
Steel and Composite Structures, Vol. 27, No. 1 (2018) 109-122 
DOI: https://doi.org/10.12989/scs.2018.27.1.109 

Copyright © 2018 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=scs&subpage=6                                      ISSN: 1229-9367 (Print), 1598-6233 (Online) 

 
1. Introduction 

 
Composite structures have been applied in mechanical 

and civil engineering since the last century. Due to their 
ease of shaping, it is very used in the civil infrastructure 
projects, such as industrial buildings and vehicle bridges. In 
recent years, a new class of composite materials in which 
the characteristics of the material continuously change 
between two surfaces, thus eliminating the stress 
concentration phenomenon characteristic of laminated or 
conventional composite materials. This type of material is 
known as Functionally Graduated Materials (FGM). 

Generally, these materials consist of a mixture of two 
materials of different thermal nature; a combination of 
ceramic and metal. The essential point is to describe 
precisely the material properties of each material point, its 
young modulus and its density through the thickness in 
order to perform a satisfactory analysis of the mechanical 
behavior of the FGM plates. 

For the functionally graded materials, great progress has 
been made in the theory of elasticity as well as for plates 
and beams; many studies on FGM structures have been 
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studied in the literature in order to describe the material 
properties in the thickness direction (Eltaher et al. 2012, 
Bessaim et al. 2013, Tounsi et al. 2013, Bouderba et al. 
2013, Bousahla et al. 2014, Ahmed 2014, Hebali et al. 
2014, Arefi 2015, Attia et al. 2015, Bourada et al. 2015, 
Hamidi et al. 2015, Al-Basyouni et al. 2015, Ahouel et al. 
2016, Bounouara et al. 2016, Kar et al. 2016, Arani and 
Kolahchi 2016, Sobhy 2017). 

Reissner (1945), Cranch and Adler (1956), 
Ambartsumyan (1969) and Bresse (1859) were the pioneer 
investigators in studying the different behavior of structures 
made with isotropic materials under different stresses. With 
the development of the FGM concept, many works have 
been studied in literature. 

Reddy (2000) is one of the first to analyzed the static 
behaviour of FGM rectangular plates based on his plate 
theory. Cheng and Batra (2000) have found correspondence 
between eigen values of membranes and functionally 
graded simply supported polygonal plate. The same 
membrane analogy was later applied to FGM plate and shell 
analysis based on a third order theory of plates by Reddy 
(2002). 

Vel and Batra (2004) has come closer to real behavior of 
structure by studying free vibration of FGM rectangular 
plates with three-dimensional solution. Zenkour (2006) 
presented a generalized shear deformation theory in which 
the membrane displacements are expanded as trigonometric 
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function across the thickness. Malekzadeh (2009) studied 
the analysis of free vibrations of thick plates in FGM on 
elastic bases with two-parameter. Later some new shape 
functions were proposed by Ait Atmane et al. (2010) 
Benachour et al. (2011), and Ait Amar Meziane et al. 
(2014). Ait Atmane et al. (2015) presented a computational 
shear displacement model for vibrational analysis of FG 
beams with porosities. Beldjelili et al. (2016) analyzed the 
hygro-thermo-mechanical bending response of S-FGM 
plates resting on variable elastic foundations using a four-
variable trigonometric plate theory. Kolahchi and Bidgoli 
(2016) developed a size-dependent sinusoidal beam model 
for dynamic instability of single-walled carbon nanotubes. 
Bilouei et al. (2016) studied buckling of concrete columns 
retrofitted with Nano-Fiber Reinforced Polymer (NFRP). 
Recently, Houari et al. (2016) proposed a new 3-unknowns 
sinusoidal plate theory for buckling and vibration of FG 
sandwich plate. It should be noted that there is an important 
works on shear deformation theories (Kolahchi et al. 2016a, 
2017a, b, c, Kolahchi and Cheraghbak 2017, Kolahchi 
2017, Hajmohammad et al. 2017, Shokravi 2017a, b). Other 
work can be found for shell structures in the open literature 
(Panda and Singh 2009, 2013, Belabed et al. 2014, Zidi et 
al. 2014, Panda and Mahapatra 2014, Belkorissat et al. 
2015, Taibi et al. 2015, Larbi Chaht et al. 2015, Kar and 
Panda 2015a, b, 2016a, b, Bennoun et al. 2016, Draiche et 
al. 2016, Bousahla et al. 2016, Zidi et al. 2017, Mehar et al. 
2017, Klouche et al. 2017, Bellifa et al. 2017a, b, Sahoo et 
al. 2017, Chikh et al. 2017, Abdelaziz et al. 2017, 
Benadouda et al. 2017, Bouafia et al. 2017, Abualnour et al. 
2018, Attia et al. 2018, Benchohra et al. 2018, Zine et al. 
2018). 

The wave propagation of structural elements such as 
plates or beams has been studied in different sectors like 
aeronautics, medicine, acoustics of the buildings.... Ait 
Yahia et al. (2015) studied wave propagation in order to 
compare different shear theories and porosities solution in 
FG plates. Akbaş (2015) investigated the Wave propagation 
of a functionally graded beam in thermal environments. 
Boukhari et al. (2016) introduced an efficient shear 
deformation theory for wave propagation of functionally 
graded material plates. Sharma (2017) studied Vibro-
acoustic behaviour of shear deformable laminated 
composite flat panel using BEM and the higher order shear 
deformation theory. Han et al. (2001) proposed an 
analytical-numerical method for analyzing the wave 
characteristics in FGM cylinders. 

Sun and Luo (2011a) also studied the wave propagation 
and dynamic response of rectangular functionally graded 
material plates with completed clamped supports under 
impulsive load. Considering the thermal effects and 
temperature-dependent material properties, Sun and Luo 
(2011b) investigated the wave propagation of an infinite 
functionally graded plate using the higher-order shear 
deformation plate theory. 

Abo-Dahab (Abo-Dahab et al. 2016) has carried out the 
quantification of rotational effect on Rayleigh, Love and 
Stoneley waves in non-homogeneous fibre-reinforced 
anisotropic general viscoelastic media of higher order. 
Barati (2017) studied an imperfect nanomaterial by 
examining the wave propagation in nanoporous materials. 

The objective of this study is to develop high order 
hyperbolic (HSDT) shear deformation theory for the wave 
propagation of an infinite functionally graded plate. The 
theory is based on assumption similar to classical theory, 
the present theory has a new displacement field which 
introduces undetermined integral variables. The most 
interesting feature of this theory is that it accounts for a 
quadratic variation of the transverse shear strains across the 
thickness and satisfies the zero traction boundary conditions 
on the top and bottom surfaces of the plate without using 
shear correction factors. The governing equations of the 
wave propagation in the functionally graded plate are 
derived by using the Hamilton’s principle, which the effects 
of shear deformation and the inertia rotation are taken into 
account. The analytic dispersion relations of the 
functionally graded plate are obtained by solving an 
eigenvalue problem. The dispersion, phase velocity and 
group velocity curves of the wave propagation in the 
functionally graded plate in thermal environments are 
plotted. The characteristics of wave propagation of the 
functionally graded plate are described in detail. The 
influences of the volume fraction index and the thickness 
ratio on the dispersion and phase velocity of the wave 
propagation in the functionally graded plate are clearly 
discussed. 

 
 

2. Theory and formulation 
 
The functionally graded (FG) plate is composed by a 

mixture of ceramic and metal components as shown in Fig. 
1. The material characteristics of this plate change across 
the plate thickness with different power law distributions of 
the volume fractions of the constituents of the two materials 
as: 

(i) Power law distribution: 
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(ii) Sigmoid law distribution is defined as two power-
law functions 
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Fig. 1 Coordinates and geometry of functionally 
graded plate 
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where gi, (i = 1, 2) is the volume fraction and p is the power 
law index which takes values greater than or equal to zero. 

By using the rule of mixture, the effective material 
properties P, such as Young’s modulus E, the Poisson ratio 
υ, and mass density ρ can be expressed as 

 

mc PzgPzgzP  ] )(1 [ )()( 11     for  02/  zh  (3a)
 

mc PzgPzgzP  ] )(1 [ )()( 22      for  02/  zh  (3b)
 

Where P denotes the effective material characteristic 
such as Young’s modulus E and mass density ρ subscripts m 
and c denote the metallic and ceramic components, 
respectively; and p is the power law exponent. The value of 
p equal to zero indicates a fully ceramic plate, whereas 
infinite p represents a fully metallic plate. Since the 
influences of the variation of Poisson’s ratio v on the 
behavior of FG plates are very small, it is supposed to be 
constant for convenience. 

 

2.1 Kinematics and strains 
 

In this article, further simplifying supposition are made 
to the conventional HSDT so that the number of unknowns 
is reduced. The displacement field of the conventional 
HSDT is given by (Mahi et al. 2015, Bakhadda et al. 2018) 
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Where u0, v0, w0, φx, φy are five unknown displacements 
of the mid-plane of the plate, f(z) denotes shape function 
representing the variation of the transverse shear strains and 
stresses within the thickness. By considering that 

 dxyxx ),(  and ,),( dyyxy  the displacement 

field of the present model can be expressed in a simpler 
form as (Bourada et al. 2016, Besseghier et al. 2017, Khetir 
et al. 2017, Sekkal et al. 2017a, Menasria et al. 2017, Yazid 
et al. 2018) 
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In this work, a comparative study between different 

higher-order shear deformation plate theories is carried out, 
the different shape function are sited below. It should noted 
that there is no need to use shear correction factor in the 

present theory as the case of the first shear deformation 
theory (Youcef et al. 2018, Zamanian et al. 2017, Shokravi 
2017c, d, Zarei et al. 2017, Arani and Kolahchi 2016, 
Kolahchi et al. 2016b, Madani et al. 2016, Bouderba et al. 
2016, Bellifa et al. 2016). 

It can be seen that the displacement field in Eq. (5) 
introduces only four unknowns (u0, v0, w0 and θ). The 
nonzero strains associated with the displacement field in 
Eq. (5) are 
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Where 
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And the integrals defined in the above equations shall be 
resolved by a Navier type method and can be written as 
follows 
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Where the coefficients A′ and B′ are expressed according 
to the type of solution used, in this case via Navier. 
Therefore, A′, B′, k1 and k2 are expressed as follows 
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Where κ1 and κ2 are the wave numbers of wave 
propagation along x-axis and y-axis directions respectively. 

For elastic and isotropic FGMs, the constitutive 
relations can be expressed as 
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where (σx, σy, τxy, τyz, τxz) and (εx, εy, γxy, γyz, γxz) are the stress 
and strain components, respectively. Using the material 
properties defined in Eqs. (1)-(2), stiffness 

Coefficients, Cij, can be given as 
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2.2 Equations of motion 
 
Hamilton’s principle is herein utilized to determine the 

equations of motion (Zemri et al. 2015, Mouffoki et al. 
2017, Sekkal et al. 2017b, Meksi et al. 2018, Bouhadra et 
al. 2018, Belabed et al. 2018) 
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Where δU is the variation of strain energy; δV is the 

variation of the external work done by external load applied 
to the plate; and δK is the variation of kinetic energy. 

The variation of strain energy of the plate is given by 
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Where A is the top surface and the stress resultants N, 

M, and S are defined by 
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The variation of the external work can be expressed as 
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Where q and ),,( 000

xyyx NNN  are transverse and in-plane 
applied loads, respectively. 

For the free vibration and wave propagation problems 
the external work is zero. 

The variation of kinetic energy of the plate can be 
expressed as 
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Where dot-superscript convention indicates the 
differentiation with respect to the time variable t; ρ(z) is the 
mass density given by Eqs. (1)-(2); and (Ii, Ji, Ki) are mass 
inertias expressed by 
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By substituting Eqs. (13), (15) and (16) into Eq. (12), 
the following can be derived 
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Substituting Eq. (6) into Eq. (10) and the subsequent 
results into Eq. (14), the stress resultants are obtained in 
terms of strains as following compact form 
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and stiffness components are given as 
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Introducing Eq. (19) into Eq. (18), the equations of 

motion can be expressed in terms of displacements (u0, v0, 
w0, θ) and the appropriate equations take the form 
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Where dij, dijl and dijlm are the following differential 

operators 
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2.3 Dispersion relations 
 
We assume solutions for u0, v0, w0 and θ0 representing 

propagating waves in the x-y plane with the form 
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where U; V; W and X are the coefficients of the wave 
amplitude, κ1 and κ2 are the wave numbers of wave 
propagation along x-axis and y-axis directions respectively, 
ω is the frequency, 1i  the imaginary unit. 

Substituting Eq. (24) into Eq. (23), the following 
problem is obtained 
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The dispersion relations of wave propagation in the 

functionally graded beam are given by 
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The roots of Eq. (27) can be expressed as 
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They correspond to the wave modes M1, M2, M3 and M4 

respectively. The wave modes M1 and M4 correspond to the 
flexural wave, the wave mode M2 and M3 corresponds to the 
extensional wave. 

The phase velocity of wave propagation in the 
functionally graded plate can be expressed as 
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3. Numerical results and discussions 
 

In this part, to obtain results of frequencies and 
velocities one must go through the resolution of a system of 
four equations on eigenvalues problem; the FG plate made 
from Si3N4/SUS304, whose material properties are: E = 
348.43 GPa, ρ = 2370 kg/m3, ν = 0.3 for Si3N4 and E = 
201.04 GPa, ρ = 8166 kg/m3, ν = 0.3 for SUS304, are taken 
from reference Ait Yahia (Ait Yahia et al. 2015). The 
thickness of the functionally graded plate is taken h=0.02 
m. Various numerical examples are presented and discussed 
to check the accuracy of present theory in investigating the 
wave propagation of FG plates. 

The accuracy of the present neutral model involving 
only four unknown displacement functions is verified by 
comparing many theories like Reddy (1987), Reissner 
(1945), Ait Atmane (2010), and Afaq (Afaq et al. 2003). 
The analysis based on the present model is carried out using 
MAPLE. 

 

3.1 Comparison of theories in P-FGM plate 
 

Relation between power law exponent 
and wave number 
 

In Fig. 2, the dispersion curves of the different FG plates 
are represented using different theories of shear 
deformation plates. It can be noted that the dispersion 
curves predicted by all the plate theories proposed are 
almost identical to each other, independently of the power 
index P and the wave modes (M1, M2, M3 and M4). For the 
same value of k, the frequency of the wave propagation in 
the FG plate increases with the decrease of the power law 
index p, whatever the wave modes. Moreover, the 
propagation frequency of the wave becomes maximum in 
the homogeneous plate (p = 0). 

The relationship between the phase velocity of the 
different FG plates and the number of waves is represented 
in the Fig. 3, using different shear deformation plate 
theories. It can be seen that the phase velocity of the wave 
propagation in the FG plaque increases as the index of 
power law p decreases for the same wave number k. The 
phase velocity of the waves modes M2 and M3 of the plate 
(p = 0) is constant, but it is not a constant for the plate (p ≠ 
0). As well as the frequency, for the homogeneous plate (p = 
0), the phase velocity takes the maximum among those of 
all other compositions. Also, it can be seen that the phase 
velocity curves predicted by all proposed plate theories are 
almost identical to each other. 

 

3.2 Parametric study of P-FGM plate 
 

3.2.1 Frequencies 
Fig. 4 shows the dispersion curves of different FG plate 

with p = 2. It can be seen that the thickness of plate has an 
effect on the frequency of the wave propagation in FG plate 
for the large wave numbers (κ) and especially for the 
fundamental mode. Indeed, the frequencies are reduced 
when the thickness decreases. 

 

3.2.2 Phase velocities 
Fig. 5 shows, the phase velocity curves of different FG 

plate with p = 2. It can be seen from this Figure that of the 
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(a) M1 mode (b) M2 mode 
 

(c) M3 mode (d) M4 mode 

Fig. 2 The dispersion curves of the different functionally graded plates 

(a) M1 mode (b) M2 mode 
 

(c) M3 mode (d) M4 mode 

Fig. 3 The phase velocity curves of the different functionally graded plates 
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(a) M1 mode (b) M2 mode 
 

(c) M3 mode (d) M4 mode 

Fig. 4 The dispersion curves of the different functionally graded plates (p = 2) 

(a) M1 mode (b) M2 mode 
 

(c) M3 mode (d) M4 mode 

Fig. 5 The phase velocity curves of the different functionally graded plates (p = 2) 
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(a) M1 mode (b) M2 mode 
 

(c) M3 mode (d) M4 mode 

Fig. 6 The dispersion curves of the different functionally graded plates (κ = 10) 

(a) M1 mode (b) M2 mode 
 

(c) M3 mode (d) M4 mode 

Fig. 7 The phase velocity curves of the different functionally graded plates (κ = 10) 
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FG plate decreases as the thickness decreases, except for 
wave mode M3, for the large wave number, the increase of 
thickness involve the increase of phase velocity. 

We can also notice that for the fundamental mode, and 
for the large values of wave number the phase velocities 
converge whatever the thickness. 

Figs. 6-7 present respectively the influence of the 
dispersion and the phase velocity in the FG plate in function 
of the length to thickness ratio (a/h), using a hyperbolic 
shear deformation theory. The wave number is here taken 
equal to k = 10. From these figures, the similarities in the 
dispersion and phase velocity evolutions can be put into 
evidence. 

For the M1 mode, the increase in the plate length to 
thickness ratio leads to a decrease of the frequency as well 
as the phase velocity. 

For the M2 and M3 modes, the increase in the plate 
length to thickness ratio has no influence on the frequency 
and the phase velocity. 

On the contrary, for the M4 mode, the increase in the 
plate length to thickness ratio leads to an increase of both 
the frequency and the phase velocity. 

 
3.3 Comparisons parametric study of 

P-FGM and S-FGM plate 
 
From Figs. 8 to 11 it is clear that the SFGM plate shows 
 
 

Fig. 8 Comparisons frequencies P-FGM – SFGM 
(a/h = 10, p = 2) 

 
 

Fig. 9 Comparisons phase velocities P-FGM – 
SFGM (a/h = 10, p = 2) 

 

Fig. 10 Comparisons frequencies P-FGM – SFGM 
(κ = 10, p = 2) 

 
 

Fig. 11 Comparisons phase velocities P-FGM – SFGM 
(κ = 10, p = 2) 

 
 
greater results compared to the PFGM plate for the funda-
mental mode. This observation is valid for all modes. Thus 
a smooth distribution of the material properties along the 
thickness was ensured. 

 
 

4. Conclusions 
 
In this paper, a novel higher-order shear deformation 

theory is used for analyzing wave propagation of a 
functionally graded plate using various higher-order shear 
deformation plate theories. This theory incorporates a new 
field of displacement which introduces indeterminate 
integral variables. The computational cost can therefore be 
reduced due to reduced number of unknowns as well as the 
dispersion relations of wave propagation in the FG plate. 
The analytic dispersion relation of the functionally graded 
plate is obtained by solving an eigenvalue problem. From 
the present work, it can be concluded that the influence of 
the volume fraction distributions on wave propagation in 
the FG plate is significant. An amelioration of this 
formulation is chart in future works by introducing porosity 
factor and thickness stretching effect. 
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