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Abstract.

In this research, vibration and smart control analysis of a concrete foundation reinforced by SiO, nanoparticles and

covered by piezoelectric layer on soil medium is investigated. The soil medium is simulated with spring constants and the Mori-
Tanaka low is used for obtaining the material properties of nano-composite structure and considering agglomeration effects.
With considering first order shear deformation theory, the total potential energy of system is calculated and by means of
Hamilton’s principle in three displacement directions and electric potential, the six coupled equilibrium equations are obtained.
Also, based an analytical method, the frequency of system is calculated. The effects of applied voltage, volume percent and
agglomeration of SiO, nanoparticles, soil medium and geometrical parameters of structure are shown on the frequency of
system. Results show that with applying negative voltage, the frequency of structure is increased.
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1. Introduction

Various external and internal sources generate vibration
instabilities in buildings, such as the motorway traffic,
existence of industrial equipment (for instance compressors,
crushers, sieve shaker and dryer) or people walking inside
the building. These vibrations also affect the performance of
concrete foundations and therefore the vibrations may need
to be reduced. Vibrations can be reduced by improving the
properties of concrete slabs or by using new technologies,
such as the use of piezoelectric materials. Concrete
foundation can be modified by being mixed with nano
material in order to increase its stiffness. In this subject, it
can be mentioned a research on reducing building vibrations
through foundation improvement by Persson et al. (2016).

The vibration behavior of plates on elastic foundations
has attracted considerable attention in recent years. Lam et
al. (2000) used the Green’s functions to obtain canonical
exact solutions of elastic bending, buckling and vibration
for Levy plates resting on two-parameter elastic
foundations. Buczkowski and Torbacki (2001) presented a
finite element method for the thick plates on two-parameter
elastic foundation. By employing the Rayleigh-Ritz method,
the three dimensional vibration of rectangular thick plates
on elastic foundations was investigated by Zhou et al.
(2004). The free vibrations of simply supported rectangular
plates, resting on two different models of soils, were
considered by De Rosa and Lippiello (2009). Ferreira et al.
(2010) used the radial basis function collocation method to
study static deformation and free vibration of plates on
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Pasternak foundation. Nonlinear vibration analysis of
laminated plates resting on nonlinear two-parameters elastic
foundations was studied by Akgoz and Civalek (2011).
Kumar and Lal (2012) studied the vibration analysis of
nonhomogeneous orthotropic rectangular plates with
bilinear thickness variation resting on Winkler foundation.
Bahmyari and Khedmati (2013) considered the vibration
analysis of nonhomogeneous moderately thick plates with
point supports resting on Pasternak elastic foundation using
element free Galerkin method. Vibrational analysis of
advanced composite plates resting on elastic foundation was
studied by Mantari et al. (2014). They derived the
governing equations of a type of functionally graded plates
resting on elastic foundation by employing the Hamilton’s
principal. An original first shear deformation theory to
study advanced composites on elastic foundation was
presented by Mantari and Granados (2016). Ugurlu (2016)
analyzed the vibration of elastic bottom plates of fluid
storage tanks resting on Pasternak foundation based on
boundary element method. Bounouara et al. (2016)
investigated a nonlocal zeroth-order shear deformation
theory for free vibration of functionally graded nanoscale
plates resting on elastic foundation. Also, a dimensionless
parametric study for forced vibrations of foundation-soil
systems was done by Chen et al. (2016a). A non-polynomial
four variable refined plate theory for free vibration of
functionally graded thick rectangular plates on elastic
foundation was investigated by Meftah et al. (2017).

None of the above researchers have considered piezo-
based nano-composite structures. Mechanical analysis of
nanostructures has been reported by many researchers
(Zemri et al. 2015, Larbi Chaht et al. 2015, Belkorissat et
al. 2015, Ahouel et al. 2016, Bounouara et al. 2016,
Bouafia et al. 2017, Besseghier et al. 2017, Bellifa et al.
2017, Mouffoki et al. 2017, Khetir et al. 2017). In recent
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years, theoretical and experimental studies have been
conducted on nano-composites subjected to electric field.
Static analysis of FG-CNT reinforced composite plate
imbedded in piezoelectric layers with three cases of CNT
distribution based on three-dimensional theory was
discussed by Alibeigloo (2013). Piezo-based wireless sensor
network for early-age concrete strength monitoring is
planned by Chen et al. (2016b). Van Thu and Duc (2016)
presented an analytical approach to investigate the non-
linear dynamic response and vibration of an imperfect
three-phase laminated nanocomposite cylindrical panel
resting on elastic foundations in thermal environments.
Sasmal et al. (2017) investigated electrical conductivity and
piezo-resistive  characteristics of CNT and CNF
incorporated cementitious nanocomposites under static and
dynamic loading. In magneto-electro-elastic (MEE)
composite materials a coupling between mechanical,
electric and magnetic fields results in the ability to
exchange energy among these three energy forms. These
materials have direct application in sensors and actuators,
damping and control of vibrations in structures. Xue et al.
(2011) studied the large deflection of a rectangular MEE
thin plate for the first time based on the classical plate
theory. Li and Zhang (2014) investigated the free vibration
of a MEE plate resting on a Pasternak foundation by using
the Mindlin theory. Large amplitude free vibration of
symmetrically laminated magneto-electro-elastic
rectangular plates on Pasternak type foundation was
investigated by Shooshtari and Razavi (2015). Ebrahimi et
al. (2017) proposed a four-variable shear deformation
refined plate theory for free vibration analysis of embedded
smart plates made of porous magneto-electro-elastic
functionally graded (MEE-FG) materials resting on elastic
foundations. Duc et al. (2017a, b, ¢) studied thermal and
mechanical stability of a functionally graded composite
truncated conical shell, plates and double curved shallow
shells reinforced by carbon nanotube fibers. Based on
Reddy’s third-order shear deformation plate theory, the
nonlinear dynamic response and vibration of imperfect
functionally graded carbon nanotube-reinforced composite
plates was analyzed by Thanh et al. (2017). Duc et al.
(2018) presented the first analytical approach to investigate
the nonlinear dynamic response and vibration of imperfect
rectangular nanocompsite multilayer organic solar cell
subjected to mechanical loads using the classical plate
theory.

Furthermore, the mechanical behavior of concrete
structures containing nanoparticles has been investigated
experimentally by a number of researchers, but there is little
mathematical control in this field. Nirmala and
Dhanalakshmi  (2015) studied the Influence of nano
materials in the distressed retaining structure for crack
filling. The influences of nanoparticles on dynamic strength
of ultra-high performance concrete was tested by Su et al.
(2016). Fathi et al. (2017) investigated the Mechanical and
physical properties of expanded polystyrene structural
concretes containing Micro-silica and Nano-silica. In the
field of mathematical modeling of concrete structures,
Jafarian Arani and Kolahchi (2016) studied the buckling
analysis of concrete columns reinforced with carbon

nanotubes by using Euler-Bernoulli and Timoshenko beam
models. Zamanian et al. (2017) investigated the nonlinear
buckling of a concrete column reinforced with SiO,
nanoparticles. Also, Arbabi et al. (2017) explored the
buckling of concrete columns reinforced with Zinc Oxide
nanoparticles subjected to electric field.

To the best of the authors’ knowledge, the effects of
using nano particles and piezoelectric layer on the vibration
of concrete foundations have not been investigated. So, this
study is done to fill the gap in this area. The purpose of this
paper is to study the free vibration smart control of concrete
foundation reinforced by SiO, nanoparticles embedded in
soli medium. The structure is covered by a piezoelectric
layer subjected to external voltage. In order to obtain the
equivalent material properties of nanocomposite structure,
the Mori-Tanaka model is used. Applying first order shear
deformation theory (FSDT), the motion equations are
achieved based on Hamilton’s principal. Navier method is
applied for obtaining the frequency of the system. The
effects of applied voltage, volume percent and
agglomeration of SiO, nanoparticles, soil medium and
geometrical parameters of structure on the frequency of
system are disused in detail.

2. Mathematical model

As shown in Fig. 1, a concrete foundation reinforced
with SiO, nanoparticles and covered by piezoelectric layer
with length L, width b, concrete thickness h and
piezoelectric layer thickness hp is considered.

2.1 FSDT theory

There are many new theories for modeling of different
structures. Some of the new theories have been used by
Tounsi and co-authors (Bessaim et al. 2013, Bouderba et al.
2013, 2016, Belabed et al. 2014, Zidi et al. 2014, Bourada
et al. 2015, Bousahla et al. 2016, Beldjelili et al. 2016,
Boukhari et al. 2016, Draiche et al. 2016, Attia et al. 2015,
Mahi et al. 2015, Bennoun et al. 2016, El-Haina et al. 2017,
Menasria et al. 2017, Chikh et al. 2017, Henderson et al.
2018, Sanada 2018, Stelson 2018).

Based on FSDT shell theory, the displacement field can
be expressed as (Reddy 2002)

u(x6,z,t)=u(x 6,t)+z4 (x6,t), (1a)
v(x,0,2,t)=v(X,0,t)+24,(X,0,t), (1b)
w(x,6,z,t)=w(x,6,t), (1c)

where (u (x, 6, z, t), v(x, 6, z, t), w(x, 6, z, t)) denote the
displacement components at an arbitrary point (x, €, z) in
the shell, and (u (x, 6, t), v(x, 6, t), w(x, 6, t)) are the
displacement of a material point at (x, ) on the mid-plane
(i.e., z = 0) of the shell along the x-, 8-, and z-directions,
respectively; ¢, and ¢, are the rotations of the normal to the
mid-plane about x- and 6- directions, respectively. Based on
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Fig. 1 A schematic figure for concrete foundation with piezoelectric layers reinforced with SiO, nanoparticles

above relations, the strain-displacement equations may be
written as

g = ou _ 04, , (22)

OX OX
369:;(W+§;j+;aa%, (2b)
o LT
Ve = & +%’(V, (2d)
V0 :;(z\g—vJ+¢g. (2¢)

where (e« €9) are the normal strain components and (g,
Yxz» Vxo) @re the shear strain components.

2.2 Constitutive equations of piezoelectric material

In a piezoelectric material, application of an electric
field to it will cause a strain proportional to the mechanical
field strength, and vice versa. The constitutive equation for
stresses ¢ and strains ¢ matrix on the mechanical side, as
well as flux density D and field strength E matrix on the
electrostatic side, may be arbitrarily combined as follows
(Kolahchi et al. 2016)

[ [C, Cp Cy 0 0 O [e]) [0 0 &
% | (Cu Ca Cp 00 0N |0 0 ey
0, C, Ch 0 0 01lell]0 0 el "
_ 13 23 kX _ kK] Ey (3)

B |00 0 G 0 00 e 0]
r 10 0 0 0 Cy 0fln|lles 0 0"
o | L0 0 0 00 Cyf )] Lo 0 0

gXX

EW
D [0 0 0 0 & 0" [ 0 0]
D,[={0 0 0 e 00 y“ +H0 e, 0HE ¢+ (4)
D, | [ey & & 0 00 " 0 0 &l

Tx

}/xy

where oy, &;, Dii and E; are stress, strain, electric
displacement and electric field, respectively. Also, Cj;, e;
and €; denote elastic, piezoelectric and dielectric
coefficients, respectively. Noted that Cj; and ayy, g9 may be
obtained using Mori-Tanaka model (Mori and Tanaka
1973). The electric field in terms of electric potential (D) is
expressed as

E, =-VO, (5)

where, the electric potential is assumed as the combination
of a half-cosine and linear variation, which satisfies the
Maxwell equation. It can be written as (Kolahchi et al.
2016)

O(x,y,z,t) = (6)

where ¢ (x, 6, t) is the time and spatial distribution of the
electric potential which must satisfy the electric boundary
conditions, Vy is external electric voltage.

However, using Eqg. (1), the governing equations of
piezoelectric material (i.e., Egs. (3) and (4)) for FSDT may
be written as

|

T 2\/
ay"y =Cp,e, +Cpe, +e32( sm[hj hJ (8)

:\g

T
P _
o, =C&, +Clzgyy +€, ( sm(hj

0
5, =CLy, —€ (cos( " ja;oj 9)
0
z-><pz :C5572x [COS( h jaij (10)
Ty =Cesliy (11)

T

h

Z\0
D, =€,7, *+€x (Cos(ﬁh)a;pj, (13)

(12)

N
Ne—
28
;__/

D, =€/, +teu (COS(
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A

T . )
D, =e,&, +€58,, — €53 (hsm(h)gw—ho} (14)

For the concrete foundation, with neglecting the
piezoelectric properties we have

T =Quéi +Q12‘9yy’ (15)
oy =Qun +Qu8,,, (16)
7 =Qulye (17)
T =Qss¥ (18)
Ty = Qeely (19)

2.3 Mori-Tanaka Model and agglomeration effects

In this section, the effective modulus of the concrete
foundation reinforced by SiO, nanoparticles is developed.
Different methods are available to obtain the average
properties of a composite. Due to its simplicity and
accuracy even at high volume fractions of the inclusions,
the Mori-Tanaka method is employed in this section. The
matrix is assumed to be isotropic and elastic, with the
Young’s modulus E,, and the Poisson’s ratio vy The
constitutive relations for a layer of the composite with the
principal axes parallel to the r, 6 and z directions are (Mori
and Tanaka 1973)

oy] [k+m I k-m 0 0 0]fey
O, I n I 0 0 0flg,
O | _ k-m | k+m 0 0 0]|é&y, (20)
O 0 PO 0\ry
O13 0 0 m 0}rs
O 0 0 0 pjlre

where gy, ¢ij, v, kK, M, N, 1, p are the stress components, the
strain components and the stiffness coefficients
respectively. According to the Mori-Tanaka method the
stiffness coefficients are given by

_ E {E.C, + 2K, (L+v,)[L+c, (1-2v, )T}
2(+v, )[E, (A+c, —2v, )+ 2k, (1-v, —2v2)]
_E fenvalE, 42k Ly, )]+ 2 LV}
C(+v,)[E, (1+c, —2v, )+ 2, k, (1-v, —2v2)]
oo EZc, (L+c, —c,v,)+2,c, (k,n, —15)1+v, ) (1-2v,)
L+v,)IE, @+c, —-2v, )+ Kk, 1-v, —2V§])]
+Em[ZCjkr(l—vm)+c,n,(1+cr ~2v.)-4c. 1 v, ]
E,(@+c, -2v, )+ k, (1-v, —2v%)
__ En[EnCy +2p, (A+v,)A+c,)]
P v E. @+c)+2c p, A+v. )]
m - E,[E,C,+2m (1+v,)@3+c, —4v,)]
2(1+v, HE, [c, +4c, (1-v, )]+ 2, m (3-v, -4}

(21)

where the subscripts m and r stand for matrix and
reinforcement respectively. C, and C, are the volume
fractions of the matrix and the nanoparticles respectively
and ki, I, n;, p,, m, are the Hills elastic modulus for the
nanoparticles (Mori and Tanaka 1973). The experimental
results show that the assumption of uniform dispersion for
nanoparticles in the matrix is not correct and the most of
nanoparticles are bent and centralized in one area of the
matrix. These regions with concentrated nanoparticles are
assumed to have spherical shapes, and are considered as
“inclusions” with different elastic properties from the
surrounding material. The total volume V, of nanoparticles
can be divided into the following two parts (Shi and Feng
2004)

Vr :Vrinclusion +Vrm (22)
where inclusion and Y™ are the volumes of nanoparticles
dispersed in the spherical inclusions and in the matrix,
respectively. Introduce two parameters & and ¢ describe the
agglomeration of nanoparticles

V..

gz mil/usmn’ (23)
Vinclusion

¢= rv (24)

r
However, the average volume fraction c, of nano-
particles in the composite is

C, =-t. (25)

Assume that all the orientations of the nanoparticles are
completely random. Hence, the effective bulk modulus (K)
and effective shear modulus (G) may be written as

5[ KKin _1]
K=K,|1+ out , (26)
1+a(1—.§)[KK"‘—1]
é[gin _1}
G =G, |1+ = : 27)
1+,B(1—§)[§“‘—1]

where

_ (5r _Sszr)Créj
=3 can) 9)

Cr (5r _SKer)(l_g)
K, =K, ,
" +3[1—f§—c:r (1-¢)+Cr, (1-¢)] (29)
Gin _ Gm 4 (nr _SGmﬂr )Crg ’
2(5 _Cré/ +Cr§ﬂr)

(30)
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G Gl

G
oo 2[1 £-C,(1-¢)+C.B.(1- g)]

where yy, By, or, #r may be calculated as

_3(Km+Gm)+kr_|r 3
T 5 +6,) (32
m+2k +1, fy 4G,
3(k;+Gn) (P, +Gy)
2[G, (3K, +G,)+G,, (3K, +7G,)][’ (33)
+
Gm(3Km+Gm) m, (3K, +7G,,)
1 (2k, -1.)(3K, +2G, -1,)
5 —— 2| r r m m r ,
r |:nr+ r+ kr—‘er (34)
1|2 4G p
== Z(n =1 _mbr
77r 5|:3(nr r)—i_(pr +Gm)
m, (3K, +4G,,)
(35)

T3, (m, 4G, )+G, (Tm, +G, )

L2k -1)(28, +|,)}_

3(k, +G,)

where, K, and G,, are the bulk and shear moduli of the
matrix which can be written as

E
K :—m1
" 3(1-20,) (36)
E
G =—"—.
" 21+, 37)
Furthermore, 3, a. can be obtained from
(14 Vg )
“ T3 vy (38)
2(4-50,)
P15 0,,)" (39)
o _ 3Ky —2G,, 20
6K, +2G,, (40)

out

Finally, the elastic modulus (E) and poison’s ratio (v)
can be calculated as

E-_KG (41)
3K+G

3K -2G
CBK+2G’

(42)

2.4 Energy method

The total potential energy, V, of the system is the sum of
potential energy, U, kinetic energy, K, and the work done by
the elastic medium, W.

2.4.1 Potential energy
The potential energy can be written as

Ol + Oy &y +T0 Y TT3 7y + T Yy
1
U :E.[ +O-XX XX +O-YV yy +sz7/xz +Tyz7/yz dv , (43)

-D,E, -D,E, -D,E,

xy}/xy

Combining of Egs. (1), (7)-(14) and (43) yields

1% o o,
]

+| N @+M a¢V}+QX(¢X+aWj

yy 6y yy ay 6X
+N, ﬂ+a—u +M, ¢ ¢, Rxdy
Ylox oy Yl ox oy

(44)
oW hi2+h, 27
+QY {ay-ué } Ih/z .[ .[
7z \O@ op
-D, {cos(hjax} -D [cos( . jay}

-D, {_Zsin (”Z j(p - 2\/T}}dxdydz

where the stress resultant-displacement relations can be
written as

C
XX % Gxx %+hp O-xx
_ c p
w [~ J Oy Z+ J Oyy z (45)
h h
w) 2|7y 2 |7,
h h
2 (48 2" (10
Qx ' sz ' Xz
=k J . (dz +k z, (46)
0 Th [Ty L
2 2
c P
M XX % O %+hp Oyx
_ c P
My, ¢= J oy, 20z + j oy, 24z, (47)
h h
_— C had p
M Xy 2 | Ty 2 Ty

In which k' is shear correction coefficient. Substituting
Egs. (1) and (7)-(14) into Egs. (45)-(47), the stress
resultant-displacement relations can be obtained as follow

(48)

111 GX

ou 09, ov 0¢
Ny =Ay— A £+A1207+A1217Y+E31¢1
ox oy oy
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ou 04, o 0
N W :A1206X+A1216i+A2208y+A221 +Ey0,
. oW
QV:kA“{ay-wﬁy}rEﬁ ,
ow op
=k A + +E,,—,
Qx (ax ¢xj 24 X
0
Ny = Asco 87u+ﬂ +Agey %"'i '
oy oX oy OXx
ou 0f, ov of
M,, = A111&+A112 aﬁ 1215+A1227y+ Fa0,
ou 09, ov 09,
M w A12167+A122 £+A2218y+A222 7y+ F32¢1
M, =As 6_u+@ + A, a¢ a%
Y oy oXx oy "X
Where
v hi2+h,
j Quz'dz+[ "Cuz'd k=0,1,2
h/2+h,
= Quztdz+ [ "Cztdz, k=012
I sz kd +J‘h/2+h dz , K= 0’ 1, 2
h/2+h,
j Qg2 "z +j "Ce2dz,  k=0,1,2
hi2 h/2+h,
A :J.—hle““dz +-[—h/2 C.z,

hi2 h/2+h, 'c d
Z 1
.[ hi2 Qss0z .[7 hi2 55

hr2
(E31’E ) Ejh/z(eﬂ’e

)sin(izjdz,

(E, Ep)= J'lz( 4:615)00{ A jdz

(Fsl,F

2.4.2 Kinetic energy

hi2 . z
)= 7; I - (E31,85)sin (7;) 2dz,

The Kkinetic energy of system may be written as

S o [(ERES

o4,

Zi

ot

(49)

(50)

(51)

(52)

(53)

(54)

(55)

(56)

(57)

(58)

(59)

(60)

(61)

(62)

(63)

(64)

e
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Defining the moments of inertia as below

I ¢ P
LA hizehy |
1 —Lﬂz P’z |dz +.[h pPz |dz, (66)
| ) pCZ 2 ppz 2

the kinetic energy may be written as
1 auY (av) (owY
K== i ha =
ZJ["’[[atj +(at) +(atj
0 2 ?
+1, 6_u%+zﬂﬂ +1, %, + % dA,
ot ot ot ot

ot ot
2.4.3 External works
The external work due to soil medium can be written as
(Bowles 1988)

(67)

2z

W, j —K,w )dxdy, (68)
0

o‘—.l-

where K, is Winkler’s spring modulus. In addition, the in-
plane forces may be written as

Lol oo (WY o (ow Y
Wf :—EI|:N XX (&j +Nyy (aj :ldxdy (69)

where

Nl =NM+NE=NY+Ve,, (70)

N, =N} +NZ =N+ e, (72)

y
2.5 Motion equations

The governing equations can be derived by Hamilton’s
principal as follows

j; (U —SK — W, — N, )dt =0, (72)

Substituting Egs. (42), (67), (68) and (71) into Eq. (72)
yields the following governing equations

aN 2, 2
su: MNu | Ny :|06—‘j |l%, (73)
x oy ot ot
oN,_ ON AN . 04
VR VA P O ppn.c (74)
x oy ot ot
sy 0 Qv W
ox oy * ox?
ow ow (79)
NS KW =1,
oy at
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oM 8M A 62¢ 62u
M, M, . ¢4 N
5(Py X ay Qy |2 atz |18t2 ' (77)
op: J‘_hr:;{cos[—”z J X }{cos(—”z j Y }
h h ) oy (78)

Substituting Egs. (48) to (55) into Egs. (73) to (78), the
governing equations can be written as follow

U %, R o°g,
Ano 2 +Am ¢2 +A120 121
X x aya dy ox
dp o o 4, &Y
+ E3l& +A120 ox 6y + A121 ox ay 220 ay 2 (79)

o° 2
9, E326£=| o | 04

Ay — oz g
o 0 o ol

A120 A121 ¢ + Azzo A2 + A221 ¢2
ox oy ox oy oy oy

0 ou v o', 0
+E32 £ + Aeeo -2 |t AGGI ¢ + ; (80)
ay oyox ox oyox  ox

=l,—+I & ¢
at tot?
0
kAMPN ¢}+E 99 LKA, (82‘“’ a¢j (81)
oy’ oy *oy? X% ox
o) ou 0 ov 0
+E24 ox 2 AlZO P 121 a¢x Azzo [ayj_Azzlain (81)
. 0w . 0w ow
NXX72+Nyy wazloiz'
X oy? ot
2 2 82
A111;TUZ+A112 (ZX% +A121 (532\(,;+2\:(VJ+A122 3? + Fsl%?
u o 0 9, ow
+A661[ay2 ox 3}’] Aesz[aﬁ ox ay] kAss[ax ¢xj(82)
0 0
—E24§:I at¢2 1, 6t2 ,
FoRl o’ N ow 0°
AlZlm A122 ox gy Am[@y 2 + ayj + Azzz ay%
(83)
0 ou oV ¢, 09,
+F32 (0 A661 t=7 +A662 4 + Z
oy Oyox  OX Oyox  Ox

—k'AM{&W+¢y}—E156(p:I26¢2y+I162V2, (83)
ay oy ot ot

5 ~Ey [‘M +az""]+ u( “’] E24[67""+8¢]
X ox’ OX oy oy oy

_ (@ ou o,
RCP) [ay(ij +Ey & +Fy ai (84)

0
+E32(W +6VJ+ F32£—Eg3¢):0.
R oy oy

- z
(:11, .:22) = I_h/z(ell’ €, )COS2 (1) dz, (85)
- \_ T h2 . o 72
(.:433) _FI—hIZ(ESS)SIn (h) dZ. (86)

3. Solution procedure

Steady state solutions to the governing equations of the
system motion and the electric potential distribution which
relate to the simply supported boundary conditions and zero
electric potential along the edges of the surface electrodes
can be assumed as

u(x,y,t)=u cos(—)sm(m”y ', (87)
v(X,y,t)=v sm(T)cos(m;ry —Lye't, (88)
w(X,y,t)=w sm(T)sm(mgy — e’ (89)
4,00,Y,0) = v COs(T)SIn(Ee ,(90)
,00.Y.) =S cos(TR (@)
P06,y 1) =gpsin( ) cos(T e, (92)

Substituting Egs. (87)-(92) into Eqs. (79)-(84) yields

14

2

N

=0, (93)

4

i

5

b

K, K, Ky K
Ky Ky, Ky K
K3l K32 K33 K3
Ko K, Kg K
Ky K Kg K
Ka Ko Kg K

AXXXXRXN
AARXXXXAX

L Ne1 62 63 64 65 66 1| Po

where Kj; are defined in Appendix A. Finally, for calculating
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the frequency of the system (w), the determinant of matrix
in Eq. (93) should be equal to zero.

4. Numerical results and discussion

A computer program is prepared for the vibration smart
control solution of concrete foundation reinforced with SiO,
nanoparticles and piezoelectric layer. Here, poly vinilidene
fluride (PVDF) is selected for the piezoelectric layer with
the material properties of Table 1 (Kolahchi et al. 2016). In
addition, SiO, nanoparticles have Yong’s modulus of E, =
70 GPa and Poisson’s ratio of v, = 0.2.

4.1 Validation

In this paper, to validate the results, the frequency of the
structure is obtained by assuming the absence of soil
medium (K,, = 0). Therefore, all the mechanical properties
and type of loading are the same as Whitney (1987). So the
phw?a*

Do
in which Dy = E;h®/ (12 (1 — viuVp1)). The results are
compared with five references which have used different
solution method. The exact solution is used by Whitney
(1987) while discrete singular convolution approach is
applied by Secgin and Sarigul (2008). The numerical
solution method of Dai et al. (2004), Chen et al. (2003) and
Chow et al. (1992) are mesh-free, finite element and Ritz,
respectively. As it is observed in Table 2, the results of
present work are in accordance with the mentioned
references.

non-dimensional frequency is considered as Q =

4.2 Effects of different parameters

Fig. 2 illustrates the effect of the SiO, nanoparticles
volume fraction on the dimensionless frequency of structure

Table 1 Material properties of PVDF

Properties PVDF
Cu 238.24 (GPa)
(o 3.98 (GPa)
Cs 23.6 (GPa)
en -0.135 (C/m?)
e -0.145 (C/m?)
en 1.1e-8 (C%/Nm?)

Table 2 Validation of present work with the other references

Method Mode number
1 2 3 4
15.171 33.248 44.387 60.682

15.171 33.248 44.387 60.682

Whitney (1987)
Secgin and Sarigul (2008)

Dai et al. (2004) 1517 33.32 4451 60.78
Chen et al. (2003) 1518 3334 4451 60.78
Chow et al. (1992) 1519 33.31 4452  60.79

Present 15169 33.241 44382 60.674
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Fig. 2 Effects of SiO, nanoparticles volume percent on
the dimension frequency versus dimension
applied voltage external

(Q = wL/p,n/E,). It can be seen that with increasing the
values of SiO, nanoparticles volume fraction, the frequency
of the system is increased. This is due to the fact that the
increase of SiO, nanoparticles leads to a harder structure.
However, it may be concluded that using nanotechnology
for reinforce of concrete foundations has an important role
in improving the vibration behavior of system.

Fig. 3 shows the effect of SiO, nanoparticles
agglomeration on the dimensionless frequency of structure
versus external applied voltage. As can be seen, considering
agglomeration of SiO, nanoparticles leads to lower
frequency. It is due to this point that the agglomeration of
SiO, nanoparticles decreases the stability and homogeneity
of the structure.

The dimensionless frequency of the nano-composite
concrete foundation is demonstrated in Fig. 4 for different
soil mediums. In this figure, four cases of loose sand, dense
sand, Clayey medium dense sand and Clayey soil are
considered with the spring constants of Table 3. As can be
seen, considering soil medium increases the frequency of
the structure. It is due to the fact that considering soil
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Fig. 3 Effects of SiO, nanoparticles agglomeration on
the dimension frequency versus dimension
external applied voltage
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Table 3 Spring constants of soil mediums under concrete

foundation
Soil Ky (N/m?)
Loose sand 4800-16000
Dense sand 64000-128000

32000-80000
12000-24000

Clayey medium dense sand
Clayey soil
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medium leads to stiffer structure. Furthermore, the
frequency of the dense sand medium is higher than other
cases since the spring constant of this medium is maximum.

The effect of the length to thickness ratio of concrete
foundation on the dimensionless frequency of the system is
depicted in Fig. 5. As can be seen, the frequency of the
structure decreases with increasing the length to thickness
ratio. It is because increasing the length to thickness ratio
leads to softer structure.

Fig. 6 shows the dimensionless frequency of the
structure for different length to width ratio of the concrete
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Fig. 6 Effects of length to width ratio of concrete foundation
on the dimension frequency versus dimension
external applied voltage
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applied voltage
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Fig. 8 Effects of mode number on the dimension frequency
versus dimension external applied voltage

foundation. It can be also found that the frequency of the
structure decrease with increasing the length to width ratio
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which is due to the higher stiffness of system with lower
length to width ratio.

The effect of piezoelectric layer thickness on the
dimensionless frequency is shown in Fig. 7. It can be found
that with increasing the piezoelectric layer thickness, the
frequency of the structure is increased. It is because with
increasing the piezoelectric layer thickness, the stiffness of
the structure will be improved.

The effect of mode numbers on the dimensionless
frequency of system against external applied voltage is
plotted in Fig. 8. As can be seen, with increasing the mode
numbers, the frequency increases.

5. Conclusions

Vibration smart control of embedded concrete
foundations reinforced with SiO, nanoparticles and covered
with a piezoelectric layer subjected to external voltage was
the main contribution of the present paper. Mori-Tanaka
model is used for obtaining the effective material properties
of the structure considering agglomeration effects. The soil
medium was simulated by Winkler foundation. Based on
orthotropic FSDT, the motion equations were derived using
energy method and Hamilton’s principle. Exact solution is
applied for obtaining the frequency of system so that the
effects of the applied voltage, volume percent and
agglomeration of SiO, nanoparticles, soil medium and
geometrical parameters of concrete foundation were
considered. It can be seen that with increasing the values of
SiO, nanoparticles volume fraction, the frequency of the
system was increased. Considering agglomeration of SiO,
nanoparticles leads to lower frequency. It can be seen that
considering soil medium increases the frequency of the
structure. Furthermore, the frequency of the dense sand
medium was higher than other cases since the spring
constant of this medium was maximum. In addition, the
frequency of the structure decreases with increasing the
length to thickness ratio and length to width ratio of the
concrete foundation. It can be found that with increasing the
piezoelectric layer thickness, the frequency of the structure
was increased. Present results are in good agreement with
those reported by the other references. Finally, it is hoped
that the results presented in this paper would be helpful for
control and design of concrete foundations.
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