the 

numerical solutions of nondimensional frequencies of 

rotating nanocantilever beam. Civalek et al. (2010) studies a 

size-dependent Euler-Bernoulli beam for mechanical 

analysis of cantilever microtubules using differential 

quadrature method (DQM). The effect of the size-

dependent, and shear deformation of the forced vibration 

analysis of single-walled carbon nanotubes (SWCNT) under 

moving nanoparticles have been proposed by (Simsek 

2011). Based on nonlocal Euler-Bernoulli model, bending 

analysis of nanobeam has been studied by Nguyen et al. 

(2014). Benguediab et al. (2014) proposed a comprehensive 

nonlocal shear deformation beam theory for bending, 

buckling and vibration analysis of homogeneous nanobeams 

founded on Eringen’s nonlocal elasticity theory. Jamali et 

al. (2016) carried out a buckling study of nanocomposite 

plate with square cut out reinforced by carbon nanotubes 

(CNTs) resting on an elastic medium. Tounsi and his 

colleagues (Zemri et al. 2015, Larbi Chaht et al. 2015, 

Ahouel et al. 2016, Bounouara et al. 2016, Bellifa et al. 

2017, Besseghier et al. 2017, Khetir et al. 2017, Yazid et al. 

2018) have presented the nonlocal model based on 

Eringen’s theory for the bending, buckling and free 

vibration of FG nanobeams and nanoplates. Also, Kolahchi 

and his co-workers (Kolahchi et al. 2016b, 2017b, c, 

Kolahchi 2017, Kolahchi and Cheraghbak 2017) studied the 

bending, vibration, buckling and dynamic stability of 

composite nanoplates using higher-order plates theories. 

Based on nonlocal sinusoidal shear deformation plate 

model, dynamic pull-in and pull-out analysis of viscoelastic 

nanoplates has been studied by Shokravi (2017c). Eltaher et 

al. (2016) studied the static stability of nonlocal nanobeams 

using higher-order beam theories. Recently, Bouafia et al. 

(2017) investigated nonlocal bending and free vibration 

behaviors of FG nanobeams using quasi-3D theory in which 

both shear deformation and thickness stretching effects are 

introduced. These studies pointed that the nonlocal size-

dependent effect plays an important role in studying the 

static and dynamic behavior of isotropic and FG beams at 

small-scale. The strain gradient theory (Mindlin 1964, 1965, 

Aifantis 1992) is a microstructure-dependent continuum 

theory which can capture the stiffness enhancement effect. 

It states that the total stress field must account for additional 

strain gradient terms to consider microstructural 

deformation mechanism. By using the Mindlin’s strain 

gradient theory. Yang et al. (2002) proposed the modified 

couple stress theory including only one additional 

parameter and considering a symmetric couple stress tensor. 

Reddy (2011) studied the bending, vibration and buckling 

problems of functionally graded beams by using Euler-

Bernoulli and Timoshenko beams models as well as 

modified couple stress theory. Akgöz and Civalek (2014) 

studied the thermomechanical buckling behavior of an 

embedded FG simply supported micro-scaled beam based 

on sinusoidal shear deformation beam theory. Ebrahimi and 

Beni (2016) has presented analytical solutions of free 

vibrations of a short cylindrical nanotube made of 

piezoelectric material based on the consistent couple stress 

theory and using the shear deformable cylindrical theory. 

However, the modified couple stress theory can be 

considered as the special case of the modified strain 

gradient theory. Recently, considerable interests have been 

devoted to theoretical works of the mechanical and dynamic 

behaviors of small-scaled structures within the framework 

of strain gradient theory and modified couple stress theory 

(Ma et al. 2008, Kong et al. 2009, Ansari et al. 2011, 

Nateghi et al. 2012, Ansari et al. 2013, Akgöz and Civalek 

2013, Sahmani and Ansari 2013 Şimşek and Reddy 2013, 

Kolahchi and Bidgoli 2016, Li et al. 2016, 2017). A 

stiffness enhancement effect has been observed for these 

gradient elasticity models. From the discussions above, it is 

clear that the nonlocal elasticity model and the strain 

gradient models describe two entirely different size-

dependent mechanical and physical characteristics of small-

scaled materials and structures. To assess the true effects of 

the two size-dependent problems on the structural 

responses, some nonlocal strain gradient models have been 

elaborated to evaluate the two length scales effects on 

mechanical behaviors. Papargyri-Beskou et al. (2003) 

studied the bending and buckling problems of Euler–

Bernoulli beam based on the strain gradient elasticity with 

surface energy. More recently, Lim et al. (2015) proposed a 

model combining both strain gradient and nonlocal 

elasticity models named nonlocal strain gradient theory and 

tried to show the impacts of nonlocal and length scale 

parameters on the mechanical and physical responses of 

size-dependent structures. This model attracted a many 

researchers since to model small scale structures. Li and Hu 

(2015) showed the influences of using nonlocal strain 

gradient theory on buckling behaviors of nanobeams and 

showed that the stiffness softening effects or the stiffness 

enhancement effects are shown to depend on the values of 

the two length scales parameter. Li et al. (2015) presented 

an analytical model for the flexural wave propagation 

analysis of small-scaled functionally graded beams based 

on the nonlocal strain gradient theory. Akgöz and 

Civalek (2012) carried out static analysis of microbeams of 

Bernoulli–Euler model based on the modified strain 

gradient theory. It should be noted that the thickness 

stretching effect is ignored in these previous works and the 
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transverse displacement is considered constant in the 

thickness direction, as in different beam theories including 

those of Euler–Bernoulli, Timoshenko, and various higher-

order shear deformation beam theories without stretching 

effect. This appears quite inadequate since functionally 

graded nanobeams are characterized by a strong variation of 

material properties in the thickness direction (Carrera et al. 

2017, Abualnour et al. 2018). This paper aims to improve 

the beam theory developed by Tounsi and his coworkers 

(Larbi Chaht et al. 2015, Bouafia et al. 2017) by including 

the so-called stretching effect. By searching the literature, it 

is found that in all works on functionally graded nanobeams 

mentioned above, the length scale parameters employed in 

the formulation are considered as constants. The only work 

in the open literature that takes into consideration the 

variations in the length scale parameters seems to be that by 

Al-Basyouni et al. (2015). In the present work, the buckling 

analysis of simply supported functionally graded 

nanobeams is presented using a nonlocal strain gradient 

elasticity theory based on a novel hyperbolic quasi-3D 

theory in which both shear deformation and thickness 

stretching effects are introduced. Elastic coefficients and 

length scale parameter of functionally graded nanobeams 

are assumed to change continuously along the thickness 

according to the power-law form. The most interesting 

feature of this theory is that it accounts for a hyperbolic 

variation of the transverse shear strains across the thickness 

and satisfies the zero traction boundary conditions on the 

top and bottom surfaces of the beam without using shear 

correction factors. By using the Hamilton’s principle the 

governing equations of motion are derived. The closed-form 

solutions for exact critical buckling loads of nonlocal strain 

gradient (FG) beams are obtained using Navier’s method. 

The derived results are compared with those of strain 

gradient theory. Selected numerical results are presented to 

indicate the effects of the power-law index, nonlocal 

parameter, slenderness ratio on the buckling of FG 

nanobeam with graded nonlocality. 
 

 

2. Model and theoretical formulations 
 

A quasi-3D hyperbolic shear deformation beam theory 

considering shear and normal deformations is adopted in 

this study. The displacement field of the proposed theory is 

chosen based on the following assumptions (Houari et al. 

2013, Bessaim et al. 2013, Belabed et al. 2014, Hamidi et 

al. 2015): (1) The transverse displacement is partitioned 

into bending, shear and stretching components; (2) the axial 

displacement consists of extension, bending and shear 

components; (3) the bending component of axial 

displacement is similar to that given by the Euler–Bernoulli 

beam theory; and (4) the shear component of axial 

displacement gives rise to the hyperbolic variation of shear 

strain and hence to shear stress through the thickness of the 

beam in such a way that shear stress vanishes on the top and 

bottom surfaces. The material properties of the FG 

nanobeam are assumed to vary in the thickness direction. 

Based on the of nonlocal strain gradient theory (Askes and 

Aifantis 2009, Ansari et al. 2012) to consider the small 

scale effects, the governing equations are derived using the 

principle of minimum total potential energy. The length 

scale parameter is assumed to vary in the thickness 

direction. To illustrate the accuracy of the present theory, 

the obtained results are compared with those predicted by 

the Euler–Bernoulli beam theory (EBT) and Timoshenko 

beam theory (TBT). Finally, the influences of nonlocal 

parameter, power law index, and aspect ratio on the 

buckling of FGM nanobeam are discussed. 

 

2.1 Material properties 
 

Consider a uniform FG nanobeam of thickness h, length 

L, and width b made by mixing two distinct materials 

(metal and ceramic). The coordinate x is along the 

longitudinal direction and z is along the thickness direction. 

It is assumed that material properties of the FGM 

nanobeam, such as Young’s modulus (E), Poisson’s ratio 

(v), and length scale parameter vary continuously through 

the nanobeam thickness according to a power-law form 

(Kolahchi et al. 2015, Kar and Panda 2015, Ghorbanpour et 

al. 2016, Bousahla et al. 2016, Houari et al. 2016, Beldjelili 

et al. 2016, Ait Atmane et al. 2017, Hachemi et al. 2017), 

which can be described by 
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The effective Young modulus E(z) and length scale 
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k is the material distribution parameter which takes the 

value greater or equal to zero. 

 

2.2 Kinematics 
 

In order to incorporate both shear deformation and 

thickness stretching effects, the axial and transverse 

displacements are supposed to follow a hyperbolic variation 

through the thickness. Based on the assumptions made 

above, the displacement field of the present theory can be 

obtained as 
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where u0 is the axial displacement along the midplane of the 

nanoscale beam; wb, ws and wst are the bending, shear and 

stretching components of the transverse displacement along 

the midplane of the beam. A new hyperbolic shear 

deformation beam function is fitted and used 
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The component due to the stretching effect wst can be 

given as 

)( )(),( xzgzxwst   (6) 

 

The additional displacement φ accounting for the effect 

of normal stress is included and g(z) is given as follows 
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The nonzero strains of the considered beam theory are 
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2.3 The nonlocal FG nanobeam strain gradient 
model 

 

Nonlocal strain gradient elasticity (or the high-order 

nonlocal strain gradient theory) exposed in Lim et al. 

(2015) gives the stress for both nonlocal stress and strain 

fields. Consequently, the stress can be expressed by 
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where the stresses 𝜎𝑥𝑥
(0)

 and 𝜎𝑥𝑥
(1)

 are related to strain 𝜀𝑥𝑥  

and strain gradient 𝜀𝑥𝑥 ,𝑥 , respectively, and are defined as 
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in which Cijkl are the elastic constants and e0a and e1a take 

into account the effect of nonlocal stress field, and l is the 

length scale parameter and introduces the influence of 

higher-order strain gradient stress field. When the nonlocal 

functions α0 (x, x′, e0a) and α1 (x, x′, e1a) satisfy the 

developed conditions by Eringen (1983), the constitutive 

relation for a FGM nanobeam can be stated as 
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in which 2 denotes the Laplacian operator. Supposing e1 = 

e0 = e and discarding terms of order O(2), the general 

constitutive relation in Eq. (33) can be rewritten as 
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Thus, the constitutive relations for a nonlocal refined 

shear deformable FG nanobeam can be stated as 
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where μ = (ea)2 and λ = l2. 

It is of interest that Eq. (15) can be simplified to some 

interested cases: 
 

(a) (Nonlocal continuum theory): The constitutive 

equation of the nonlocal continuum theory can be easily 

obtained by setting l = 0 in Eq. (15), that is 
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which are identical to Eringen (1983). 
 

(b) (Strain gradient theory): The constitutive equation of 

the strain gradient theory can be easily obtained by setting 

ea = 0 in Eq. (15), that is 
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which are identical to Aifantis (1992). 

In this section, the equations of motion for size-

dependent FG quasi-3D hyperbolic shear deformation beam 

theory considering shear and normal deformations will be 

formed based on the general constitutive equation of 

nonlocal strain gradient theory. 

The governing equations will be derived by using 

principal of the minimum total potential energy as follows 
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extWU   int  (18) 

 

where δΠ is the total potential energy. δUint is the virtual 

variation of the strain energy; and δWext is the variation of 

work done by external forces. The first variation of the 

strain energy is given as 

 

 

dx
dx

d

dx

wd
Q

dx

wd
M

dx

wd
MN

dx

ud
N

dxdzU

ss
s

L

b
bz

L

h

h

nsxzxzzzxx





























 











   

 
 

 
        

    

2

2

0

2

2
0

0

2

2

int

 
(19) 

 

where N, Mb, Ms, Nz and Q are the stress resultants defined 

as 
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The variation of potential energy of external force can 

be expressed as 
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where N0 is the axial loads. 

Substituting the relations for δUint, δWext, and δV from 

Eqs. (19), (20), and (21) into Eq. (18) and integrating by 

parts, and collecting the coefficients of δu0, δwb, δws and δφ, 

the following equations of motion of the FG beam are found 
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By integrating Eq. (20) over the cross-sectional area of 

nanobeam, the following nonlocal relations for FG 

nanosbeam model are deduced 
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where the cross-sectional rigidities are expressed as 
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The governing equations of a quasi-3D FG nanobeam in 

terms of displacements are obtained by inserting N, Mb, Ms, 

Nz and Q from Eq. (23), respectively, into Eq. (22) as 

follows 
 

0
3

3

13135

5

113

3

11

5

5

113

3

114

0
4

112

0
2

11





dx

d
X

dx

d
X

dx

wd
B

dx

wd
B

dx

wd
B

dx

wd
B

dx

ud
A

dx

ud
A

ssss

bb

 



 (25a) 

 

2

2

04

4

132

2

13

6

6

114

4

11

6

6

114

4

115

0
5

113

0
3

11

dx

wd
N

dx

d
Y

dx

d
Y

dx

wd
D

dx

wd
D

dx

wd
D

dx

wd
D

dx

ud
B

dx

ud
B

ssss

bb







 





 (25b) 

 

   
2

2

04

4

13552

2

1355

4

4

552

2

556

6

114

4

11

6

6

114

4

115

0
5

113

0
3

11

  

dx

wd
N

dx

d
YA

dx

d
YA

dx

wd
A

dx

wd
A

dx

wd
H

dx

wd
H

dx

wd
D

dx

wd
D

dx

ud
B

dx

ud
B

ssss

ssssssss

bsbsss







 





 

(25c) 

 

   

2

2

02

2

33334

4

552

2

55

4

4

13552

2

1355

4

4

132

2

133

0
3

13
0

13

dx

wd
N

dx

d
ZZ

x

d
A

x

d
A

dx

wd
YA

dx

wd
YA

dx

wd
Y

dx

wd
Y

dx

ud
X

dx

du
X

ss

ssssss

bbs
















 





 (25d) 

 

 

3. Analytical solution 
 

he above equations of motion are analytically solved for 

buckling problem. The Navier solution technique is 

employed to obtain the analytical solutions for a simply 

supported FG nanobeam. The solution is assumed to be of 

the form 
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where Um, Wbm, Wsm and Φstm are arbitrary parameters to be 

determined and α = mπ/L. 

Substituting Eq. (26) into Eq. (25), the analytical 

solutions can be obtained by 
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where 
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4. Numerical results and discussions 
 
In order to check the validity and the accuracy of the 

presented new quasi-3D hyperbolic beam theory, 

comparison studies, as possible, for buckling behaviors 

using the present model in the framework of the nonlocal 

strain gradient theory, have been performed out with the 

results of the available published works. In addition, 

selected numerical results are presented to indicate the 

effects of the power-law index, nonlocal parameter, 

slenderness ratio, shear deformation and thickness 

stretching on the buckling of FG nanobeam with graded 

nonlocality. 

As a first example, Fig. 1 shows the variation of the first 

non-dimensional critical buckling load versus the length-to-

side ratio, L/h, for new hyperbolic shear deformation beam 

models by the present approach with and without stretching 

effect and the results are compared to those reported by 

 

 

 

Fig. 1 First non-dimensional critical buckling load 

𝑃𝑐𝑟    =  
𝑁0𝐿

2

𝜋2𝐸𝐼
 versus length-to-height ratio, L/h, 

for the rectangular isotropic beam 
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Matsunaga (1996) based on the power series expansion of 

displacement components and the Carrera Unified 

Formulation theories (Carrera et al. 2016) (CUF) achieved 

through the application of the Dynamic Stiffness Method 

(DSM). The following parameters are employed in 

calculating the numerical results: E = 1 TPa, v = 0.3, h = 10 

nm, b = h (where b and h are the width and the thickness of 

the beam, respectively). The shear correction factor is taken 

as 5/6 for Timoshenko beam theory. The results obtained 

using Timoshenko beam theory (TBT) and classical Euler 

 

 

 

Fig. 2 Variation of the dimensionless buckling load 

𝑁0/𝑁0
𝑐𝑟  versus length scale parameter λ / L of 

isotropic rectangular beams 

 

 

Bernoulli beam theory (EBT), are also presented in Fig. 1. 

The present results are in excellent agreement with other 

results for all aspect ratios. 

In the second example, the validation of the solution of 

the proposed new hyperbolic shear deformation beam 

model is carried out by comparing the obtained results with 

those computed via finite element stiffness matrices of a 

strain gradient elastic Euler–Bernoulli beam of Pegios et al. 

(2015), and the results obtained by Timoshenko beam 

theory (TBT) and Euler Bernoulli beam theory (EBT). 

The comparison of the first non-dimensional critical 

buckling load crNN 00  versus length scale parameter λ of 

isotropic rectangular beams is depicted in Fig. 2, where 
22

0 LEIN cr  is the classical value of N0. It can be seen 

that the dimensionless critical buckling load predicted by 

the new hyperbolic theory with and without the stretching 

effect are almost identical with those generated by the 

Euler–Bernoulli beam of Pegios et al. (2015). Also, it is 

clearly shows an increase of this dimensionless buckling 

ratio for increasing values of the dimensionless gradient 

coefficient λ/L with a constantly increasing rate of increase. 

In the third example of the present section, analytical 

solutions of the buckling responses obtained in the previous 

sections are exploited for numerical examples and 

compared with those obtained using Timoshenko beam 

theory (TBT) and classical Euler Bernoulli beam theory 

(EBT) for a wide range of length scale parameter (l), the 

material distribution parameter (k) and thickness ratio (L/h). 

 

 

Table 1 Dimensionless critical buckling load (𝑁 ) of the FG nanobeam 

lm/lc Beam theory 
L/h = 10 L/h = 100 

k = 0.3 k = 1 k = 3 k = 10 k = 0.3 k = 1 k = 3 k = 10 

C
la

ss
ic

 

CBT 4.0944 5.4283 6.8176 8.3176 4.0944 5.4283 6.8176 8.3176 

FSBT 3.9939 5.3084 6.6721 8.1290 4.0934 5.4271 6.8161 8.3157 

Present εz = 0 3.9914 5.3096 6.6794 8.1350 4.0933 5.4271 6.8162 8.3158 

Present εz ≠ 0 4.0464 5.3981 6.7562 8.1929 4.1587 5.5288 6.9077 8.3906 

31  

CBT 6.7980 7.9706 9.0553 10.0587 4.1220 5.4555 6.8414 8.3354 

FSBT 6.6311 7.7880 8.8481 9.8181 4.1209 5.4542 6.8400 8.3335 

Present εz = 0 6.6305 7.7938 8.8561 9.8221 4.1290 5.4542 6.8400 8.3336 

Present εz ≠ 0 6.6998 7.8738 8.9237 9.8865 4.1864 5.5558 6.9314 8.4085 

1  

CBT 4.4985 5.9640 7.4905 9.1386 4.0984 5.4336 6.8243 8.3259 

FSBT 4.3881 5.8323 7.3306 8.9313 4.0974 5.4324 6.8229 8.3239 

Present εz = 0 4.3854 5.8337 7.3386 8.9379 4.0974 5.4324 6.8229 8.3240 

Present εz ≠ 0 4.4457 5.9309 7.4231 9.0015 4.1628 5.5342 6.9145 8.3989 

23  

CBT 6.2368 8.8290 11.7643 15.0983 4.1160 5.4629 6.8675 8.3855 

FSBT 6.0852 8.6413 11.5235 14.7637 4.1150 5.4616 6.8660 8.3836 

Present εz = 0 6.0791 8.6410 11.5368 14.7761 4.1150 5.4616 6.8661 8.3837 

Present εz ≠ 0 6.1797 8.8251 11.6993 14.8859 4.1808 5.5644 6.9585 8.4592 

2  

CBT 4.8172 6.7257 8.8482 11.2378 4.1017 5.4415 6.8381 8.3469 

FSBT 4.6997 6.5814 8.6655 10.9876 4.1007 5.4403 6.8366 8.3449 

Present εz = 0 4.6954 6.5816 8.6754 10.9967 4.1007 5.4403 6.8367 8.3450 

Present εz ≠ 0 4.7701 6.7150 8.7929 11.0776 4.1662 5.5425 6.9286 8.4202 
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The beam geometry has the following dimensions: (length) 

L = 10 nm, (width) b = 1 nm. The FG nanobeam has the 

following material properties: 

Ec = 0.25 TPa, Em = 1 TPa, vc = vm = 0.3 (Larbi Chaht et 

al. 2015). It is assumed that length scale parameter as well 

as material properties of nanobeam are grade through the 

thickness. The following dimensionless relation is defined 

in order to calculate the dimensionless buckling load 

 


L

dx
xd

wd

xd

wd
NV

0

0 


  (29) 

 

Table 1 tabulate nondimensionalized critical buckling 

load of the FG nanobeam based on the present new quasi-

3D hyperbolic beam theory for various values of the 

volume fraction exponent k, the ratio (lm/lc = 1/3, 1, 3/2, 2), 

and two different values of the aspect ratio (L/h = 10 and 

100). The results obtained using the present quasi-3D 

hyperbolic beam theory show that the inclusion of the 

thickness stretching effect manifests in an enhancement in 

the critical buckling loads. According to this table, buckling 

loads increase with increasing the material distribution 

parameter (k). Thus, the ratio lm/lc indicates the degree of 

the length scale parameter variation across the beam. 

However, the increase of v ratio leads to a veritable change 

of critical buckling loads and the results are significantly 

different to the case where the length scale parameter is 

assumed to be a constant (lm/lc = 1) at a fixed aspect ratio 

(L/h). 

Fig. 3 shows the variation of the non-dimensional 

buckling load of the FGM nanobeam with geometrical 

aspect ratio. The local and nonlocal results are given for lc = 

lm = 0 and lm/lc = 2, respectively. The material distribution 

parameter is assumed to be constant i.e., k = 2. It is clear 

that critical buckling load predicted by the strain gradient 

theory is higher in magnitude than the local buckling load 

due to the small scale effects. Also, it can be observed that 

the inclusion of the thickness stretching effect leads to 

increase in critical buckling load values for FG nanobeam. 

 

 

 

Fig. 3 Effect of the aspect ratio (a/h) on the dimension-

less buckling load for k = 2, lm/lc = 2 
 

 

Fig. 4 Effect of nonlocal parameter ratio (lm/lc) on the 

dimensionless buckling load for k = 2 
 

 

These results effectively demonstrate that the inclusion of 

small scale parameter softens the nanobeam (reduces 

stiffness), whereas the inclusion of thickness stretching 

effect makes it stiffer. As such both small scale and 

thickness stretching effects exert a significant influence on 

nanobeam structural performance. 

Fig. 4 shows the effect of the length scale parameter 

ratio lm/lc on dimensionless critical buckling loads. The 

results in this figure are obtained by using the present 

nonlocal shear deformation beam theory including the 

thickness stretching effect. The material distribution 

parameter is assumed to be constant i.e., k = 2. It is 

observed that the buckling responses vary in a nonlinear 

fashion with the length scale parameter ratio lm/lc. It can be 

seen that the effect of length scale parameter ratio lm/lc on 

critical buckling loads of FG nanobeam is very important, 

especially at relatively higher aspect ratios. Therefore, it can 

be concluded that FGM nanobeam responses are aspect 

ratio-dependent based on strain gradient elasticity. 
 

 

5. Conclusions 
 

By introducing the concept of graded length scale 

parameter, buckling characteristics of FG nanobeams are 

investigated based on a size-dependent Quasi-3D 

hyperbolic shear deformation theory in the frame work of 

the non-local strain gradient theory. Elastic properties and 

length scale parameter of the FG nanobeams are position-

dependent. The nonlocal governing differential equations 

are derived by implementing Hamilton’s principle and using 

nonlocal strain gradient constitutive equations. It is 

observed that the critical buckling load change significantly 

with the increase of length scale parameter ratio and the 

critical buckling load predicted by the strain gradient theory 

is higher in magnitude than the local buckling load. Also, 

the inclusion of the thickness stretching effect leads to 

increase in critical buckling load. The formulation lend sit 

self particularly well to study several problems related to 

the hygro-thermomechanical deformation of laminated and 

FG structures (Bouderba et al. 2016, Beldjelili et al. 2016, 
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Bousahla et al. 2016, Chikh et al. 2017, Menasria et al. 

2017, Mouffoki et al. 2017), also by using the nonlocal 

strain gradient model for analysis of mechanical behaviour 

of nanostructures reinforced with nanoparticles and carbon 

nanotubes (Arani and Kolahchi 2016, Zamanian et al. 2017, 

Zarei et al. 2017, Shokravi 2017d), which will be 

considered in the near future. The present computations also 

provide a solid benchmark for verification of finite element 

and other numerical simulations of FGM nanobeam 

mechanics. 
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