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Abstract. In this paper, three-dimensional (3D) elasticity theory in conjunction with nonlocal strain gradient theory (NSGT) is
developed for mechanical analysis of anisotropic nanoparticles. The present model incorporates two scale coefficients to
examine the mechanical characteristics much accurately. All the elastic constants are considered and assumed to be the functions
of (r, 8, ¢), so all kind of anisotropic structures can be modeled. Moreover, all types of functionally graded spherical structures
can be investigated. To justify our model, our results for the radial vibration of spherical nanoparticles are compared with
experimental results available in the literature and great agreement is achieved. Next, several examples of the radial vibration
and wave propagation in spherical nanoparticles including nonlocal strain gradient parameters are presented for more than 10
different anisotropic nanoparticles. From the best knowledge of authors, it is the first time that 3D elasticity theory and NSGT
are used together with no approximation to derive the governing equations in the spherical coordinate. Moreover, up to now, the
NSGT has not been used for spherical anisotropic nanoparticles. It is also the first time that all the 36 elastic constants as
functions of (r, 6, ¢) are considered for anisotropic and functionally graded nanostructures including size effects. According to
the lack of any common approximations in the displacement field or in elastic constant, present theory can be assumed as a
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benchmark for future works.
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1. Introduction

Anisotropic materials are the property of being
directionally dependent, which refers to distinct properties
in different directions. Unlike isotropic materials that have
material properties identical in all directions, anisotropic
material’s physical and mechanical properties such as
(Young’s Modulus, conductivity, absorbance, tensile
strength, etc.) change with direction along the object. An
example of the anisotropic material is the light coming
through a polarizer. Another is composites and wood.
Anisotropic nanostructures have been employed in many
parts of nano-electro-mechanical systems (NEMSs, e.g.,
nanogenerator, nanoresonator, chemical sensors, light-
emitting diodes, etc.). Up to now, several types of
researches have been done on the anisotropic structures
(Hamidi et al. 2015, Bourada et al. 2016, Houari et al.
2016, Benahmed et al. 2017, Shahsavari et al. 2018b). To
refer, time-resolved experiments proposed by (Voisin et al.
2000), low-frequency Raman scattering by (Shukla and
Kumar, 2011) and ultrafast pump—probe spectroscopy
presented by (Ruijgrok et al. 2012). Also, (Mock et al.
2017) investigated the frequency dependence of four
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independent CdWO, Cartesian dielectric function tensor
elements by generalized spectroscopic ellipsometry within
mid-infrared and far-infrared spectral regions. Also, Single
crystal surfaces cut under different angles from a bulk
crystal, (010) and (001), were studied. A formula for the
Raman scattering intensity as a function of incoming and
outgoing polarization and the Raman tensor viewed through
birefringent crystal (calcite) was presented by (Grundmann
et al. 2016). Also, the authors discussed the general form of
the dielectric function of anisotropic crystals based on
individual dipole oscillators for phonon and electronic
resonance. In recent years, directional dependence in non-
isotropic structures has been also well studied theoretically
by several researchers. Wave steering effects in anisotropic
composite structures based on a finite element scheme was
presented by (Chronopoulos 2017). Also, a structure of
arbitrary anisotropy, layering, and geometric complexity
was modeled through Finite Elements coupled to a periodic
structure wave scheme. In addition, a generic approach for
efficiently computing the angular sensitivity of the wave
slowness for each wave type, direction and frequency was
presented. (Ziane et al. 2013) studied the free vibration of
anisotropic structures on the basis of first-order shear
deformation theory (FSDT). (Mousavi et al. 2016)
presented the analysis of centrosymmetric anisotropic plate
structures based on Reddy’s third-order shear deformable
plate theory with considering strain gradient elasticity.
Moreover, it was obtained that the gradient theory provides
the ability to include the size effects in anisotropic plate
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structures. Finally, analytical solutions were introduced for
the buckling and bending and of orthotropic Kirchhoff
plates. Vibration and buckling behavior of thick orthotropic
plates and laminates considering the simply supported
boundary conditions was investigated by (Srinivas and Rao
1970). Also, three-dimensional, linear, small deformation
theory of elasticity solution was examined for the vibration,
bending and buckling of thick orthotropic rectangular plates
and laminates considering simply supported boundary
conditions. In addition, all the nine elastic constants of
orthotropy are taken into account. Theories for composite,
multilayered, anisotropic plates and shells were investigated
by (Carrera 2002) including the complicating effects that
have been introduced by anisotropic behavior and layered
constructions.

Size effect is an interesting topic due to the current
applications in modern technology include a variety of
length scales from a few centimeters to a few nanometers
(Zbib and Aifantis 2003). The classical continuum theory
cannot model nanostructures including small size effect. So
different size-dependent theories, such as micropolar theory
(Eringen 1967), nonlocal elasticity theory (Eringen and
Edelen 1972), surface elasticity (Gurtin et al. 1998), strain
gradient theory (Aifantis 1999), the modified couples stress
theory (Yang et al. 2002) and the nonlocal strain gradient
theory (Askes and Aifantis 2009), were presented. In recent
years, nonlocal elasticity, strain gradient elasticity and
nonlocal strain gradient elasticity theories have been largely
used for the modeling of different nanostructures (Bagdatl
2015, Chaht et al. 2015, Zenkour and Abouelregal 2015, Li
et al. 2016a, Karami and Janghorban 2016, Sobhy 2017,
Ebrahimi and Barati 2017b, Shen et al. 2017, Simsek 2016,
Karami et al. 2017a, Shahsavari et al. 2017, 2018a,
Sahmani and Aghdam 2017, Shahsavari and Janghorban
2017, Li et al. 2017, Mehralian et al. 2017, Karami et al.
2018a, e, Jandaghian and Rahmani 2017).

It has been recently shown that nonlocal differential
elasticity based model maybe ill-posed. Of course, due to
the simplification of the nonlocal differential elasticity,
many works have been focused on the size-dependent
behaviors based on the nonlocal differential models. More
recently, it is shown that the nonlocal differential and
integral elasticity based models may be not equivalent to
each other. (Zhu and Li 2017d) presented a nonlocal
integral model to study the twisting static behaviors of
through-radius FG nanotubes via Eringen’s nonlocal
integral elasticity. The authors have shown that in
comparison to the widely-used nonlocal differential model
in the literature, the nonlocal integral model developed
there was self-consistent and well-posed. Longitudinal and
torsional dynamic problems for small-scaled rods were
modeled by utilizing an integral formula of two-phase
nonlocal theory by (Zhu and Li 2017b). Among the non-
continuum theories, the nonlocal strain gradient theory
proposed by (Askes and Aifantis 2009) is preferable to
considering the size effect as it involves two material length
parameters. (Askes and Aifantis 2011) presented different
formats of gradient elasticity and their capability in static
and dynamic applications. Moreover, it was observed that
the removal of singularities in statics and dynamics, as well

as the size-dependent mechanical response predicted by
gradient elasticity. Analysis of resonance frequencies of FG
micro and nanoplates based on the nonlocal elasticity and
strain gradient theory is performed by (Nami and
Janghorban 2014). They used nonlocal and strain gradient
theories separately, and concluded that these theories have
different mechanisms in analysis of nanoplates. (Li et al.
2015) investigated the wave propagation of FG nanobeams
based on the nonlocal strain gradient theory, in which the
stress accounts for not only the nonlocal elastic stress field
but also the strain gradients stress field. A size-dependent
Timoshenko beam model, which accounts for through-
thickness power-law variation of a two-constituent
functionally graded (FG) material, was derived in the
framework of the nonlocal strain gradient theory by (Li et
al. 2016b). The longitudinal dynamic problem of a size-
dependent elasticity rod was formulated by utilizing an
integral form of nonlocal strain gradient theory by (Zhu and
Li 2017c). In another study, a size-dependent integral
elasticity model was developed for a small-scaled rod in
tension based on the nonlocal strain gradient theory by (Zhu
and Li 2017a). (Karami et al. 2017b) investigated the in-
plane magnetic field effect on the wave propagation of
rectangular FG nanoplates based on a refined plate theory
and nonlocal strain gradient theory. Wave analysis of porous
FG nanoplates under in-plane magnetic field effect via
nonlocal strain gradient theory and second-order shear
deformation plate theory were studied by (Karami et al.
2018d). A size-dependent Euler—Bernoulli beam model was
formulated and devoted to investigating the scaling effect
on the post-buckling behaviors of (FG) nanobeams with the
von Karman geometric nonlinearity based on the nonlocal
strain gradient theory by (Li and Hu 2017). (Farajpour et al.
2016) proposed a higher-order nonlocal strain gradient plate
model for buckling of orthotropic nanoplates subjected to
thermal effect. Moreover, the effects of various scale
parameters together on the buckling behavior of graphene
sheets were presented in numerical results. (Ebrahimi and
Barati 2017a) studied the hygrothermal effects on vibration
characteristics of (FG) viscoelastic nanobeams embedded in
viscoelastic foundation based on nonlocal strain gradient
elasticity theory. That modeling of nanobeam was carried
out via a higher order refined beam theory. The governing
equations of nonlocal strain gradient viscoelastic nanobeam
were obtained by using Hamilton’s principle. More recently,
in order to demonstrate the effectiveness of the nonlocal
strain gradient theory in nanostructures analysis, (Karami et
al. 2018b) investigated the wave propagation of graphene
via a second-order shear deformation theory in conjunction
with nonlocal strain gradient theory. In their analysis, the
results have shown good agreement with the experimental
data, and in another study, (Karami et al. 2018c) studied the
hygrothermal wave propagation in viscoelastic graphene
under in-plane magnetic field based on nonlocal strain
gradient theory. The results for all wave numbers improved
by adding an extra nonlocal parameter into nonlocal strain
gradient theory.

In this paper, radial vibration and wave propagation of
anisotropic nanoparticles are investigated based on nonlocal
strain gradient elasticity theory and three dimensional
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elasticity theory. This comprehensive theory with no
approximation in displacements has the ability to study
different models such as size-dependent structures,
monoclinic and triclinic materials and multi-directional
functionally graded materials. Present theory has only two
length scale parameters which seem to be accurate and
somehow simple for various problems. In order to show the
accuracy of present model, our results for the radial
vibration of anisotropic nanoparticles are verified with
experimental results and great agreement is achieved.

2. Review of nonlocal strain gradient theory

It is well known that conventional nonlocal elasticity
considers long range interaction between atoms without
considering strain gradient influence. Developed nonlocal
strain gradient model (Lim et al. 2015) incorporates the
nonlocality of stress field as well as strain gradients by
assuming the stress field in the following form
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where Cjyq are the elastic constants, g, is the nonlocal
strain tensor, V€kzm is the strain gradient tensor, e,a and
eia are nonlocal parameters which regards the influence of
the nonlocal elastic stress field and | material characteristic
parameter (or strain gradient parameter) and introduces
the influence of higher order strain gradient stress field. The
nonlocal parameters e;a and ej;a in the above nonlocal
functions can be determined by matching the wave
dispersion relation from experimental data or atomic lattice
dynamics. When the nonlocal functions aq (X, X', €0a) and oy
(x, X', e;a) satisfy the developed conditions by Eringen, the
constitutive relation can be stated as
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The linear nonlocal differential operator which is written
as follows is applied to the both sides of Eg. (1), the
operator can be defined as

L, =1-(e,a)’v? fori=01 )

in above relation V? is the Laplacian operator in spherical
coordinate and can be defined as
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Now considering the terms of order O(V?) and
supposing e; = ey = e, the general constitutive relation in
EQ. (4) can be rewritten as
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3. Fundamental equations

According to 3D elasticity theory, the displacement
components in spherical coordinates (r, 8, ¢) and the time
can be expressed by (Sadd 2009)

u, =u,(r,6,¢1t)
U, =u,(r,0,4t) (8)
u,=u,(r,0,41)

Non-zero strains of the suggested model can be
expressed as follows
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Substituting above strains in Eq. (1), following relations
are achieved
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where nonlocal parameter 1 = (e,a)? and gradient parameter
n = I°. e is a material constant and a is the internal
characteristic length. The value of the coefficient e, depends
on the crystal structure in lattice dynamics and the nature of
the physics under investigation.

The spherical coordinate system is shown in Fig. 1, and
in spherical coordinates (r, 8, ) the equations of motion are
(Sadd 2009)
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Fig. 1 Spherical coordinate system
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where o, u, p and (F,, Fy F4) denote stress, displacement
components, density and body forces, respectively in the
spherical coordinate.

Generally, in spherical coordinates (r, 6, ¢) as
commonly used in physics: radial distance r, polar angle 6
(theta) and azimuthal angle ¢ (phi).

The governing equations of spherical anisotropic
nanoparticle in terms of displacements are obtained by
inserting Eqgs. (7) and (8) into Egs. (12)-(12) as follows
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where Xj; and Yj; are defined in the appendix.

The relations obtained above can be used for modeling
of all kind of anisotropic structures in spherical coordinate
such as trigonal, monoclinic, hexagonal and triclinic
materials. Moreover, these equations can support multi-
directional functionally graded materials including size
effects.

In the next section, after presenting a verification with
experimental results for spherical nanoparticles, numerical
results for the radial vibration and wave propagation of
more than 10 different anisotropic nanoparticles are shown
including nonlocal and gradient parameters.

=p

4. Results and discussions

One of the important applications in the wave
propagation analysis is the calculation of elastic constants
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Table 1 Material properties of different anisotropic nanoparticles (Teodosiu 1982, Ghavanloo and Fazelzadeh

2013), (Cy3= Cyp, C33=Cy)

. Chemical Density Elastic constants (GPa)
Material formula (kg/m®) Cy Co Cos Ca
Cubic crystallinity
Aluminium Al 2700 106.43 60.35 60.35 106.43
Argon Ar 1771 5.29 1.35 1.35 5.29
Carbon C 3515 1079 124 124 1079
Germanium Ge 5313 128.35 0.4823 0.4823 128.35
Gold Au 19283 192.44 162.98 162.98 192.44
Silicon Si 2331 165.78 63.94 63.94 165.78
Silver Ag 10500 123.99 93.67 93.67 123.99
Thorium Th 11700 75.30 48.90 48.90 75.30
Hexagonal crystallinity
Cadmium selenide CdSe 5655 83.55 39.30 45.16 70.46
Titanium Ti 4506 52.80 29.00 35.40 40.80
Zinc sulfide a—12nS 4090 139.60 45.50 58.50 123.40
Tetragonal crystallinity
Rutile TiO, 4260 483.95 149.57 177.96 271.43
Tin B—Sn 7265 88.00 37.40 58.50 72.00
Trigonal crystallinity
Hematite Fe,03 5240 227.30 15.42 54.64 242.43

for materials. In this paper, we can see the connection
between the wave propagation and the elastic constants. In
order to provide results for the wave propagation problem,
the elastic constants are considered as input information,
and the frequencies, as well as phase velocities, are outputs.
Also, MATLAB software is used to calculate the outputs. It
is worth noting that in the results, the natural frequencies of
anisotropic nanoparticles are given.

This section is devoted to explore the influence of
nonlocal parameter on the radial vibrational, and strain
gradient parameter on the wave propagation characteristic
of anisotropic nanoparticles. In order to simplify the
formulations, the components of displacements in the
spherical coordinates system can be defined as u = u(r, t)
which seems to be good approximation for the following
problems. The accuracy of this approximation will be
discussed in the following section with experimental results.
It is mentioned that the elastic constants of more than 10
different anisotropic nanoparticles such as (Aluminium,
Carbon, Thorium, Tin, Titanium, Zinc sulfide, Argon,
Cadmium selenide, Germanium, Gold, Rutile, Hematite,
Silicon, Silver) used in present paper are given in Table 1
which can be find here (Teodosiu 1982, Ghavanloo and
Fazelzadeh 2013).

4.1 Radial vibration of spherical nanoparticles
with considering nonlocal parameter

The radial vibration of several anisotropic spherical
nanoparticles in radial direction are studied in this section.
The nanoparticles are modeled as a solid sphere with radial
deformations as mentioned in the previous section. Our

formulations are also simplified by ignoring the gradient
parameter and considering just the nonlocality. To solve the
radial vibration of nanoparticles, it is assumed a harmonic
variation for the displacement with respect to the time,
which is common in many cases, as follow

u(r,t)=U (r)exp(iat) (17)

here w denotes the angular frequency defined by @ = 2xf.
Considering Eq. (17), the governing equations obtained in
the prior section and holding on mentioned above
approximations, we achieve to the following equation

2
Zrli +§%—L:+[%+iju =0 (18)
in which
B1 — C, +Ci3—Cy _chz _2C23 (19)
Cy—pu @
2 po’
Ve e 0

Eqg. (18) shows a Bessel equation which the general
solution of that defined by

U, :%[Apv (B,r)+AY, (B,r)] (21)
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Table 2 Fundamental radial frequencies for the anisotropic spherical nanoparticles

_ w (cm™)
Material lelnn;:e)ter Present Previous Reference
ea=0.0(nm) ea=0.1(nm) studies
Germanium (Ge) 3.38 40.3062 40.0940 40.25 Experimental 1
5.8 17.5555 17.5024 18.39 MD simulation 2
Gold (Au) 11.5 8.8541 8.8450 9.37 MD simulation 2
20.2 5.0407 5.0391 5.37 MD simulation 2
Silicon (Si) 6.8 34.5213 34.4152 34.90 Experimental 3
3.0 36.0835 35.7652 34.00 Experimental 4
Silver (Ag) 34 31.8384 31.5731 34.00 Exper?mental 4
4.0 27.0627 26.9035 27.60 Experimental
9.8 11.0460 11.0361 11.00 Experimental
Cadmium selenide (Cdse) 4.4 245273 24.4742 28.40 Experimental 6

(1) Ref: (Combe et al. 2007), (2) Ref: (Ng and Chang 2011), (3) Ref: (Saviot et al. 2004),
(4) Ref: (Mankad et al. 2012), (5) Ref: (Portales et al. 2001), (6) Ref: (Gupta et al. 2009)

in which A; and A, are unknown constants,
v =0.5,/1—4By, and J, and Y, denotes Bessel functions
of first and second kinds of order v, respectively. Note that
displacement need to remain finite at the center of
nanoparticle, hence we set A, = 0 in order to remove the
infinite value of Y,(B,7)/v/r when r = 0. Nevertheless,
the resultant equation is

U, =A, M (22)

AR

For the case of stress-free boundary condition, o, = 0 at
external radius R and therefore

ai :_Clz +C13U (R) (23)
or

r=R Cll R

Substituting resultant equation (Eg. (22)) into stress-free
boundary condition (Eq. (23)), the equation of frequency is
obtained as follow

Cll

‘]v (§)|:V _%+m:|_f‘]v+l(§):0 (24)

where & = B,r.

Solving Eq. (24), leads to natural frequencies of the
nanoparticle. It is important to note that in natural frequency
the lowest frequency belongs to the breathing mode which
is related to the characterization of the nanoparticles due to
the Raman spectroscopy.

To prove the accuracy of the suggested model, by
omitting the gradient parameter (), the numerical results
are verified with some reported experimental results for
spherical nanoparticles with cubic, hexagonal, tetragonal
and trigonal symmetric in Table 2. In this table, the
fundamental radial frequencies for five different
nanoparticles from low-frequency Raman spectra (Combe
et al. 2007, Saviot et al. 2004, Mankad et al. 2012, Portales
et al. 2001, Gupta et al. 2009) and molecular dynamics
(MD) simulation (Ng and Chang 2011) are tabulated. It can
be seen that the results obtained by the existing
methodology are in great agreement with the results
presented in the literature. From this table it is also found
that the nonlocality doesn’t have any important effect in this
example and can be neglected. After confirming the existing
solution, the present method is used to study the different
anisotropic nanoparticles.

In Table 3, radial vibration of nanoparticles with cubic
crystallinity is investigated at d = 10 nm. It is observable
that as nonlocal parameter increases, the value of frequency

Table 3 Vibration of four different nanoparticles versus variations of nonlocal parameters

Radial frequencies (THz)

Material €a=0.05(m) e@a=0.15(m) e@a=02(m) ea=0.25(m) epa=0.3(nm)
Cubic crystallinity
Aluminium 1.2239 12111 1.2016 1.1889 1.1761
Carbon 1.2680 1.2648 1.2616 1.2584 1.2552
Gold 0.3070 0.3056 0.3054 0.3038 0.3022
Silver 0.3234 0.3155 0.3075 0.2996 0.2992
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Table 4 The effects of gradient parameter and wave number on the wave frequency in spherical nanoparticles

(0 = wx 1013)
Wave frequency ( Rad/Sec)

Material k= 5x10° kr = 1x10°

1=0.0 1=05 1=1.0 1=0.0 1=05 1=1.0
Cubic crystallinity
Aluminium 0.3900 0.4049 0.4473 0.6738 0.7624 0.9848
Argon 0.1074 0.1112 0.1222 0.1855 0.2093 0.2693
Carbon 1.0884 1.1261 1.2349 1.8803 2.1186 2.7218
Germanium 0.3053 0.3165 0.3486 0.5275 0.5958 0.7678
Gold 0.1962 0.2042 0.2266 0.3390 0.3846 0.4985
Silicon 0.5239 0.5432 0.5983 0.9050 1.0223 1.3177
Silver 0.2135 0.2220 0.2459 0.3688 0.4180 0.5412
Thorium 0.1576 0.1637 0.1811 0.2723 0.3083 0.3986
Hexagonal crystallinity
Cadmium selenide 0.2265 0.2360 0.2627 0.3844 0.4420 0.5830
Titanium 0.1972 0.2060 0.2306 0.3307 0.3842 0.5128
Zinc sulfide 0.3505 0.3642 0.4032 0.5964 0.6813 0.8915
Tetragonal crystallinity
Rutile 0.5597 0.5885 0.6679 0.9105 1.0921 1.5118
Tin 0.2514 0.2584 0.2789 0.4382 0.4802 0.5914
Trigonal crystallinity

Hematite 0.4253 0.4388 0.4782 0.7312 0.8180 1.0401

Table 5 The effects of gradient parameter and wave number on the phase velocity in spherical nanoparticles
(! k = o kx10%

Phase velocity

Material k= 5x10° ke = 1x10°
1=0.0 =05 1=1.0 1=0.0 1=05 1=1.0
Cubic crystallinity
Aluminium 0.7800 0.8098 0.8946 0.6738 0.7624 0.9848
Argon 0.2148 0.2224 0.2444 0.1855 0.2093 0.2693
Carbon 2.1768 2.2522 2.4698 1.8803 2.1186 2.7218
Germanium 0.6106 0.6330 0.6972 0.5275 0.5958 0.7678
Gold 0.3924 0.4084 0.4532 0.3390 0.3846 0.4985
Silicon 1.0478 1.0864 1.1966 0.9050 1.0223 1.3177
Silver 0.4270 0.4440 0.4918 0.3688 0.4180 0.5412
Thorium 0.3152 0.3274 0.3622 0.2723 0.3083 0.3986
Hexagonal crystallinity
Cadmium selenide 0.4530 0.4720 0.5254 0.3844 0.4420 0.5830
Titanium 0.3944 0.4120 0.4612 0.3307 0.3842 0.5128
Zinc sulfide 0.7010 0.7284 0.8064 0.5964 0.6813 0.8915
Tetragonal crystallinity
Rutile 1.1194 1.1770 1.3358 0.9105 1.0921 1.5118
Tin 0.5028 0.5168 0.5578 0.4382 0.4802 0.5914
Trigonal crystallinity
Hematite 0.8505 0.8777 0.9563 0.7312 0.8180 1.0401

reduces. This may occur according to the reduction of ~ compression generated by the nonlocal interactions of
structural rigidity of particle because of the surface atoms.
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Table 6 The effects of spherical nanoparticles diameter and wave number on the wave frequency (w = wx10%)

Wave frequency (Rad/Sec)
Material ke = 5x10° ke = 1x10°
d=5.0 d=15.0 d=20.0 d=5.0 d=15.0 d=20.0
Cubic crystallinity

Aluminium 0.6030 0.4010 0.3812 1.1800 0.9345 0.9149
Argon 0.1634 0.1020 0.1046 0.3198 0.2563 0.2513
Carbon 1.6453 1.1119 1.0593 3.2195 2.5945 2.5453

Germanium 0.4676 0.3131 0.2979 0.9151 0.7280 0.7153

Gold 0.3076 0.2026 0.1923 0.6021 0.4717 0.4612

Silicon 0.8027 0.5373 0.5112 1.5708 1.2526 1.2274

Silver 0.3331 0.2201 0.2090 0.6520 0.5125 0.5014

Thorium 0.2446 0.1622 0.1542 0.4788 0.3780 0.3699
Hexagonal crystallinity

Cadmium selenide 0.3559 0.2337 0.2210 0.7025 0.5515 0.5391

Titanium 0.3146 0.2040 0.1921 0.6221 0.4835 0.4720

Zinc sulfide 0.5449 0.3597 0.3407 1.0686 0.8451 0.8270
Tetragonal crystallinity

Rutile 0.9070 0.5850 0.5461 1.8417 1.4201 1.3835

Tin 0.3802 0.2514 0.2401 0.7030 0.5641 0.5536

Trigonal crystallinity
Hematite 0.6445 0.4296 0.4090 1.2318 0.9914 0.9726

Table 7 The effects of geometrical dimensions and wave number on the phase velocities (e / ke = w / kex10%)

Phase velocity

Material k, = 5x10° k, = 1x10°

d=5.0 d=15.0 d=20.0 d=5.0 d=15.0 d=20.0
Cubic crystallinity
Aluminium 1.2060 0.8020 0.7624 1.1800 0.9345 0.9149
Argon 0.3268 0.2040 0.2092 0.3198 0.2563 0.2513
Carbon 3.2906 2.2238 2.1186 3.2195 2.5945 2.5453
Germanium 0.9352 0.6262 0.5958 0.9151 0.7280 0.7153
Gold 0.6152 0.4052 0.3846 0.6021 0.4717 0.4612
Silicon 1.6054 1.0746 1.0224 1.5708 1.2526 1.2274
Silver 0.6662 0.4402 0.4180 0.6520 0.5125 0.5014
Thorium 0.4892 0.3244 0.3084 0.4788 0.3780 0.3699
Hexagonal crystallinity
Cadmium selenide 0.7118 0.4674 0.4420 0.7025 0.5515 0.5391
Titanium 0.6292 0.4080 0.3842 0.6221 0.4835 0.4720
Zinc sulfide 1.0898 0.7194 0.6814 1.0686 0.8451 0.8270
Tetragonal crystallinity
Rutile 1.8140 1.1700 1.0922 1.8417 1.4201 1.3835
Tin 0.7604 0.5028 0.4802 0.7030 0.5641 0.5536
Trigonal crystallinity
Hematite 1.2890 0.8592 0.8180 1.2318 0.9914 0.9726
4.2 Wave propagation in spherical nanoparticles anisotropic nanoparticles in spherical coordinates is
with considering gradient parameter investigated. Approximations used in above section are also

considered with one exception. To capture the small-scale
In this section, wave propagation analysis of different effects, the gradient parameter is included and the
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nonlocality is ignored. For studying wave propagation, it is
assumed that the waves are not reached the boundary
conditions, well-known as bulk waves with the application
in non-destructive tests. So following example will be
discussed without considering the boundary conditions
(simply supported, free, clamped, etc.) similar to many
other studies on macro and nanostructures. For this purpose,
the displacements in the radial direction are assumed as
follow

u(rt)=Aexp[i(k.r—at)] (25)

where A is the coefficients of wave amplitude, k, is the
wave numbers of wave propagation along radial direction,
and w is the frequency. Substituting Eq. (25) into governing
Egs. (14)-(16) with considering our approximations,
including one length scale parameter (gradient parameter), a
closed-form solution for the frequencies versus wave
numbers, known as dispersion relation, are achieved in the
following form

i‘//lekrA_i‘//szf_(sz*R2+'//3)kr2+i‘//4er TYs

_ (26)
[0 V —pR 2
where

Wy =—1Cy, Y, = —41C,,,

Wy =—21Cy, +7C;, +1]C15 +7]C o, +1C 5 +7Cq4, (27)

Vy= 201111//5 =Cy, +Cj3—Cy, _2023 —Cgs-

Phase velocity can be calculated using the obtained
frequency as well as wave number, as follow

Co =7 (28)

Next, the frequencies and phase velocities for different
anisotropic nanoparticles such as Cubic crystallinity,
Hexagonal crystallinity, Tetragonal crystallinity, Trigonal
crystallinity are provided in Tables 4-7.

In Table 4, the variations of wave frequencies for
different anisotropic spherical nanoparticles with respect to
various gradient parameters are shown at d = 10 nm.
Entirely, the wave frequency rises for the all anisotropic
nanoparticles as the gradient parameter and wave number
grows. This result shows the differences between the
behaviors of models based on nonlocality and strain
gradient. From this table, it can be concluded that the wave
frequencies of nanoparticles are not sensitive with the
variations of gradient parameter at small wave numbers but
in higher wave numbers, the variations of wave frequencies
are more noticeable. Furthermore, it can be seen that for
small wave numbers, the Hematite has the highest wave
frequency, independent of the values of gradient parameter
but with increasing the wave numbers, this no longer
occurs. Furthermore, the Carbon has the highest wave
frequency at k, = 1x10° and length scale parameter between
0.0 to 1.0 nm. Additionally, in this investigation, it is
observed that the Argon has the lowest wave frequency for
different gradient parameters and wave numbers for cubic

crystallinity.

In Table 5, the variation of phase velocities for different
anisotropic spherical nanoparticles with respect to various
gradient parameters are shown at d = 10 nm. The phase
velocities have a direct relation with gradient parameter but
an inverse relation with wave number. It is noteworthy that
for high values of wave numbers, the phase velocity
difference becomes more significant for each value of
gradient parameter. Also, it can be concluded that the
effects of gradient parameter on the increase of the phase
velocities are more than the influences of wave number in
reduction of them. For example, the phase velocity of
Hematite with trigonal crystallinity firstly, with increases
the wave number will decrease, but at length scale
parameter | = 1x10? the phase velocity increases as the
wave number grows. Additionally, in this investigation, it is
observed that the Carbon has the highest phase velocity in
the various gradient parameter and wave number for cubic
crystallinity.

The variations of wave frequencies for different
anisotropic  spherical nanoparticles with respect to
variations of diameter are shown at length scale parameter |
= 1x10° in Table 6. It is seen that for all anisotropic
nanoparticles, all the wave frequencies reduce as the
diameter of nanoparticle grows. Moreover, it should be
noted that this decreasing trend is more obvious in higher
wave numbers. Furthermore, it is very important to mention
that the effect of nanoparticles diameter changes in different
nanostructures are different. Also, it can be concluded that
most changes of wave frequencies are occurred when the
diameter of Carbon nanoparticle is increasing.

In Table 7, the trend of phase velocities for different
anisotropic  spherical nanoparticles with respect to
variations of geometrical dimension are examined at length
scale parameter | = 1x10°. It is shown that the phase
velocities reduce for all of the anisotropic nanoparticles as
the diameter of nanoparticle and wave number grow. Also,
it can be concluded that the effects of increasing the
diameter in decreasing the phase velocities are more
obvious at the higher wave numbers. Furthermore, again it
is obtained that the lowest and highest value of phase
velocities are related to cubic crystallinity.

5. Conclusions

This paper was concerned with the modeling, vibration,
and wave propagation analysis of anisotropic nanoparticles
according to the nonlocal strain gradient theory. The
proposed generalized theory introduced two scale
parameters for the prediction of mechanics of nanoparticles
much accurately. The formulation of spherical nanoparticle
was based on a three dimensional elasticity theory. To
verify our model, our results for the radial vibration of
spherical nanoparticles were compared with experimental
results and great agreement was achieved. Several
numerical examples with considering different parameters
such as geometrical dimension and material properties were
discussed on the radial vibration and wave propagation of
spherical nanoparticles. From the best knowledge of
authors, it was the first time that three-dimensional
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elasticity theory and nonlocal strain gradient theory were
used together with no approximation to derive the
governing equations in spherical coordinate. According to
the numerical results of the described study, the following
conclusions are notable,

e The magnitude of radial frequencies reduces by
increasing nonlocal parameter, especially at lower
values of the radius.

e |tis indicated that with an increase of strain gradient
parameters, the anisotropic nanoparticle becomes
stiffer and the wave frequency enlarges.

e It is seen that the influence of the radius of
nanoparticles on wave characteristics of anisotropic
nanoparticles is significant for higher values of wave
number.

e The wave number possesses increasing and
decreasing effects on the wave frequencies and
phase velocities of nanoparticles, respectively.
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Appendix

According to the complex governing equations for nonlocal strain gradient three-dimensional elasticity theory in spherical
coordinate most of the parameters are in the appendix. Here, Xj; = g and Y;; = \%& & (i,j=1,6,9).
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