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1. Introduction 

 

The use of sandwich structures is growing so rapidly all 

over the world and has attracted increasing attention due to 

its super fantastic characteristics. The need of higher 

performances and lower weight of the structures makes 

sandwich construction one of the best choices applied in 

aircrafts, space vehicles and transportation systems. On the 

other hand, functionally graded materials (FGMs) are 

composite materials with inhomogeneous micromechanical 

structure in which the material properties of FGMs change 

smoothly between two surfaces. Also one of the advantages 

of this combination is novel structures that are capable to 

withstand large mechanical loadings under high temperature 

environments (Ebrahimi and Salari 2015a). Presenting 

novel properties, FGMs have also attracted intensive 

research interests, which were mainly focused on their 

static, buckling and vibration characteristics of FG 

structures (Ebrahimi and Salari 2015b, c, Ebrahimi and 

Barati 2016a-e, Ebrahimi et al. 2016, Ebrahimi and 

Dabbagh 2016, Ebrahimi and Hosseini 2016a, b). As a one 

of their applications we can mention the use of them in 

sandwich structures as face sheets. Because of this, many 

researches have been done on the vibration, buckling and 

post-buckling behaviors of sandwich structures with FGM 

face sheets, like these (Pradhan and Murmu 2009, Zenkour 

and Sobhy 2010). 

Actually, material gradation will reduce maximum 

stresses and change the spatial location where such 
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maximums arise (Rahmani and Pedram 2014). This 

provides the opportunity of fitting material variation to 

attain desired stresses in a structure. The inspiration for 

using functionally graded materials (FGMs) is their 

advantages of superior stress relaxation and abilities of 

enduring high temperature gradients. 

Carbon nanotubes (CNTs) have extraordinary 

mechanical properties. Ajayan et al. (1994) investigated 

polymer composites reinforced by aligned CNT arrays at 

first. Since then, many researchers inspected the material 

properties and functions of CNTRCs. Ashrafi and Hubert 

(2006) modeled the elastic properties of CNTRCs through a 

finite element analysis. Xu et al. (2006) examined the 

thermal behavior of SWCNT polymer–matrix composites. 

Han and Elliott (2007) used molecular dynamics (MD), to 

simulate the elastic properties of CNTRCs. These studies 

proved that adding a small amount of carbon nanotubes can 

significantly improve the electrical, mechanical, and 

thermal properties of polymeric composites. The results 

were as helpful for the prediction of the global response of 

CNTRCs as an actual structural constituents. Studies on 

CNTRCs have revealed that distributing CNTs in a uniform 

way as the reinforcements in matrix can lead to only 

intermediate improvement of the mechanical characteristics 

(Qian et al. 2000, Seidel and Lagoudas 2006). This is 

principally because of the weak interfacial bonding strength 

between the CNTs and matrix. Ke et al. (2010, 2013) 

examined the effect of FG-CNT volume fraction on the 

nonlinear free vibration and dynamic stability of composite 

beams. Shen (2011) performed a thermal post-buckling 

analysis for CNTRC cylindrical shells and learned that in 

general, the CNTRC shells with intermediate nanotube 

volume fraction do not support intermediate buckling 
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temperature and initial thermal post-buckling strength. 

The molecular bridging between CNT within the matrix 

is hopeful for enhancing nanocomposite’s mechanical 

performance. One of the main problems for nanocomposites 

is the inadequate bonding between nonstructural reinforce-

ment and the matrix. Ni-coating on CNT is an effective 

method to overcome the drawback of the inadequate 

strength. Duan et al. (2017) have interpreted such 

enhancing mechanism from the molecular-dynamics 

insights. They have discussed the pullout process of CNT 

and Ni-coated CNT against copper matrix while the effects 

of geometric parameters, including CNT length and 

diameter, are taken into consideration. Their results show 

that the interfacial strength is significantly improved after 

the Ni-coated CNT. In another work they investigated the 

damping capacity and mechanical strength of Ni-coated 

carbon nanotube reinforced copper-matrix nanocomposites 

and single-crystal copper using molecular dynamics (MD). 

It is found that the mechanical strength of copper can be 

significantly improved by the embedded Ni-coated CNT. 

Analysis of nano-structure’s mechanical behaviors is one of 

recent interesting research topics. (Ebrahimi and Barati 

2016f-n, 2017). Shen and Zhu (2012) inspected the 

sandwich plate with FG-CNTRC face sheets thermal post-

buckling. They studied that the base stiffness, temperature 

change, CNT volume fraction, and the core-to-face sheet 

thickness ratio have considerable influences on compressive 

buckling and post-buckling behaviors of the sandwich plate, 

whereas their influence on the thermal post-buckling 

behavior is much less. Recently various beam/plate theories 

has been introduced. Wang and Shen (2011) studied the 

vibration of CNTRC plates in thermal environments. They 

mentioned that generally the CNTRC plates with 

symmetrical distribution of CNTs have lower natural 

frequencies, but lower linear to nonlinear frequency ratios 

than ones with unsymmetrical or uniform distribution of 

CNTs. Wu et al. (2015) investigated free vibration and 

buckling of sandwich beams which are reinforced with FG-

CNTRCs face sheets based on a Timoshenko beam theory. 

However, by considering these materials as a thermo-

dependent ones, the lack of inspecting the vibration and 

buckling of temperature dependent materials is felt. 

In this paper the buckling of a sandwich beam with a 

stiff core and FG-CNTRC face sheets in thermal 

environments through the framework of Timoshenko beam 

theory, which is followed by the authors’ previous work, is 

presented. The material characteristics of carbon nanotubes 

are supposed to change in the thickness direction in a 

functionally graded form. They are also can be calculated 

through a micromechanical model where the CNT 

efficiency parameter (η) is determined by matching the 

elastic modulus of CNTRCs calculated from the rule of 

mixture with those gained from the MDs simulations. The 

DT method established upon the Taylor series expansion is 

one of the effective mathematical techniques employed to 

solve differential equation problems (Yang and Xiang 

2007). Malik and Dang (1998) firstly applied the DTM in 

vibration analysis of isotropic beams. In this paper, the 

DTM is used to solve linear vibration problems of sandwich 

beams. A parametric study is directed to explain the effects 

of carbon nanotube volume fraction, slenderness ratio, core-

to-face sheet thickness ratio, different thermal environment 

and boundary conditions on the free vibration properties of 

sandwich beams with FG-CNTRC face sheets. Numerical 

results for sandwich beams with uniformly carbon nanotube 

distribution reinforced composite (UD-CNTRC) are also 

demonstrated for validation and comparison. 
 

 

2. Sandwich beam with CNTRC face sheets 
 

Imagine a symmetric sandwich beam with the length of 

L, width b and total thickness h subjected to an axial load 

made by thermal expansion. As we can see in Fig. 1 the 

sandwich beam is made of two CNTRC face sheets which 

are both equal to hf and have a stiff core layer of thickness 

hc between. Two different types of support condition 

namely, simply supported-simply supported (S-S) and 

clamped-clamped (C-C) are considered individually. On the 

other hand, two distributions of CNTs, i.e., V functionally 

graded and uniform, are studied. The material properties 

can be determined through the rule of mixture 
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where 𝐸11
𝑐𝑛 , 𝐸22

𝑐𝑛  and 𝐺12
𝑐𝑛  are Young’s moduli and shear 

modulus of CNTs, respectively. Em and Gm are the 

properties for the matrix. ηi (i = 1, 2, 3) is CNT efficiency 

parameter accounting for the scale-dependent material 

properties and can be obtained by matching the elastic 

modulus of CNTRCs achieved from molecule dynamic 

simulation and those which are extracted from rule of 

mixture. Vm and Vcn are the volume fraction of matrix and 

the CNTs, respectively. The relation between them can be 

expressed as 
 

1cn mV V 
 (2) 

 

The material properties of functionally graded ceramic–

metal composites, most commonly change along thickness 
 

 

 

Fig. 1 A simple scheme of sandwich beam with CNTRC 

face sheets 
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direction in two ways; either a power law or an exponential 

distribution. However, in nanocomposites, the manu-

facturing method for such a graded distribution is so 

expensive and difficult. It is supposed that Vcn for the FG-

CNTRC face sheets changes linearly across the thickness 

because aligning CNTs functionally graded in a polymer 

matrix leads to manufacture CNTRC in a better way, and 

only linear distribution can be obtained in engineering 

practice, so the distribution for the top face sheet can be 

expressed by 
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and also for the bottom face sheet 

where V*can be described as 
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In this expression wcn is the mass fraction of CNT, 

whereas ρm and ρcn are the densities of matrix and CNT, 

respectively. There is a simple relation for 𝑉𝑐𝑛
∗  in UD-

CNTRCs which can be given by 𝑉𝑐𝑛 =  𝑉𝑐𝑛
∗ , so it’s obvious 

that the mass fraction for UD-CNTRC and FG-CNTRC face 

sheets are equal. 

The density and Poisson’s ratio of the CNTRC face 

sheets can be described in vcn order as 

 

cn cn m mV V   
 (5) 

 

cn cn m mV V   
 (6) 

 

in which vm and are Poisson’s ratio of the matrix and CNT, 

respectively. Because functionally graded structures, such 

as sandwich beams in this case, are used mostly in high 

temperature environments, eventually magnificent changes 

in mechanical properties of the ingredient materials are to 

be expected, it is necessary to take into account this 

temperature-dependency for precise prediction of the 

mechanical reaction. Thus, Young’s modulus and thermal 

expansion coefficient believed to be functions of 

temperature, as to be shown in Section 3.1, so that E and α 

are both temperature and position dependent. The behavior 

of FG materials can be predicted under high temperature 

more precisely with considering the temperature 

dependency on material properties. The nonlinear equation 

of thermo-elastic material properties in function of 

temperature T(K) can be expressed as (Shen 2004) 

 
1 2 3

0 1 1 2 3( 1 )P P P T P T P T P T
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(7) 

 

where P0, P-1, P1, P2 and P3 are the temperature dependent 

coefficients which can be seen in the table of materials 

properties (Table 1) for Ti-6Al-4V. For composite host, 

Table 1 Temperature dependent properties of Young’s modulus 

and thermal expansion coefficient for Ti-6Al-4V 

Material Properties P0 P-1 P1 P3 P3 

Ti-6Al-4V 
E (Pa) 122.56e+9 0 -4.586e-4 0 0 

α (K-1) 7.5788e-6 0 6.638e-4 -3.147e-6 0 
 

 

 
Table 2 Temperature dependent properties of Young’s modulus 

and thermal expansion coefficient for CNTs 

Temperature (°K) 𝐸11
𝑐𝑛  (TPa)  𝐸22

𝑐𝑛  (TPa) 𝐺12
𝑐𝑛  (TPa) αcn (K-1) 

300 5.6466 7.0800 1.9445 3.4584 

500 5.5308 6.9348 1.9643 4.5361 

700 5.4744 6.8641 1.9644 4.6677 
 

 

 

PMMA matrix have been chosen. Eventually there are 

different expressions to describe the temperature dependent 

properties of PMMA; αm = 45(1+0.0005ΔT)×10-6 /K, Em = 

(3.52 ‒ 0.0034T) GPa, in which T = T0 + ΔT and T0 = 300 K 

(Yang et al. 2015). However, there are not specific material 

properties expressions for CNTs. To predict the correct 

CNT properties which is dependent to temperature (Zhang 

and Shen 2006), we should estimate CNT efficiency 

parameters η1 and η2 by matching the Young’s modulus E11 

and E22 of CNTRCs obtained by the rule of mixture to those 

from the MD simulations given by Han and Elliott (2007). 

It should be noted that only E11 should be used in beam 

theories. The results are shown in Table 2. 

 

 

3. Theoretical formulations 
 

3.1 Governing equations 
 

The displacement of an arbitrary point in the beam along 

the x and z directions, according to Timoshenko beam 

theory can be expressed by 

 

( , , ) ( , ) ( , )U x z t U x t z x t 
,   

( , , ) ( , ),W x z t W x t
 (8) 

 

where U(x, t) and W(x, t) are displacement elements of a 

point in the mid-plane, t is time and ψ is the rotation of the 

beam cross-section. The linear strain-displacement relation-

ship can be described as 
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The normal stress and shear stress are expressed as 

 

11( )xx

U
Q z z

x x




  
  

      
55( ) ,xz

W
Q z

x
 

 
  

   
(10) 

 

where 
 

11 2

( )
( )

1

E z
Q z




 ,     
55

( )
( ) .

2(1 )

E z
Q z





 

(11) 

151



 

Farzad Ebrahimi and Navid Farazmandnia 

The normal force, bending moment and transverse shear 

force resultants are presented as 
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where the shear correction factor is expressed by κ = 5 / 6. 

The inertia related terms and stiffness components can be 

determined from 
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Based on the Hamilton’s principle, which states that the 

motion of an elastic structure during the time interval t1 < t 

< t2 is such that the time integral of the total dynamics 

potential is extremum (Tauchert 1974) 
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(14) 

 

Here U is strain energy, T is kinetic energy and V is 

work done by external forces. The virtual strain energy can 

be calculated as 
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Substituting Eq. (9) into Eq. (15) gives 
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The kinetic energy for Timoshenko beam theory can be 

inscribed as 
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Also the virtual kinetic energy can be expressed as 
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(18) 

The first variation of the work done corresponding to 

temperature change for a FG beam which has been in 

temperature environment for a long period of time, can be 

written in the form of 
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also 𝑁 𝑇  is thermal resultant and can be described as 
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where T0 is the reference temperature. Then by substituting 

Eqs. (16), (18) and (19) into Eq. (14) and setting the 

coefficients of δu, δw and δφ to zero, the governing 

equations of motion of the beam can be defined as 
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where coefficient Ks is called the Timoshenko shear 

correction factor and the exact value of it depends on the 

material properties and cross section parameters of the 

beam. Here, Ks for rectangular beams has been assumed is 

equal to 5/6 approximately. 

For simply supported-simply supported (S-S), clamped-

clamped (C-C) and clamped-simply supported (C-S) 

sandwich beams with a movable end at x = L, the boundary 

conditions require 
 

0,U   0,W   0,xM       at  0,x   (22a) 
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0,W 
 

0,xM 
     at  ,x L  (22b) 

 

for a S-S beam 
 

0,U   0,W   0,       at  0,x   (23a) 

 

0,xN 
 0,W   

0, 
     at  ,x L  (23b) 

 

for a C-C beam and 
 

0,U   0,W   
0, 

     at  0,x   (24a) 

 

0,xN 
 0,W   

0,xM 
    at  ,x L  (24b) 

 

for a C-S beam. 
 

3.2 Dimensionless governing equations 
 

It is better first to clarify the following dimensionless 

quantities 
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where I10 and A110 are the values of I1 and A11 of a 

homogeneous beam made from pure core material. With 

respect to Eqs. (25), and substituting Eqs. (12) into Eqs. 

(21), the final equations can then be explained in 

dimensionless form as 
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and the transformed boundary conditions turn into 
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for a S-S sandwich beam 
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for a C-C sandwich beam and 
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for a C-S sandwich beam. 
 

 

4. Uniform temperature rise (UTR) 
 

The sandwich beam initial temperature is assumed to be 

(T0 = 300 K), which is a stress free state, uniformly changed 

to final temperature with ΔT. The temperature rise is given 

by 

0T T T  
 

(30) 

 

 

5. Solution procedure 
 

5.1 Application of differential transform method 
(DTM) to buckling problem 

 

In this section, DTM is performed to solving equations 

of motions, which is a semi-analytic transformation 

technique based on Taylor series expansion equations and is 

a useful tool to obtain analytical solutions of these 

differential equations. Certain transformations rules are 

applied to governing equations and the boundary conditions 

of the system in order to transform them into a set of 

algebraic equations in terms of the differential transforms of 

the original functions. This method constructs an analytical 

solution in the form of polynomials. It is different from the 

high-order Taylor series method, which requires symbolic 

computation of the necessary derivative of the data 

functions and is expensive for large orders. The Taylor 

series method is computationally expansive for large orders. 

DTM is an iterative procedure for obtaining analytic Taylor 

series solutions of differential equations; in fact, this 

method tries to find coefficients of series expansions of 

unknown function with using the initial data on the 

problem. 

Differential transformation of the nth derivative function 

y(x) and differential inverse transformation of Y(k) are 

respectively defined as follow (Hassan 2002) 
 

0

1
( ) ( )

!

k

k

x

d
Y k y x

k dx


 
  

   

(31) 

 

0

( ) ( )k

k

y x X Y k






 

(32) 

 

in which y(x) is the original function and Y(k) is the 

transformed function. Consequently, from Eqs. (31) and 

(32) can obtain 
 

0 0

( ) ( )
!

k k

k

k x

x d
Y k y x

k dx



 

 
  

 


 

(33) 

 

In this calculations N is determined by the convergence 

of the eigenvalues and y(x) is small enough to be neglected. 

From definitions of DTM in Eqs. (31)-(33), the fundamental 

theorems of differential transforms method can be 

performed that are listed in Tables 3 and 4 present the 

differential transformation of conventional boundary 

conditions. Assuming a sinusoidal variation of w(x, t) and 

θ(x, t), which the functions are approximated as 
 

( , ) i tw x t we 
     

( , ) i tx t e  
 

(34) 

 

By reducing u and substituting Eqs. (34) into Eqs. (26) 

equations of motions have been turned to 
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Table 3 Some of the transformation rules of the one-dimensional 

DTM (Ju 2004) 

Original function Transformed function 

    ( )f x g x h x       ( )F K G K H K   

  ? )f x g x    ( )F K G K  

    ( )f x g x h x     
0

( )

K

l

F K G K l H l



   

 
( )n

n

d g x
f x

dx
   

 !
( )

!

k n
F K G K n

k


   

  nf x x     
1

0

k n
F K K n

k n



   


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 
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(35) 
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



 

(36

) 

 

According to the basic transformation operations in 

Table 3, the transformed form of the governing Eqs. (35) 

and (36) around x0 = 0 may be obtained as 

 

              2
55 55 11 2 2 1 1 1 2 2 ( )Ta k k w k a k k N k k w k I w k             

 

              2
55 55 11 2 2 1 1 1 2 2 ( )Ta k k w k a k k N k k w k I w k             

 

(37) 
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2

211 11
11 55 3 2

11 11

1 2 2 1 1
b b

d k k k a k w k I I
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     
   

               
    

(38) 

 

Transformed functions of W(x), ψ(x) are w(k), φ(k), by 

using the theorems introduced in Table 4, transformed 

 

 

various boundary conditions can be expressed as follow: 
 

 Simply Supported-Simply supported: 
 

   0 0, 1 0w  
 

   
0 0

0, 0

k k

w k k k
 

 

  
 

(39a) 

 

 Clamped-Simply supported: 
 

   0 0, 0 0w  
 

   
0 0

0, 0

k k
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 

  
 

(39b) 

 

 Clamped-Clamped 
 

   0 0, 0 0w  
 

   
0 0

0, 0

k k

w k k
 

 

  
 

(39c) 

 

by using Eqs. (37) and (38) together with the transformed 

boundary conditions one arrives at the following eigenvalue 

problem 
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(40) 

 

where [C] corresponds to the missing boundary conditions 

at x = 0 and Mij are polynomials in terms of (ω) 

corresponding to the nth term. For the non-trivial solutions 

of Eq. (40), it is necessary that the determinant of the 

coefficient matrix set equal to zero 
 

( ) ( )
11 12

( ) ( )
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( ) ( )
0
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n n

n n
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 
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 
 

   

(41) 

 

The ith estimated eigenvalue may be obtained by for the 

nth iteration, by solving Eq. (41). The total number of 

iterations is related to the accuracy of calculations which 

 

 

Table 4 Transformed boundary conditions (B.C.) based on DTM (Ju 2004) 

x = 0 x = L 

Original B.C. Transformed B.C. Original B.C. Transformed B.C. 

f(0) = 0
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can be determined by following equations 
 

( ) ( 1)n n
i i   

 
(42) 

 

In this study ε = 0.0001 in procedure of finding 

eigenvalues results in four-digit precision is estimated 

eigenvalues. Further the computer package Mathematica 

has been developed according to the DTM rules as stated 
 

 

Table 5 Convergence study for the critical buckling load for C-C 

sandwich beams with FG-CNTRC face sheets 

(𝑉𝑐𝑛
∗  = 0.12, L/h = 10, hc/hf = 8) 

n Ncr 

9 - 

10 - 

11 0.02975 

12 0.02243 

13 0.02425 

14 0.02371 

15 0.02723 

16 0.02690 

17 0.02583 

18 0.02583 

19 0.02591 

20 0.02591 

21 0.02591 

22 0.02591 

23 0.02591 
 

 

 

 

 

before to find eigenvalues. As mentioned before, DT 

method implies an iterative procedure to obtain the high-

order Taylor series solution of differential equations. The 

Taylor series method requires a long computational time for 

large orders, whereas one advantage of employing DTM in 

solving differential equations is a fast convergence rate and 

small calculation error. 
 

 

6. Results and discussion 
 

6.1 Comparison studies 
 

Before starting to study the buckling analysis of 

sandwich beams with CNTRC face sheets, a comparison is 

made between our results and those from the open literature 

are made to validate the present formulation. Table 5 shows 

the number of repetition for convergence of the critical 

buckling using DTM method. It is found that in DTM 

method after a certain number of iterations eigenvalues 

converged to a value with good precision, so the number of 

iterations is important in DTM method convergence. 

According to Table 5 the critical buckling converged after 

15 iterations with 4-digit precision. Table 6 compares 

numerical dimensionless critical buckling of simply-simply 

supported ends FGM sandwich beams with the semi 

analytical results (Wu et al. 2015) from which the material 

properties used in this comparison can be found. As it can 

be seen, our results match very well with the results of 

reference paper. The dimensionless critical buckling for the 

C-C FG-CNTRC beam are tabulated in Table 7 also. The 

parameters used in this example are the same as those in 

Ref. (Wu et al. 2015). A good agreement is obtained, again. 
 

 

 

 

Table 6 Comparison of dimensionless critical buckling of S-S sandwich beams with FG-CNTRC face sheets 

(hc/hf = 8) 

L/h  
𝑉𝑐𝑛
∗  = 0.12 𝑉𝑐𝑛

∗  = 0.17 𝑉𝑐𝑛
∗  = 0.28 

Present (Wu et al. 2015) Present (Wu et al. 2015) Present (Wu et al. 2015) 

10 
FG 0.0071 0.0072 0.0086 0.0085 0.0115 0.0111 

UD 0.0069 0.0070 0.0083 0.0082 0.0110 0.0107 

20 
FG 0.0018 0.0018 0.0022 0.0022 0.0029 0.0029 

UD 0.0018 0.0018 0.0021 0.0021 0.0028 0.0028 

30 
FG 0.0008 0.0008 0.0010 0.0010 0.0013 0.0013 

UD 0.0008 0.0008 0.0009 0.0009 0.0012 0.0012 
 

Table 7 Comparison of dimensionless critical buckling of C-C sandwich beams with FG-CNTRC face sheets 

(hc/hf = 8) 

L/h  
𝑉𝑐𝑛
∗  = 0.12 𝑉𝑐𝑛

∗  = 0.17 𝑉𝑐𝑛
∗  = 0.28 

Present (Wu et al. 2015) Present (Wu et al. 2015) Present (Wu et al. 2015) 

10 
FG 0.0259 0.0261 0.0309 0.0305 0.0408 0.0387 

UD 0.0252 0.0254 0.0305 0.0296 0.0400 0.0373 

20 
FG 0.0071 0.0072 0.0088 0.0085 0.0113 0.0111 

UD 0.0069 0.0070 0.0083 0.0082 0.0110 0.0107 

30 
FG 0.0032 0.0032 0.0039 0.0039 0.0051 0.0051 

UD 0.0031 0.0037 0.0038 0.0037 0.0050 0.0049 
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6.2 Static buckling 
 

In this study, poly (methyl methacrylate), i.e., PMMA 

with Em = 2.5 GPa, ρm = 1190 kg/m3 and vm = 0.3, are 

choose to be the matrix material for CNTRCs. The armchair 

(10, 10) SWCNTs, with material properties of 𝐸11
𝑐𝑛

 = 

5.6466 TPa, 𝐸22
𝑐𝑛

 = 7.08 TPa, 𝐺12
𝑐𝑛

 = 1.9445 TPa, ρcn = 

1400 kg/m3 and vm = 0.175 at room temperature, (Shen and 

Zhang 2010) are selected as the reinforcement for CNTRCs. 

The CNT efficiency parameter ηj is obtained by matching 

the Young’s modulus E11 and E22 and shear modulus G12 of 

CNTRCs determined from the rule of mixture against those 

from the MD simulations given by Han and Elliott (2007). 

It was presented by Shen and Zhang (2010) as, η1 = 0.137, 

 

 

 

 

η2 = 1.022, η3 = 0.715 are used for the case of 𝑉𝑐𝑛
∗  = 0.12, 

η1 = 0.142, η2 = 1.626, η3 = 1.138 for 𝑉𝑐𝑛
∗  = 0.17; and η1 = 

0.141, η2 = 1.585, η3 = 1.109 for 𝑉𝑐𝑛
∗  = 0.28. We choose 

Titanium alloy (Ti-6Al-4V) for core, because when the core 

material has a lower strength, they cannot be predicted 

through the sandwich beam theory. Titanium alloy has Ec = 

113.8 GPa, ρc = 4430 kg/m3 and vc = 0.342, is selected as 

the core material for the sandwich beam. The thickness of the 

sandwich beam is chosen 10 mm totally, and kept steady in 

all numerical situations. However, the thickness of core 

layer and face sheets change arbitrarily as the core-to-face 

sheet thickness ratio is chosen hc/hf = 8, 6, 4. The critical 

buckling with respect to effect of initial thermal 

environment are given in Tables 8 and 9. 

Table 8 Effect of nanotube volume fraction and slenderness ratio on dimensionless critical buckling of 

sandwich beams with FG-CNTRC face sheets (hc/hf = 8) 

L/h B.S.  

ΔT = 0 ΔT = 200 ΔT = 400 

𝑉𝑐𝑛
∗  𝑉𝑐𝑛

∗  𝑉𝑐𝑛
∗  

0.12 0.17 0.28 0.12 0.17 0.28 0.12 0.17 0.28 

10 
S-S FG 0.0071 0.0086 0.0115 0.0066 0.0082 0.0109 0.0062 0.0076 0.0104 

S-S UD 0.0069 0.0083 0.0110 0.0064 0.0079 0.0105 0.0060 0.0073 0.0099 

20 
S-S FG 0.0018 0.0022 0.0029 0.0017 0.0020 0.0028 0.0016 0.0019 0.0026 

S-S UD 0.0018 0.0021 0.0028 0.0017 0.0018 0.0027 0.0015 0.0018 0.0025 

30 
S-S FG 0.0018 0.0010 0.0013 0.0007 0.0009 0.0012 0.0007 0.0008 0.0011 

S-S UD 0.0018 0.0009 0.0012 0.0007 0.0008 0.0011 0.0007 0.0008 0.0011 

10 
C-C FG 0.0259 0.0309 0.0408 0.0240 0.0290 0.0376 0.0227 0.0276 0.0373 

C-C UD 0.0252 0.0305 0.0400 0.0234 0.0281 0.0367 0.0226 0.0266 0.0365 

20 
C-C FG 0.0071 0.0088 0.0113 0.0065 0.0079 0.0105 0.0062 0.0076 0.0103 

C-C UD 0.0069 0.0083 0.0110 0.0063 0.0077 0.0103 0.0061 0.0072 0.0101 

30 
C-C FG 0.0032 0.0039 0.0051 0.0029 0.0036 0.0046 0.0028 0.0034 0.0047 

C-C UD 0.0031 0.0038 0.0050 0.0028 0.0034 0.0045 0.0027 0.0033 0.0046 
 

Table 9 Effect of nanotube volume fraction and  hc/hf  on dimensionless critical buckling of sandwich beams 

with FG-CNTRC face sheets (L/h = 20) 

L/h B.S.  

ΔT = 0 ΔT = 200 ΔT = 400 

𝑉𝑐𝑛
∗  𝑉𝑐𝑛

∗  𝑉𝑐𝑛
∗  

0.12 0.17 0.28 0.12 0.17 0.28 0.12 0.17 0.28 

8 
S-S FG 0.0018 0.0022 0.0029 0.0017 0.0020 0.0028 0.0016 0.0019 0.0026 

S-S UD 0.0018 0.0021 0.0028 0.0016 0.0018 0.0027 0.0015 0.0018 0.0025 

6 
S-S FG 0.0018 0.0023 0.0032 0.0017 0.0021 0.0030 0.0016 0.0020 0.0029 

S-S UD 0.0017 0.0022 0.0030 0.0016 0.0020 0.0028 0.0015 0.0019 0.0027 

4 
S-S FG 0.0019 0.0024 0.0036 0.0017 0.0023 0.0034 0.0016 0.0022 0.0033 

S-S UD 0.0017 0.0022 0.0033 0.0016 0.0021 0.0031 0.0015 0.0020 0.0029 

8 
C-C FG 0.0071 0.0088 0.0113 0.0065 0.0079 0.0105 0.0062 0.0076 0.0103 

C-C UD 0.0069 0.0083 0.0110 0.0063 0.0077 0.0103 0.0061 0.0072 0.0101 

6 
C-C FG 0.0071 0.0088 0.0122 0.0066 0.0083 0.0117 0.0063 0.0080 0.0114 

C-C UD 0.0067 0.0083 0.0115 0.0063 0.0079 0.0110 0.0060 0.0076 0.0107 

4 
C-C FG 0.0071 0.0093 0.0136 0.0068 0.0089 0.0131 0.0065 0.0087 0.0129 

C-C UD 0.0066 0.0086 0.0124 0.0064 0.0082 0.0119 0.0060 0.0079 0.0117 
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Fig. 2 Dimensionless critical buckling load of C-C and 

S-S sandwich beams with CNTRC face sheets 

with different slenderness ratio L/h, nanotube 

volume fraction and temperature difference 
 

 

 

Fig. 3 Dimensionless critical buckling load of C-C and 

S-S sandwich beams with CNTRC face sheets 

with different core-to-face sheet thickness ratio 

hc/hf, nanotube volume fraction and temperature 

difference 
 

 

Table 8 and Fig. 2, present the dimensionless critical 

buckling of C-C and S-S sandwich beams with CNTRC 

face sheets with different slenderness ratio L/h, nanotube 

volume fraction and temperature difference. The core-to-

face sheet thickness ratio is kept unchanged at hc/hf = 8. It is 

observed that the critical buckling of the sandwich beam 

decreases with an increase in the slenderness ratio and 

temperature. The C-C sandwich beam has a higher critical 

buckling than the same S-S one. Furthermore, it is observed 

that the critical buckling of the sandwich beam with UD-

CNTRC face sheets is also lower than that of the beam with 

FG-CNTRC face sheets. This is because the sandwich beam 

with UD-CNTRC face sheets has a lower stiffness than the 

beam with FG-CNTRC face sheets. 

Table 9 and Fig. 3, present the dimensionless critical 

buckling of C-C and S-S sandwich beams with CNTRC 

face sheets with different core-to-face sheet thickness ratio 

hc/hf, nanotube volume fraction and temperature difference. 

The slenderness ratio is kept unchanged at L/h = 20. It is 

observed that the critical buckling of the sandwich beam 

increases with a decrease in core-to-face sheet thickness 

ratio but decreases when temperature increases. The C-C 

sandwich beam has a higher critical buckling than the same 

S-S one. Furthermore, it is observed that the critical 

buckling of the sandwich beam with UD-CNTRC face 

sheets is also lower than that of the beam with FG-CNTRC 

face sheets. This is because the sandwich beam with UD-

CNTRC face sheets has a lower stiffness than the beam 

with FG-CNTRC face sheets. 

 

 

7. Conclusions 
 

Thermo-mechanical buckling characteristics of 

sandwich beams with CNTRC face sheets have been 

examined based on the Timoshenko beam theory and semi 

analytical DT method. The effects of CNT volume fraction, 

core-to-face sheet thickness ratio, slenderness ratio, and end 

supporting conditions on the free vibration behaviors of 

stiff-cored sandwich beams with CNTRC face sheets with 

respect to uniform temperature change revealed through a 

parametric study. Numerical results show that CNT volume 

fraction, end supporting conditions, and slenderness ratio 

have a significant influence on the natural frequencies, 

whereas the effects of temperature change and core-to-face 

sheet thickness ratio is much less pronounced. The static 

buckling of the sandwich beam decrease with an increase in 

temperature change, core-to-face and slenderness ratio, but 

they increase with an increase in CNT volume fraction. The 

numerical results also point out that the sandwich beam 

with UD-CNTRC face sheets has lower buckling 

performances than FG-CNTRC the beam with face sheets. 
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