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1. Introduction 

 

Owing to various remarkable mechanical properties like 

high stiffness-to-weight ratio, high strength-to-weight ratio, 

high corrosion resistance, great fatigue properties, and 

tractability in design, composite materials have been 

broadly employed in many engineering applications such as 

automotive industries, civil infrastructures, and aerospace 

structures, especially in civil aircraft where structural 

components are required to be light and highly durable. For 

these applications, a beam is one of the types of structures 

which has been popularly used (Qatu 1992) such as aircraft 

wing, helicopter blade, wind turbine blade, robot arm, and 

space antenna. For example, the floor beams of Boeing 787 

are made of composite material, which is the first 

commercial airplane to use composite floor beams (Liu 

2016). Although possessing various exceptional properties 

and flexibility in design, it is not easy to design a composite 

structure which can totally exploit these advantages because 

of its complex mechanical behaviors. Therefore, setting up 

and solving design optimization problems of composite 

structures to find optimal solutions for different applications 

are really necessary and important. However, because of 
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complicated mechanical behaviors, the optimal design 

procedures of laminated composite structures are usually 

more challenging than those associated with isotropic 

material structures. 

In recent years, many works have been published for 

optimization of laminated composite structures. For 

example, the optimum design of laminated composite plates 

for maximizing the first natural frequency can be found in 
Refs. (Apalak et al. 2011, Sadr and Ghashochi Bargh 2012, 

Topal 2012, Apalak et al. 2013, Hwang et al. 2014), or 

those for maximizing the buckling load factor in Refs 

(Hajmohammad et al. 2013, Jing et al. 2015, Ho-Huu et al. 

2016), or those for minimizing the weight in Refs. (Cho 

2013, Liu and Paavola 2015, Fan et al. 2016, Vo-Duy et al. 

2017b), and or those for maximizing strain energy in Ref. 

(Le-Anh et al. 2015). The optimal design of laminated 

composite beams to minimize the free vibration frequency 

was found in Refs. (Roque et al. 2016, Tsiatas and 

Charalampakis 2017), or those to minimize the weight in 

Refs. (Liu 2015, 2016), or those to maximize the buckling 

load and minimize the weight at the same time in Ref. 

(Reguera and Cortínez 2016). So far, the literature review 

shows that most of the studies focus on the objectives of the 

fundamental frequency and buckling load factor; and the 

design variables are often only the fiber orientations which 

aim to enhance the stiffness of the structure. Nevertheless, 

the objective of minimizing the structural weight with 

design variables of thickness and fiber orientations at the 

same time to save material cost and apply for light 

structures is still somewhat limited. 
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Abstract.  A simple and efficient numerical optimization approach for the lightweight optimal design of composite laminated 

beams is presented in this paper. The proposed procedure is a combination between the finite element method (FEM) and a 

global optimization algorithm developed recently, namely Jaya. In the present procedure, the advantages of FEM and Jaya are 

exploited, where FEM is used to analyze the behavior of beam, and Jaya is modified and applied to solve formed optimization 

problems. In the optimization problems, the objective aims to minimize the overall weight of beam; and fiber volume fractions, 

thicknesses and fiber orientation angles of layers are selected as design variables. The constraints include the restriction on the 

first fundamental frequency and the boundaries of design variables. Several numerical examples with different design scenarios 

are executed. The influence of the design variable types and the boundary conditions of beam on the optimal results is 

investigated. Moreover, the performance of Jaya is compared with that of the well-known methods, viz. differential evolution 

(DE), genetic algorithm (GA), and particle swarm optimization (PSO). The obtained results reveal that the proposed approach is 

efficient and provides better solutions than those acquired by the compared methods. 
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Recently, a novel approach for the lightweight design 

optimization of laminated composite beams has been 

proposed by Liu (2015). Compared to the previous studies, 

besides conventional design variables such as fiber 

orientation and thickness of layers, Liu (2015) investigated 

a new kind of a design variable called fiber volume 

fractions of layers. Also, the constraint on the first natural 

frequency was also taken into account in the problem 

formulation. The obtained results indicated that the fiber 

volume fractions of layers were also potential candidates for 

the lightweight design of laminated composite structures. In 

fact, when the fiber volume fractions were considered as 

design variables, the overall weight of laminated composite 

structures could be reduced considerably. In this work, 

however, thicknesses of layers were not considered as 

design variables, whilst they directly link to the weight of 

the structures. Furthermore, this study also has two other 

drawbacks: (1) an analytical method is applied to analyze 

the behaviour of the laminated composite beam, which is 

often difficult for extending to structures with complicated 

boundary conditions; and (2) an linear programming based 

on linearly approximation of the objective and constraint 

functions is utilized to solve the design optimization 

problems, which is hard to obtain a good solution, and is 

also difficult to cope with discrete design variables or 

mixed discrete-continuous design variables. To overcome 

these limitations, Vo-Duy et al. (2017a) presented a new 

formulation with two objectives of the weight and 

frequency, which considers both the fiber volume fractions 

and thickness of layers as design candidates, and then the 

non-dominated sorting genetic algorithm II (NSGA-II) (Deb 

et al. 2002) was applied to solve the multi-objective 

optimization problems. Although this approach can offer a 

range of optimal solutions, it is still hard for engineering 

designers to choose a suitable one; while the single-

objective optimal design is a common approach to which 

engineering designers usually prefer. 

Motivated by the success of population-based 

optimization methods, Venkata Rao (2016), and Venkata 

Rao and Waghmare (2016) recently proposed a simple 

parameter-free algorithm, namely Jaya, which only requires 

common control parameters such as the population size, the 

number of generations and the elite size. Jaya is, therefore, 

comparatively simple to understand and implement by 

structural designers who are with less experience with 

algorithms. In the previous work by Venkata Rao (2016), 

Venkata Rao and Waghmare (2016), Jaya has been tested 

for both unconstrained and constrained benchmark 

problems. The computational results revealed that Jaya is 

competitive with or superior to the famous optimization 

algorithms in the literature such as differential evolution 

(DE) (Storn and Price 1997), particle swarm optimization 

(PSO) (Kennedy and Eberhart 1995), teaching -learning-

based optimization (TLBO) (Rao et al. 2011) and their 

variations. Although Jaya has been developed for several 

optimization problems, it has not been yet considered for 

the complex problems such as the lightweight design 

optimization of laminated composite beams subjected to 

frequency constraints. Moreover, it is originally proposed to 

deal with continuous variables. 

From the above considerations, this study aims to 

present a simple but efficient numerical procedure for the 

lightweight optimal design of the laminated composite 

beams with frequency constraints. To surmount the 

drawbacks of Liu (2015), in this work, the advantages of 

FEM and Jaya are exploited, where FEM is used to analyze 

the behavior of beam and Jaya is adjusted and applied to 

find the optimal solution of the optimization problems with 

mixed discrete-continuous design variables. In the 

optimization problem, the objective function is to minimize 

the overall weight of the laminated composite beam. The 

design variables are fiber volume fractions, thicknesses and 

fiber orientation angles of layers in which the former are 

continuous variables and the latter are discrete variables. 

The constraints consist of the frequency limitations, fiber 

volume fractions, thicknesses and fiber orientation angles of 

the layers. Some numerical examples with different design 

contexts are carried out, where the influence of various 

boundary conditions and the different types of design 

variables on the optimal results is also investigated. The 

reliability and robustness of the proposed approach are 

validated and evaluated by comparing the obtained results 

with those acquired by the well-known methods, differential 

evolution (DE) (Storn and Price 1997), genetic algorithm 

(GA) (Goldberg 1989), particle swarm optimization (PSO) 

(Kennedy and Eberhart 1995), and those available in the 

literature. 

The paper is structured as follows. Section 2 briefly 

provides FEM for the laminated composite beam. Section 3 

presents the formulation of the lightweight design problem 

of laminated composite beams with frequency constraints. 

Section 4 presents the Jaya algorithm. Numerical examples 

are executed in Section 5, and some conclusions are drawn 

in Section 6. 
 

 

2. Finite element method for laminated composite 
beam 
 

Let us consider a laminated composite beam with N 

layers as shown in Fig. 1. The beam has the length L, the 

width b, and the thickness h, and is coordinated by a global 

coordinate system Oxyz at the center, where the x-axis is in 

the longitudinal direction. In each layer, the fiber 

orientation angles are defined by θ(1), θ(2), θ(3),...., θ(N), the 

fiber volume fractions are denoted by 𝑟𝑓
1, 𝑟𝑓

2, … . , 𝑟𝑓
𝑁

 and 

vertical coordinates of layers are determined by z0, z1,...,  

zN-1, zN. 

By ignoring the bending of the beam on the yz-plane, the 
 

 

 

Fig. 1 The laminated composite beam 
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influence of shear deformation, and rotary inertia, the 

displacement field of the laminated composite beam 

obtained by applying Euler-Bernoulli beam theory is given 

as follows 

0

( , ) ( )

( , ) ( )

xu x z z x

w x z w x




 

(1) 

 

where u and w are, respectively, x-direction and z-direction 

displacements of the beam; βx is the rotation of the cross-

section, and is defined by 𝛽𝑥 =
𝜕𝑤

𝜕𝑥
;  and w0 is the z-

direction displacement of the neutral beam axis. 

From the relationship between the displacement and 

strain described by 𝜀𝑥 =
𝜕𝑢

𝜕𝑥
= 𝑧

𝜕2𝑤

𝜕𝑥2 , the stress-strain 

equations for an element of material in the kth lamina may 

be written as follows 
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where 𝐸1
(𝑘)

 and 𝐸2
(𝑘)

 are the longitudinal and transverse 

elastic moduli, respectively; 𝑣12
(𝑘)

 and 𝑣21
(𝑘)

 are the Poisson 

constants; 𝐺12
(𝑘)

 is the strain modulus. These parameters are 

computed by (Jones 1998, Liu 2015) 
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where Ef is the elastic modulus of fiber; Em is the modulus 

of the matrix; vf is the Poisson constant of fiber and vm is the 

Poisson constant of the matrix. 

By applying Hamilton’s principle, the governing 

equation for free vibration of the laminated composite beam 

can be gained as follows 
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(6) 

where ρ(k) is the mass density of the kth layer and 

determined by 
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where ρf and ρm are, respectively, the density of fiber and 

matrix. 

With the use of the finite element method, the overall 

system equations of motion can be obtained as follows 

 

0 Md Kd  (8) 

 

where d is the nodal displacement vector; 𝐝  is the second-

order derivative with respect to time of d; M and K are the 

global mass matrix and stiffness matrix, respectively, which 

are assembled from elemental stiffness matrix (Ke) and 

elemental mass matrix (Me), given by 
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where le is the length of the eth element, and D11 and I1 are 

defined by 
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From Eq. (8), the eigenvalue problem can be derived as 

follows 
2( ) 0  K M

 
(11) 

 

By solving this equation, the natural frequency (ω) and 

mode shape (ϕ) of the beam are obtained. The values of ω 

are then used for the formulation of the constraints of the 

optimization problems. 

 

 

3. Statement of the optimization problem 
 

As has mentioned above, the main objective of the study 

is to minimize the overall weight of the laminated 

composite beams with respect to the design variables of 

fiber volume fractions, thickness and fiber orientation 

angles of layers, where the fiber volume fractions are 

continuous, and thickness and fiber orientation angles are 

discrete. The optimization problem has a constraint function 

on the first frequency which must be larger than a 

predefined value by designers. The problem is 

mathematically formulated as follows 
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where weight(rf, t) and ω(rf, t, θ) are the weight and first 

frequency of the beam, respectively; rf, t, θ are the design 

variable vectors of fiber volume fractions 𝑟𝑓
(𝑘)

, thickness t(k) 

and fiber orientation angle θ(k) of layers, respectively; 

ρ(k)  𝑟𝑓
(𝑘)

  and Ak are the mass density and the area of the 

kth layer, respectively; ω1 is the lower bound of the first 

frequency; θD is the set of integer values of fiber angles in 

the range of [-90,90]; tD is the set of discrete value of 

thickness which is defined by manufacturer or designer; N 

is the total number of layers; and 𝑟𝑓
max  is the maximum of 

rf in a lamina. In manufacturing, it should be noted that the 

maximum value of rf depends on the fiber arrangement in 

the matrix. As mentioned in Refs. (Robert M. Jones 1998; 

Altenbach et al. 2004), the value of 𝑟𝑓
max  can be either 

0.7854 if the fiber is arranged as a hexagonal array (Fig. 

2(a)) or 0.9069 if the fiber is arranged as a square array 

(Fig. 2(b)). 

It should be noted in the formulated problem in Eq. (12) 

that although the fiber orientation angles do not directly 

influence on the objective function, they still have impacts 

on the frequency constraint. In fact, the change of the fiber 

orientations will lead to the change in the frequency 

behavior of beam. Thus, there may be some potential fiber 

orientation angles that can satisfy the constraint at the 

lowest weight of beam. 

In order to deal with the constraint in Eq. (12), the 

penalty function method is utilized in this study. It is 

determined as follows (Kaveh and Zolghadr 2014) 
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where gi(rf,t) is the frequency constraint of the optimization 

 

 

problem; the parameters 1 and 2 are scalars associated 

with the exploration and exploitation rate of the search 

space, respectively. In this study,  is selected to start from 

1.5 and then linearly increases to 6 (Kaveh and Zolghadr 

2014). 
 

 

4. Jaya algorithm 
 

Recently, Venkata Rao and Waghmare (2016) have 

proposed a variant of the teaching-learning-based 

optimization (TLBO) algorithm called Jaya. Unlike the 

traditional TLBO algorithm, Jaya is much simpler due to its 

two advantages: (1) using only one phase instead of two 

phases as the traditional TLBO algorithm; (2) requiring 

only common controlling parameters like the population 

size, and the number of generations. The effectiveness and 

robustness of the algorithm are demonstrated through 

unconstrained and constrained benchmark functions and 

constrained mechanical design problems. The obtained 

numerical results show that Jaya is superior to or 

competitive with other well-known optimization algorithms 

for the considered problems. Nevertheless, Jaya is only 

tested for benchmark functions and simple mechanical 

design problems. Moreover, it was originally created to 

solve continuous design variables. In present work, Jaya is, 

therefore, extended to handle the constrained optimization 

problem as presented in Section 3 with mixed discrete-

continuous design variables. The details of the Jaya 

algorithm are presented as follows. 
 

4.1 Algorithm 
 

Firstly, an initial population of N solutions is generated 

by mean of using randomly sampling from the design space. 

Each ith solution of the population is a vector containing D 

design variables xi = (x1, x2,...., xj,...., xD) and is generated 

by 
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j i j i j i j ix x rand x x i N j D     
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where 𝑥𝑗
𝑙  and 𝑥𝑗

𝑢  are the lower and upper bounds of xj, 

  

(a) (b) 

Fig. 2 Fiber arrangements: (a) Hexagonal array; (b) Square array 
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respectively; rand is a uniformly distributed random 

number in [0,1]; N is the population size and D is the 

number of design variables. 

Secondly, corresponding to each ith solution xi, a new 

solution ui is generated by using the information of the 

current solution xi, the best solution xbest, and the worst 

solution xworst of the population via operation 

 

   , , 1, ,best , 2, ,worst ,j i j i j j j i j j j iu x rand x x rand x x      
 

   , , 1, ,best , 2, ,worst ,j i j i j j j i j j j iu x rand x x rand x x      
 

(15) 

 

where rand1,j and rand2,j are the random numbers within 

[0,1]; |xj,i| is the absolute value of the solution xj,i. In Eq. 

(15), the component rand1,j × (xj,best ‒ |xj,i|) will have a trend 

to move the new solution closer to the best solution. While 

the component rand2,j × (xj,worst ‒ |xj,i|) will have a trend to 

move the solution far away from the worst solution. The 

random numbers rand1,j and rand2,j will guarantee a good 

exploration of the search space. 

After this phase, the jth components uj,i of the vector ui 

are reflected back to the allowable domain if their boundary 

constraints are violated. This procedure is conducted as 

follows 
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Finally, based on the value of the objective function, the 

vector ui is compared to the target vector xi. The better one 

having lower objective function value will survive to the 

next generation 

 

  if   ( ) ( )
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i i i
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f f
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u u x
x
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4.2 Handling discrete variables 
 

It should be noted that Jaya is originally proposed for 

the optimization problems with continuous design variables. 

Therefore, to cope with the mixed discrete-continuous 

design variables as stated in Section 3, a simple technique 

with a rounding function which permits to change the 

continuous value of a result to the discrete value is utilized 

in this paper. This technique is depicted as follows 

 
discrete continuous( )i iroundx x

 
(18) 

 

where round(x) is the function which rounds each 

element of x to the nearest permissible discrete value. By 

using this approach, after defining the population for the 

next generation, the thickness discrete design variables of 

all individuals in the population will be rounded to the 

nearest discrete values of the set tD by using Eq. (18). 

By combining between Section 4.1 and 4.2, the Jaya 

algorithm is briefly presented in Algorithm 1. 

Algorithm 1: Jaya algorithm 

1: Create the initial population 

2: Evaluate the fitness of each individual in the population 

3: while ( delta > tolerance and MaxIter is not reached ) do 

4:  for i =1 to NP do 

5:   Determine xbest, xworst 

6:   for j =1 to D do 

7:    if  xj,i is variable 𝑟𝑓
(𝑘)

 

8: 
    

   , , 1, ,best , 2, ,worst ,j i j i j j j i j j j iu x rand x x rand x x            

9:     elseif xj,i is variable θ(k) or t(k)
 

10: 
    

   , , 1, ,best , 2, ,worst ,j i j i j j j i j j j iu x rand x x rand x x        

11:        if xj,i is variable θ(k)
 

12:          
, , D( ) to setj i j iu round u θ  

13:        else 

14:          
, , D( ) tosetj i j iu round u t  

15:        end 

16:      end 

17:   end for 

18:   Evaluate the new solution ui 

19:   if f(ui) ≤ f(xi) 

20:      xi = ui 

21:   else 

22:      xi = xi 

23:   end 

24:  end for 

25:  Determine fbest, mean

1

1 N

i

i

f f
N 

  , and mean

best

1
f

delta
f

    

26: end while 

 
where tolerance is the allowed error; MaxIter is the 

maximum number of iterations. According to Algorithm 1, 

the Jaya algorithm will stop the searching progress either 

when the delta is less than or equal to the tolerance or when 

the maximum number of iterations MaxIter is achieved. 

 

 

5. Numerical example 
 

To assess the performance of the components of the 

proposed approach, this section is divided into four sub-

sections. The first section is to evaluate the accuracy of 

finite element method for free vibration analysis of 

laminated composite beams compared with analytical 

solutions. The second section is to study the optimal design 

problem of the laminated composite beams with one type of 

design variable, namely fiber volume fractions, as studied in 
Ref. (Liu 2015). The third section is to study the optimal 

design problem with two design variables consisting of 

fiber volume fractions and thickness of the layers. The last 

section is to investigate the optimization problems with all 

the three design variables at the same time as presented in 

Section 3. 

For all the considered problems, the beam structures 

previously studied by Liu (2015) are used. The geometric 

parameters of the laminated composite beam are given by: 

length L = 14.4 m, width b = 0.3 m and height h = 0.48 m. 

The beam has eight layers (N = 8), and all layers have the 

same material properties, i.e., the fiber materialEf = 294 

GPa, vf = 0.2, ρf = 1.81 g/cm3 and the matrix material Em = 

4.2 GPa, vm = 0.3, ρm = 1.24 g/cm3. The laminated 
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Table 1 Comparison of FEM solution ([00/900/450/450]s) 

BC Method 
Mode 

1 2 3 4 

H-H 

FEM 2862 45797 231876 733102 

Liu (2015) 2862 45795 231838 732722 

Error % 0 0.004 0.016 0.052 

C-C 

FEM 14708 111769 429645 1174653 

Liu (2015) 14708 111761 429514 1173680 

Error % 0 0.007 0.030 0.083 

C-F 

FEM 363 14266 111858 429633 

Liu (2015) 363 14266 111848 429503 

Error % 0 0.000 0.009 0.030 

C-H 

FEM 6985 73359 319398 934420 

Liu (2015) 6985 73355 319324 933803 

Error % 0 0.005 0.023 0.066 
 

 

 

composite beam has two kinds of fiber orientation angles 

which consist of [00/900/450/-450]S and [450/00/900/-450]S. It 

should be noted that these fiber orientations are fixed in the 

first three sections, while they are treated as design 

variables in the last section. The beam with four different 

boundary conditions (BC) is investigated, including hinged- 

hinged (H-H), clamped-clamped (C-C), clamped-free (C-F) 

and clamped-hinged (C-H). 

For all the optimization problems, the population size 

 

 

NP, tolerance, and MaxIter of Jaya are set to be 20, 10-6 and 

500, respectively. Since Jaya is a stochastic method, to 

evaluate its stability as well as effectiveness, five 

independent runs were performed, and the obtained results 

are statistical and compared to those gained by DE, GA, and 

PSO. 
 

5.1 Comparison of FEM solution 
 

The first four dimensionless frequencies of the angle-ply 

([00/900/450/450]s) obtained by FEM and the analytical 

method gained by Liu (2015) are provided in Table 1. The 

results in the table show that the FEM solutions agree well 

with the analytical results. 
 

5.2 Optimal design with only variable rf 
 

In these optimization problems, only the fiber volume 

fractions (rf) are taken as continuous design variables, while 

the thickness of the beam and the thickness of each layer 

are kept fixed at 40 mm and 5 mm, respectively. The 

problem was previously solved by Liu (2015) using linear 

programming. Moreover, it should also be noted that 

because the constraint on manufacturing process is not 

considered in Liu (2015), the upper bound of rf is always set 

to be 1. 

Tables 2 and 3 compare the optimal results of Jaya, DE, 

GA, PSO and the linear programming for the cases of 

[00/900/450/450]s and [450/00/900/-450]s beams, respectively. 

It can be seen that the best weights obtained by the present 

 

 
 

Table 2 Comparison of optimal results of the [00/900/450/450]s beam 

BC ω Method 
Fiber volume fractions (%) 

Weight (kg) NSA 
𝑟𝑓
 1 

 𝑟𝑓
 2 

 𝑟𝑓
 3 

 𝑟𝑓
 4 

 

H-H 

400 

DE 3.7 0 0 0 2582.276 5380 

GA 3.7 0 0 0 2582.335 5220 

PSO 3.7 0 0 0 2582.274 4820 

Jaya 3.7 0 0 0 2582.275 1180 

Liu (2015) 3.7 0 0 0 2582 - 

5652 

DE 52.9 100 0 0 3023.188 6260 

GA 100 0 0 0 2866.783 7480 

PSO 52.9 100 0 0 3023.209 10000 

Jaya 99.9 0 0 0 2866.335 1320 

Liu (2015) 90.1 0 100 0 3133 - 

C-C 

10000 

DE 29.2 0 0 0 2657.509 5900 

GA 29.2 0 0 0 2657.538 5220 

PSO 29.2 0 0 0 2657.508 4800 

Jaya 29.2 0 0 0 2657.509 1160 

Liu (2015) 29.2 0 0 0 2658 - 

28900 

DE 52.9 100 0 0 3023.116 6220 

GA 100 0 0 0 2866.781 7700 

PSO 91.9 97.2 0 0 3129.985 5300 

Jaya 99.8 0 0 0 2866.267 1180 

Liu (2015) 90.1 0 100 0 3133 - 
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Table 2 Continued 

BC ω Method 
Fiber volume fractions (%) 

Weight (kg) NSA 
𝑟𝑓
 1 

 𝑟𝑓
 2 

 𝑟𝑓
 3 

 𝑟𝑓
 4 

 

C-F 

400 

DE 50.7 0 0 0 2721.041 5580 

GA 50.7 0 0 0 2721.085 5220 

PSO 50.9 3.2 1.1 0.9 2737.062 4800 

Jaya 50.7 0 0 0 2721.042 1220 

Liu (2015) 50.7 0 0 0 2721 - 

729 

DE 55.5 100 0 0 3030.838 5180 

GA 55.5 100 0 0 3030.872 21840 

PSO 55.5 100 0 0 3030.988 10000 

Jaya 55.5 100 0 0 3030.839 1900 

Liu (2015) 92.9 0 100 0 3141 - 

C-H 

2500 

DE 13.7 0 0 0 2611.863 5620 

GA 13.7 0 0 0 2611.897 5220 

PSO 13.7 0 0 0 2611.861 5080 

Jaya 13.7 0 0 0 2611.862 1180 

Liu (2015) 13.7 0 0 0 2612 - 

13225 

DE 95.5 0 0 0 2853.415 5020 

GA 97.4 0 0 0 2859.110 16280 

PSO 99.6 0 0 0 2865.583 5100 

Jaya 95.5 0 0 0 2853.414 1420 

Liu (2015) 85.4 100 0 0 3119 - 
 

Table 3 Comparison of optimal results of the [450/00/900/-450]s beam 

BC ω Method 
Fiber volume fractions (%) 

Weight (kg) NSA 
𝑟𝑓
 1 

 𝑟𝑓
 2 

 𝑟𝑓
 3 

 𝑟𝑓
 4 

 

H-H 

400 

DE 0 7.3 0 0 2592.903 5100 

GA 0 7.3 0 0 2592.923 5220 

PSO 0 7.3 0 0 2592.902 4180 

Jaya 0 7.3 0 0 2592.903 1300 

Liu (2015) 0 7.3 0 0 2593 - 

3600 

DE 98.7 0 0 0 2862.908 4820 

GA 98.7 0 0 0 2862.973 8460 

PSO 98.7 0 0 0 2862.906 5000 

Jaya 98.7 0 0 0 2862.908 1520 

Liu (2015) 55.3 100 0 0 3030 - 

C-C 

10000 

DE 0 59.9 0 0 2748.408 5980 

GA 0.8 59.5 0 0 2749.567 5220 

PSO 0 59.9 0 0 2748.406 4960 

Jaya 0 59.9 0 0 2748.407 1320 

Liu (2015) 0 59.9 0 0 2748 - 

16900 

DE 98.3 0 0 0 2861.588 5020 

GA 98.5 0 0 0 2862.436 22240 

PSO 98.3 0 0 0 2861.587 5060 

Jaya 98.3 0 0 0 2861.588 1400 

Liu (2015) 28.1 100 0 0 2950 - 
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methods are equal or less than those obtained by Liu’s 

method. In addition, Jaya provides the smallest weights in 

comparison with DE, GA, PSO in some cases of boundary 

conditions and frequency constraints. For example, the best 

weights obtained by Jaya, DE, GA, PSO, and Liu’s method 

are, respectively, 2866.267 kg, 3023.116 kg, 2866.781 kg, 

3129.985 kg and 3133 kg for the case of the C-C beam 

([00/900/450/450]s) with the frequency constraint of 28900 

Hz. It is also noted from the results in the tables that the 

number of structural analyses (NSA) of Jaya is generally 
 

 

 
 

less than those of the compared methods. Convergence 

histories of Jaya, DE, GA, and PSO are presented in Figs. 3 

and 4. It can be seen that Jaya always converges much 

faster than DE, GA, and PSO. 

Table 4 provides statistical results of five independent 

runs of Jaya, DE, GA, and PSO for H-H laminated 

composite beams. The results show that Jaya and DE are 

more stable than GA and PSO. Furthermore, the best 

weights of these algorithms are mostly the same. 

Moreover,in all test cases, the average number of structural 
 

 

Table 3 Continued 

BC ω Method 
Fiber volume fractions (%) 

Weight (kg) NSA 
𝑟𝑓
 1 

 𝑟𝑓
 2 

 𝑟𝑓
 3 

 𝑟𝑓
 4 

 

C-F 

400 

DE 98 0 0 0 2860.862 5180 

GA 98 0 0 0 2860.918 9900 

PSO 98 0 0 0 2861.007 5040 

Jaya 98 0 0 0 2860.861 2220 

Liu (2015) 16 100 0 0 2914 - 

900 

DE 100 68.7 0 0 3069.627 5420 

GA 100 68.7 0 0 3069.656 15460 

PSO 100 91.2 96.4 5.1 3436.283 10000 

Jaya 100 68.7 0 0 3069.625 1960 

Liu (2015) 100 69 0 0 3070 - 

C-H 

2500 

DE 0 27.5 0 0 2652.45 6220 

GA 0.0 27.6 0 0 2652.950 11420 

PSO 0.0 27.5 0 0 2652.448 4420 

Jaya 0 27.5 0 0 2652.450 1440 

Liu (2015) 0 27 0 0 2652 - 

16900 

DE 100 60 0 0 3044.015 6660 

GA 100 64.6 0 0 3057.526 15100 

PSO 99.8 99.9 0.1 0 3161.820 5580 

Jaya 100 60 0 0 3044.014 2320 

Liu (2015) 100 60 0 0 3044 - 
 

  

(a) (b) 

Fig. 3 Convergence histories of DE, GA, PSO and Jaya for the hinged-hinged beam ([00/900/450/450]s): 

(a) frequency constraint of 400 Hz; (b) frequency constraint of 5652 Hz 

304



 

An efficient procedure for lightweight optimal design of composite laminated beams 

 
 

 

 

analyses (ANSA) of Jaya is much smaller than that of DE, 

GA, and PSO. This indicates that Jaya is more efficient than 

DE, GA, and PSO regarding computation cost. 

 

5.3 Optimal design with variables rf and t 
 

In this section, the optimization problems consider both 

the fiber volume fractions and the thicknesses of layers as 

design variables at the same time, in which the thickness of 

layers is selected from the set of {1,2,3,…,20} (unit: mm). 

Also, the constraint on manufacturing process is taken into 

account with fiber arrangements of hexagonal arrays, i.e., 

the upper bound of the fiber volume fractions is set to be 

0.9069. 

Tables 5 and 6 compare optimal results of the 

considered methods for the cases of [00/900/450/450]s beam 

 

 

 

 

and the [450/00/900/-450]s beam, respectively. In addition, 

the optimal weights obtained by Liu (2015) in the previous 

example are also provided to show the effectiveness of 

considering thicknesses as design variables. From the 

results, it can be seen that when the thicknesses are 

considered, the best weight of beams is considerably 

smaller while the frequency constraint is not violated. In 

particular, the best weight gained by this problem is around 

2785 kg, while that gained by Liu (2015) is 3133 kg for the 

C-C beam ([00/900/450/450]s) subjected to the frequency 

constraint of 28900 Hz. Also, the optimal weights acquired 

by Jaya and DE are almost the same and often better than 

those of GA and PSO. From Table 5, it is also recognized 

that there is still a case with the BC of C-H which the Jaya 

gives the worse result than DE and PSO. This helps remind 

that like most of the evolutionary methods, Jaya cannot 

  

(a) (b) 

Fig. 4 Convergence histories of DE, GA, PSO and Jaya for the hinged-hinged beam ([450/00/900/-450]s): 

(a) frequency constraint of 400 Hz; (b) frequency constraint of 3600 Hz 

Table 4 Statistical results of five independent runs of Jaya, DE, GA and PSO algorithms for hinged-hinged 

laminated composite beams 

Fiber orientation ω Method Best Worst Mean Std. ANSA 

[00/900/450/450]s 

400 

DE 2582.276 2582.282 2582.278 0.003 5076 

GA 2582.307 2582.351 2582.332 0.019 7348 

PSO 2582.274 2619.550 2590.998 16.195 5630 

Jaya 2582.275 2582.280 2582.277 0.002 1252 

5652 

DE 3023.188 3023.190 3023.189 0.001 6052 

GA 2866.370 3075.051 2971.645 98.072 13592 

PSO 3023.430 3338.630 3158.066 113.421 3158 

Jaya 2866.335 2866.336 2866.336 0.001 1188 

[450/00/900/-450]s 

400 

DE 2592.903 2592.907 2592.905 0.002 5756 

GA 2592.923 2600.474 2594.472 3.356 6804 

PSO 2592.902 2594.048 2593.189 0.488 4776 

Jaya 2592.903 2592.905 2592.904 0.001 1320 

3600 

DE 2862.908 2862.913 2862.910 0.002 4868 

GA 2862.973 3032.112 2910.809 73.901 9800 

PSO 2862.906 3044.289 2900.707 80.287 5988 

Jaya 2862.908 2862.909 2862.908 0.001 1804 
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always guarantee a better solution in all the cases. However, 

the NSA of Jaya is considerably less than that of DE, GA, 

and PSO. 
 

5.4 Optimal design with variables rf, t and  

 

This section performs the lightweight design optimiza-

tion as presented in Section 3. Besides the variables 

considered in section 5.4, the fiber orientations of layers are 

also taken as design variables which are integer values in 

the range of [-900, 900]. In addition, the upper bound of 

 

 

Table 5 Optimal results of the [00/900/450/450]s beam 

BC ω Method 
Fiber volume fractions (%) Thickness (cm) Weight 

(kg) 
NSA 

𝑟𝑓
 1 

 𝑟𝑓
 2 

 𝑟𝑓
 3 

 𝑟𝑓
 4 

 t(1)  t(2) t(3) t(4) 

H-H 

400 

DE 79.2 0 0 0 3 1 1 1 759.899 8660 

GA 73.4 0.1 0.1 0.3 2 1 3 1 822.623 4341 

PSO 83.7 0 87.5 0 3 1 1 1 809.498 4700 

Jaya 79.2 0 0 0 3 1 1 1 759.899 2240 

Liu (2015) 3.7 0 0 0 6 6 6 6 2582 - 

5652 

DE 86.9 0 0 0 10 6 1 5 2785.088 13660 

GA 87.0 0 0.1 0.2 10 10 1 1 2785.433 6021 

PSO 86.9 0 0 0.1 10 9 1 2 2785.275 4920 

Jaya 86.9 0 0 0 10 10 1 1 2785.088 2400 

Liu (2015) 90.1 0 100 0 6 6 6 6 3133 - 

C-C 

10000 

DE 85.4 0 0 0 6 2 1 4 1645.072 13500 

GA 82.1 0.9 4.0 1.9 7 3 2 1 1681.929 5001 

PSO 68.8 0 0 0 7 1 2 4 1737.184 4900 

Jaya 85.4 0 0 0 6 5 1 1 1645.072 2120 

Liu (2015) 29.2 0 0 0 6 6 6 6 2658 - 

28900 

DE 86.9 0 0 0 10 1 6 5 2784.983 12300 

GA 89.3 0.1 0.1 0 10 10 1 1 2797.368 4581 

PSO 76.5 0 0 0 8 11 1 5 2979.641 5180 

Jaya 86.9 0 0 0 10 2 9 1 2784.982 4240 

Liu (2015) 90.1 0 100 0 6 6 6 6 3133 - 

C-F 

400 

DE 83.9 0 0 0 7 4 2 4 2110.436 14420 

GA 87.4 1.0 0.6 12.7 7 1 8 1 2131.931 2901 

PSO 85.7 60.2 0 21.5 7 1 8 1 2156.897 4840 

Jaya 87.6 0 0 0 9 1 2 4 2102.344 3360 

Liu (2015) 50.7 0 0 0 6 6 6 6 2721 - 

729 

DE 89.3 0 0 0 10 7 4 1 2796.660 12900 

GA 89.3 0 0.3 1.2 10 10 1 1 2797.596 5401 

PSO 86.2 0 0 0 11 5 1 5 2824.010 5180 

Jaya 89.3 0 0 0 10 1 10 1 2796.661 3040 

Liu (2015) 92.9 0 100 0 6 6 6 6 3141 - 

C-H 

2500 

DE 78.7 0 0 0 4 3 1 2 1226.474 12140 

GA 78.8 0.1 0.3 0 4 1 4 1 1227.074 5181 

PSO 78.7 0 0 0.2 4 4 1 1 1226.584 4820 

Jaya 78.7 0 0 0 4 1 1 4 1226.474 2640 

Liu (2015) 13.7 0 0 0 6 6 6 6 2612 - 

13225 

DE 88.9 0 0 0 11 4 1 5 2731.515 12020 

GA 90.3 0 0.3 0 11 8 1 1 2739.422 3321 

PSO 88.9 0 0 0 11 7 1 2 2731.541 4840 

Jaya 86.9 0 0 0 9 10 2 1 2742.327 2500 

Liu (2015) 85.4 100 0 0 6 6 6 6 3119 - 
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fiber volume fractions is set to be 0.9069 with the fiber 

arrangements of hexagonal arrays. 

Table 7 presents the optimal results obtained Jaya, DE, 

GA and PSO. As can be seen in the table, the optimal 

 

 

weights acquired by Jaya and DE results are quite similar, 

which are much better than those obtained by GA and PSO. 

However, Jaya significantly outperforms DE, GA and PSO 

in terms of the computational cost. 

Table 6 Optimal results of the [450/00/900/-450]s beam 

BC ω Method 
Fiber volume fractions (%) Thickness (cm) Weight 

(kg) 
NSA 

𝑟𝑓
 1 

 𝑟𝑓
 2 

 𝑟𝑓
 3 

 𝑟𝑓
 4 

 t(1)  t(2) t(3) t(4) 

H-H 

400 

DE 9.4 90.7 0 0 1 3 2 1 888.589 10260 

GA 80.4 77.8 2.1 2.5 1 3 2 1 907.783 3761 

PSO 90.7 72.0 0.4 0 1 3 1 2 901.231 10000 

Jaya 9.4 90.7 0 0 1 3 1 2 888.588 2800 

Liu (2015) 0 7.3 0 0 6 6 6 6 2593 - 

3600 

DE 47.9 90.7 0 0 1 7 7 4 2371.817 12060 

GA 90.3 90.1 0.1 0 1 9 1 7 2372.178 8001 

PSO 1.3 87.4 0 0 1 8 8 2 2380.583 5160 

Jaya 47.9 90.7 0 0 1 7 1 10 2371.819 3340 

Liu (2015) 55.3 100 0 0 6 6 6 6 3030 - 

C-C 

10000 

DE 17.9 90.7 0 0 1 6 6 1 1776.719 10940 

GA 33.9 89.7 0.5 0.4 1 6 1 6 1782.953 3281 

PSO 0 87.3 0 0 1 7 1 5 1800.829 4940 

Jaya 17.9 90.7 0 0 1 6 1 6 1776.718 2360 

Liu (2015) 0 59.9 0 0 6 6 6 6 2748 - 

16900 

DE 53.9 90.7 0 0 1 7 1 9 2267.657 11140 

GA 2.6 84.9 1.4 0.1 1 9 1 7 2306.819 8821 

PSO 49.4 80.7 0 25.9 1 11 4 2 2415.329 10000 

Jaya 53.9 90.7 0 0 1 7 1 9 2267.656 2780 

Liu (2015) 28.1 100 0 0 6 6 6 6 2950 - 

C-F 

400 

DE 0 88.7 0 0 1 7 2 8 2234.372 12740 

GA 0.2 88.7 0 0 1 7 1 9 2234.519 10021 

PSO 57.0 81.1 11.5 0 1 8 1 8 2281.585 5600 

Jaya 0 88.7 0 0 1 7 1 9 2234.371 2640 

Liu (2015) 16 100 0 0 6 6 6 6 2914 - 

900 

DE 60.8 90.7 0 0 1 10 9 6 3262.121 14740 

GA 89.8 90.6 0.8 7.4 1 12 11 1 3265.688 1581 

PSO 78.6 86.8 73.6 3.2 1 13 1 11 3698.626 10000 

Jaya 60.8 90.7 0 0 1 10 1 14 3262.123 2700 

Liu (2015) 100 69 0 0 6 6 6 6 3070 - 

C-H 

2500 

DE 0 86.4 0 0 1 4 1 5 1348.796 11260 

GA 2.3 86.3 0.1 0.1 1 4 5 1 1350.126 8421 

PSO 0 78.5 0 0 1 5 3 2 1371.898 4960 

Jaya 0 86.4 0 0 1 4 5 1 1348.795 1960 

Liu (2015) 0 27 0 0 6 6 6 6 2652 - 

16900 

DE 90.7 89.8 0 0 1 11 12 1 3209.496 10100 

GA 36.3 88.1 6.7 85.0 1 18 5 1 3535.296 1801 

PSO 52.5 90.2 12.0 0.4 1 9 4 13 3878.647 10000 

Jaya 90.7 89.8 0 0 1 11 12 1 3209.495 5780 

Liu (2015) 100 60 0 0 6 6 6 6 3044 - 
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To evaluate the benefits of considering the fiber 

orientations as decision variables, Fig. 5 shows a 

comparison between three different design approaches. In a 

comparison of the obtained solutions in the two first 

approaches, it can be observed that those obtained by the 

fiber orientations of [00/900/450/450]s is better than that of 

[450/00/900/-450]s. This demonstrates that the change of the 

fiber orientations can help reduce the weight of beam. 

However, when this kind of variable is considered, the 

reduction of the weight is not too much significant, which 

may indicate that the fiber orientations of [00/900/450/450]s 

have already been quite close to an optimal solution. 

 

 

 

 

 

6. Conclusions 
 

In this paper, a simple and efficient numerical approach 

for the lightweight optimal design of laminated composite 

beams subjected to frequency constraints is developed. For 

the formulation of the optimization problem, the whole 

weight of the laminated composite beam is set to be the 

objective function, and the fiber volume fractions, the 

thicknesses and fiber orientation angles of layers are 

considered as the design variables, where the fiber volume 

fractions are continuous, while the thicknesses and fiber 

orientation angles of layers are discrete. The limitation on 

Table 7 Optimal results of the optimization problem with all the three variables 

BC ω Method 
Fiber volume fractions (%) Thickness (cm) Fiber orientation (°) 

Weight (kg) NSA 
𝑟𝑓
 1 

 𝑟𝑓
 2 

 𝑟𝑓
 3 

 𝑟𝑓
 4 

 t(1)  t(2) t(3) t(4) θ
(1)

 θ
(2)

 θ
(3)

 θ
(4)

 

H-H 400 

DE 90.7 25.0 0.0 0.0 2 1 1 2 0 0 68 -39 744.464 14940 

GA 79.3 0.0 0.0 0.0 3 1 1 1 1 -34 45 41 760.010 7181 

PSO 84.9 0.0 27.5 0.0 2 3 1 1 -14 88 -62 -87 847.106 5080 

Jaya 90.7 25.0 0.0 0.0 2 1 1 2 0 0 -17 -88 744.464 4620 

C-C 10000 

DE 90.7 23.8 0.0 0.0 5 1 1 6 0 0 -19 11 1627.803 16220 

GA 85.4 0.3 0.1 0.0 6 1 1 5 0 -11 6 34 1645.258 5241 

PSO 73.8 1.8 0.0 0.0 6 2 3 3 3 57 -13 -90 1719.773 5260 

Jaya 90.7 23.8 0.0 0.0 5 1 1 6 0 0 82 0 1627.803 3880 

C-F 400 

DE 90.4 0.0 0.0 0.0 8 1 1 6 0 71 -3 51 2070.317 19980 

GA 83.8 1.7 0.0 0.4 7 1 8 1 0 -16 -51 26 2111.438 5501 

PSO 90.7 9.1 0.0 31.7 5 5 5 3 1 -5 51 53 2220.979 6900 

Jaya 90.4 0.0 0.0 0.0 8 1 2 5 0 84 50 -90 2070.317 5060 

C-H 2500 

DE 90.7 13.0 0.0 0.0 3 1 1 5 0 0 19 -84 1211.746 15300 

GA 90.4 20.1 0.7 0.1 3 1 2 4 0 14 -53 -26 1215.650 3481 

PSO 72.6 32.6 0.0 0.0 5 1 2 2 0 -89 -45 -45 1266.302 4860 

Jaya 90.7 13.0 0.0 0.0 3 1 1 5 0 0 -19 -15 1211.746 4880 
 

 

Fig. 5 Comparison of the optimal results obtained by three different design approaches 
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the first frequency, fiber volume fractions, thicknesses and 

fiber orientations are set as constraints. For solving the 

optimal design problems, a global numerical procedure that 

is a combination of FEM and the Jaya algorithm is 

developed, where FEM is used to analyze the behavior of 

composite laminated beams and Jaya is modified and 

applied for searching the global optimal solution of the 

optimization problems with mixed discrete-continuous 

variables. The approach is then applied to solve the optimal 

design of laminated composite beam with different 

boundary conditions. A comparison between the present 

approach and the other existing approaches in the literature 

is made. The numerical results reveal that the proposed 

approach is efficient compared with the others in terms of 

both the quality of solution and computational cost. 

With the investigated advantages, Jaya is a promising 

method which can be extended to the optimization problems 

of different structures such as truss, frame, plate, and shell 

structures. Moreover, with a fast convergence rate, it is also 

a potential method to be applied to reliability-based design 

optimization problems, where the computational cost is still 

a major concern. 
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