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Abstract.

In this paper, the response of a sandwich cylindrical shell over any sort of boundary conditions and under a general

distributed static loading is investigated. The faces and the core are made of some isotropic materials. The faces are modeled as
thin cylindrical shells obeying the Kirchhoff-Love assumptions. For the core material it is assumed to be thick and the in-plane
stresses are negligible. The governing equations are derived using the principle of the stationary potential energy. Using
harmonic differential quadrature method (HDQM) the equations are solved for deformation components. The obtained results
primarily are compared against finite element results. Then, the effects of changing different parameters on the stress and
displacement components of sandwich cylindrical shells are investigated.
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1. Introduction

Sandwich shells are widely used in many engineering
applications, especially in aerospace and marine industries.
They commonly consist of two load carrying faces
connected by usually soft inner layer (core). The faces are
made of materials with high stiffnesses, as steel, aluminum
alloys, reinforced plastics and the core can be made of
corrugated sheet, wood, foam, rubber, etc. Generally, the
sandwich shells are lightweight structures with very high
stiffness to weight and strength to weight ratios and they
also have very good thermal and acoustic isolation
properties.

To date the study on the shell behavior is well-
developed and historically is back-dated to early 40s. A
summary of early works can be found in some textbooks
written by Plantema (1966), Allen (1969), and Zenkert
(1995). Some newer comprehensive reviews can be found
in (Noor et al. 1996, Librescu and Hause 2000, Vinson
2001, Altenbach 2011) in which various analytical and
computational models for sandwich structures are
presented. Moreover, some analytical and numerical
solution of shells can be found in (Ng and Lam 1999,
Civalek 2007a, b, 2008a, b, Zhong and Yu 2009). In
overview of these works it can be concluded that when the
overall or global response of a sandwich shell is under
consideration, there is no need to use complicated or high-
order theories. That is an accurate prediction of the shell
response can be achieved using the classical sandwich shell
theory assumptions. However, in the case of sandwich
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structures with a soft-core highly deformable in the
thickness direction, the Murakami’s function is suggested to
be added to the kinematic model to capture the zig-zag
effect. More details about this issue can be found in
(Carrera 2003, 2004, Tornabene et al. 2017).

Generalized differential quadrature method (GDQM) is
a rather new numerical method which has been used widely
in solving problems in different engineering fields
(Allahkarami et al. 2017, Mohammadimehr and Shahedi
2016, Hamzehkolaei et al. 2011). The GDQM was
developed by Shu and coworkers (Shu 2000, Shu and
Richards 1992) based on the DQ technique (Bellman et al.
1972). On the other hand, the harmonic differential
guadrature method (HDQM) is a fast converging version of
the GDQM (Civalek 2004). In general, in all different
versions of the DQ method, the partial derivative of a
function, with respect to a spatial variable at a given
discrete point, will be approximated by a linear summation
of weighted function values at all discrete points chosen in
the solution domain of the spatial variable (Shu 2000, Shu
and Richards 1992). Some advantages of the DQ method in
comparison with the finite element method (FEM) are the
ease of its implementation on the governing equations and
spending less computational efforts in solving any problem.
The reason lies in the fact that in the DQ method the natural
and essential boundary conditions must be satisfied
simultaneously, while in FEM the natural boundary
conditions are included in the weak form solution of the
governing equations, and the approximate displacement
functions must satisfy only the essential boundary
conditions of the problem. In other words, the DQM and
FEM deal with strong and weak form of governing
differential equations, respectively.

A review of several applications of the numerical
technique at issue, including different approaches, can be
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found in Tornabene et al. (2015). Also, some studies about
other solution methods of panel and shells can be found in
Abouhamze et al. (2007) for Extended Kantorovich
Method, in Civalek and Girses (2009) for discrete singular
convolution technique, in Zhao et al. (2004), for the mesh-
free Kp-Ritz method, in (Civalek 2008a, Glirses et al. 2009,
2012, Baltacioglu et al. 2010) for the method of discrete
singular ~ convolution, and in Bhimaraddi and
Chandrashekhara (1992) for three-dimensional elasticity
solution. There are some works in the literatures in which
the DQM has been used in static analysis of the laminated
cylindrical shell panel. For example, Maleki et al. (2012)
used GDQM in static and transient analysis of
thin/moderately thick laminated shell panels subjected to
different loadings and boundary conditions. Tornabene et al.
(2012) applied the GDQM in the static analysis of
laminated composite shell panel of revolution with various
lamination schemes and different layers. Malekzadeh
(2009) used the DQM in the in-plane static analysis of
laminated composite arches with any type of boundary
conditions. On the other hand, the analytical solutions are
limited to the type of boundary conditions. For example,
Alankaya and Oktem (2016) used an analytical method for
the problem of static analysis of cross-ply doubly-curved
shells with the mixed type simply supported boundary
conditions prescribed on the edges.

To the best knowledge of the author, reported works in
the literatures were only for the case of fully simply
supported sandwich shells, in which exact closed-form
solutions are presented using Fourier series. The aim of
present work is to study the behavior of cylindrical
sandwich shells with any sort of boundary conditions under
a generally distributed static loading using HDQM. The
obtained results are compared with finite element results.
As a result, one can find that if an accurate prediction of the
shell overall response can be achieved using the classical
sandwich shell theory assumptions. Then, the effects of
changing different parameters on the stress and displace-
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Fig. 1 Geometry of the sandwich cylindrical shell and
applied loading

ment components of sandwich cylindrical shells are
investigated.

2. Problem definition and assumptions

Fig. 1 shows an open sandwich cylindrical shell with
general boundary conditions subjected to arbitrary lateral
loadings (as a function of x and ) imposed simultaneously
at inner and outer surfaces. It is assumed that the loads are
exerted in a rather quasi-static manner. The displacement
components corresponding to the x (longitudinal), &
(circumferential) and z (radial) directions are represented by
u, v and w, respectively. According to Fig. 1, § represents
the subtended angle, R is the radii of curvature of the core
mid-plane, L is the length of the shell, h, h, and hy, are the
upper face, core and lower face thicknesses, respectively.
The faces and the core are assumed to be made of isotropic
materials. The faces are modeled as thin cylindrical shells
and analyzed based on the classical Love’s shell theory. The
core material is assumed to be thick and its in-plane stresses
are negligible. The core and the faces are perfectly bonded
that is no delamination will occur in the core/face
interfaces. Also, following assumptions prevailing in the
macro-mechanical modeling of the sandwich structures are
used (Altenbach et al. 2004):

e The thickness of the core is much greater than the
thicknesses of faces, i.e. h;, hy << h..

e The out-of-plane transverse shear stresses, z,, and z,,
are neglected within the faces.

e The core only transmits shear stresses, 7, and zy,,
and its other stress components i.e. gy, 0y, 7,» and o,
are negligible.

3. Formulation

3.1 Strain displacement relations

Referred to Fig. 1, the displacement components uy, Vi,
and w; of an arbitrary point located on the domain
contributed to the upper face i.e., —h/2-h; <z <-h /2 are as
follows (Jaskula and Zielnica 2011)

h, + hy\ 0 ,0
u(x,0,z) =u(x,0) + (z + > t) Wla(;c ) (1a)
h.+h\10 .0
v (%,8,2) = v,(x,0) + (z r t)R— Wla(g ) (1)
t
we(x,0,z) = w(x,0) (1c)

where Ry = R + (h, + h) /2 and, ug, v; and w; are the
displacements of an arbitrary point located on mid-surface
of the upper face in x, 8 and z directions, respectively. Also
the displacement components uy, v, and w, of an arbitrary
point located on the domain contributed to any point on the
lower face i.e., ho /2 <z<h,/2 + h, are as follows (Jaskula
and Zielnica 2011)

(22)

hC + hb) aWZ (x, 9)

191 = Pg (_
uy(x,0,z) =uy(x,0)+ |z > Ep
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v, (x,0,2) =v,(x,0) + (Z - he —; hb)Ribawla(g’ %) (2b)
wy(x,60,2) = wy(x,0) (2¢c)

where R, = R — (h, + hy) / 2 and, u,, v, and w, are the
displacements of an arbitrary point located on mid-surface
of the lower face in x, @ and z directions, respectively.

It is further assumed that at a specific section, any
neighbouring point between the core and faces undergo
similar transverse displacements throughout the thickness
(2) direction during the deformation. In other words, w, (X,
0,2) =w (X, 0,2) =wp (X, 6,2) =w (X, 8) at each cross-
section.

The displacement components, u;, V. and w, of an
arbitrary point located on domain contributed to the core
section i.e., -hy/2 <z < h/2 are as follows (Jaskula and
Zielnica 2011)

u(x,0) + uy(x,0)  h, — hy ow(x, 9)

u.(x,0,z) = . . G
L2z <u1 (x,0) —uy(x,0)  he +h, dw(x, 0))(3a)
h. 2 2 Epe
UC(X, 0, Z) = vl(x' 9) + ) (x! 6) + h’t - hb aw(x’ 9)
i " 09 (3b)
2z (U1 (x,0) —vy(x,0) N h, + h, Ow(x, 9))
h. 2 4R 50
we(x,6,2) = w(x,6) (30)

According to the classical Love’s shell theory, the strain
components in the upper and lower faces of the considered
shell are as follows (Soedel 2004)

ou;(x,0,z
g 2282y (4a)
0x
. 10v;(x,0,z) w(x,8) )
[ —_ 1= 4
® =R~ 06 R; ji=tb  (4D)
0v;(x,0,z) 10u;(x,6,z) .
Vxo = ox +E 96 ;i=tb (4C)

where the subscripts x and 6 address the longitudinal and
circumferential directions, respectively. Also, the out of
plane shear components of strain field in the core are as
follows

_ow(x, 9) Ju.(x,0,2)

c _ 5a
xz ox 0z (5a)
0v.(x,0,z2) 1 ow(x,0) v.(x,0,2)
bz = (5b)
‘ 0z R—z 06 R—z

3.2 Stress-strain relations

Both faces and core isotropic materials will undergo an
elastic deformation. From infinitesimal point of view the
general form for the in-plane stresses vs. strains relations in
elastic range for both faces will be (Soedel 2004)

i

x = ﬁ(ffc +vigg) = Chel + Chey si=tb (63)
Y
i Ei i i\ _ i i i i -
99 =12 (€5 +vier) = Chyer + Chyey ;i=1t,b (6b)
i
=iyl i=tb (6c)
¥ T2 4v) " B

where E and v are the Young’s modulus and Poisson’s ratio,
respectively.

Based on aforementioned assumptions, the general form
for shear stresses vs. shear strains relations in elastic range
of the core section made of an isotropic material will be
i=1x,0 @)

lZ - CylZ

where G. is the elastic shear modulus of the core.

4. Governing equations and solution procedure

In order to arrive to the governing differential equations
in the considered shell geometry, the principle of the
stationary potential energy is employed (Washizu 1975)

S =6(U-W)=0 (8)

where TI, U and W are the total potential energy,
deformation energy and the work done by the external
loadings, respectively.

The total deformation energy can be expressed as the
summation of deformation energy of each part that is, top,
bottom faces and the core section as

U=U,+U, +U, (9)

Moreover, the total deformation energy can be also
expressed in terms of stress and strain components as
(Washizu 1975)

=3 (o5&x + 055 + TupVep)dVs
Vi

t5 ) v +1.Ye,)dV. (10)
Ve

1 b
+§f (0 s +O'9€9 +rx9yx9)dVb
Vp

in which subscript t, ¢ and b are addressing the top, core and
bottom parts of the shell. After substituting stress relations
from Egs. (6) and (7) in Eq. (10), one would get

—he/2 B (L
=2 [ [ [+ et
he/2—he Y0 Yo
+Chy(e5)? + Ci3(vyp)?) dx dB dz

he/2 (B L

f [ [ Goir+Gosyardodz
he/2

h /2+hb

f f Cll(sb)z +2Chebel

+ Cb, (sg) + 633(yx9) ) dx df dz

he/2



38 Hassan Shokrollahi

Now, by substituting strains in terms of displacement
field in Eq. (11), U becomes a function of displacement. For
brevity, this expression has not been given here.

Also the work done due to external loads in terms of
displacement filed is

B L
W = j f q:(x, ) w(x,0) R, dx d6
0 70 (12)

B rL
+ j J q,(x,0) w(x,0) R, dx d6
0 0

in which q(x, 6) represents the shape of distributive external
loading. Having on hand the U and W in terms of
displacement components, one can establish the expression
for the total potential energy. After substituting
displacement field in the total potential energy expression
then one can impose the minimization principle.

By doing this, the governing coupled differential
equations and related boundary conditions are obtained in
terms of displacement components, which are presented in
Appendix A.

For solving the obtained equations, the HDQM is used.
In this method, the partial derivative of a function, with
respect to a spatial variable at a given discrete point,
approximated by a linear summation of weighted function
values at all discrete points chosen in the solution domain of
the spatial variable. Suppose the domain of considered shell
are represented by (0 < x < L, 0 < 8 < f) and being
discretized by N, x N, grid points along x and 8 coordinates.
If F(X, ) representing either of deformation functions; (u,
v, w) within the shell domain, then the partial derivatives of
F(x, 6) with respect to x and 6 at the point (x;, 6;) can be
expressed discretely as (Civalek 2004)

N
d"F(x;, 6;
%’) = ZAg,'j)F(xk,@); n=12,..,N,—1; (13)

am F(xl,

6,
Tom /) ZB.Em)F(xi,QZ); m=12,.., Ny —1;(14)
Ny NH
dn+mF(xl )
: (n) p(m) .
dx"dom ZZA B F(a 65 45
n=12,. -1,m=1,2,. —-1;

where Ag,’j) and B.Em) are the weighting coefficients in
conjunction to the order of partial derivative of F(x, 6)
with respect to x, i.e., n and the order of derivative with
respect to 6, i.e., m at the discrete points x; and 6,
respectively. The description of HDQ method and how to
choose the positions of the grid points using Chebyshev
polynomials can be found in detail in (Civalek 2004). Now,
the HDQM can be used to discretize the coupled Egs. (Al)-
(A5), governing equations, (A6)-(A11), boundary condition
equations for straight edges, and (Al12)-(Al7), boundary
condition equations for curved edges. The discretized forms
of all 17 equations using HDQM are obtained. However, in
order to avoid repetitive representations on this regard, only

the discretized form of Eq. (Al) is presented in this study,
as shown in the Appendix B.

For any sort of boundary conditions, after separating
domain and boundary degrees of freedom (DOF), the
following assembled matrix equations are obtained

et wellie)=to) o

where {d°} and {d“} represent the boundary and domain
DOF, respectively, and {P} is the load vector. After doing
some mathematical simplifications on Eq. (16), the
displacement components can be calculated by solving the
following relation
[[Kaa] = [Kap 1[Kpp 17 [Kpq 1]{d?} = {P} 17)
Based on the above outlined formulations, and by aids
of the MATLAB program solver a self-developed computer
program is written by which the displacements, strains and
stresses in different points of the shell faces and core can be
obtained. Again it should be emphasized that no limitations
on the type of boundary conditions and loading exist on
solving these equations.

4. Results and discussions

Primarily, to check on the convergences of the results as
the initial step in employing the HDQ method, several cases
with different number of grid points were examined. Also,
two types of grid points including equally and non-equally
spaced, are used. In the case of the non-equally spaced grid
points the positions of the grid points are determined using
Chebyshev polynomials. More details about this issue can
be found in (Striz et al. 1995, Civalek and U lker 2004).
Briefly, the outcome of this part indicated that the selection
a non-equally spaced grid with minimum 21x21 points will
yield to a stable answer in the problem under consideration.
Therefore, in all up-coming case studies in this section, this
gird scheme has been used. For example, for a cylindrical
sandwich shell panel with clamped edges subjected to a
uniform lateral loading of g, = 1 kPa the convergence of the
solution for the central transverse displacement w of the
shell panel, is presented in Fig. 2. The geometrical
parametersare L=09m,R=1.2m, #=35° h;=1mm, h,
=1 mm, he = 10 mm (Fig. 1). Also, the structural steel with
E; = 210 GPa, v; = 0.3, has been chosen for both face
materials. The core material is AirexR63.50 (Rao 2002)
with E.= 37.5 MPa and G, = 14.05 MPa.

In order to show the independency of the solution
method to the loading type, in addition to the uniform
lateral loading, which is generally used in static analysis,
the sinusoidal loading is also applied. The obtained results
using HDQM are compared with those similar ones
acquired from FEM.

5.1 Case study 1: Evaluation of proper functionality
and verification

A cylindrical sandwich shell subjected to uniform lateral
pressure is considered. The geometrical parameters are L =
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Fig. 2 The maximum lateral deflection of the shell panel
with clamped edges, for different grid points

free (F) are considered (for example, CFSS denotes a
cylindrical shell with clamped one curved edge, free one
axial edge and simply supported two other edges). Note that
the details of boundary conditions are presented in the end
of Appendix A.

The comparison of the results in Table 1 shows a very
good agreement between the HDQM and FEM results.

It has to be mentioned that in constructing the FE
model, the ANSYS software (version 13) has been used.
The FE model comprises 11892 three dimensional 20-node
brick type elements with total number of nodes of 85273.
The faces and the core are modeled as linear elastic
materials. The static analyses are done in the software. It is
to be noted that the core and the faces are modeled as 3D
solids, so that no restricting assumptions such as neglecting
the in-plane stresses in the core or neglecting the out-of-

Table 1 Maximum deflection of the shell, for lateral pressure of g; = 100 Pa

B.Cs FEM(10®m) HDQM (10°m)  9%disc.” B.Cs FEM10°m) HDQM (10°m)  %disc.
ccce 0.4387 0.4369 0.39 SSSS 3.3060 3.2320 2.26
CSCC 3.0450 2.9890 1.86 SScs 3.0680 3.0070 2.00
CCSC 0.4163 0.4151 0.29 scsc 0.4069 0.4048 0.50
CSCS 2.8263 2.7822 1.56 SCSS 3.8295 3.7223 2.80
CCSS 3.4090 3.3170 2.70 CFCF 15.614 15.177 2.80
CFCC 18.177 17.8135 2.00 CFSS 21.971 21.629 1.55
*0pdisc. = (FEM-HDQM)/FEMx 100
CCCCq;=1kPa,atx=L/2,z=0 CCCCq;=1kPa,at0=p/2,z=0

05 T T T T 05 T

0 T 0

05 === HDQM 05
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Fig. 3 Transverse deflection in core mid-surface for uniform loading along & (a) and x (b) directions

09m,R=12m,=35°%h=1mm, hy=1mm, h,=10
mm (see Fig. 1). Also, the structural steel with E; = 210
GPa, v = 0.3, has been chosen for both face materials. The
core material is AirexR63.50 (Rao 2002) with E.= 37.5
MPa and G, = 14.05 MPa.

Based on the above data the developed program was
executed out of which for the sandwich shell with different
boundary conditions, the values of maximum shell
deflection are obtained. The results related to the maximum
lateral deflection of the shell under lateral uniform pressure
of g, = 100 Pa are compared with those obtained using FEM
in Table 1. In this table various combinations of boundary
conditions including simply supported (S), clamped (C) and

plane stresses in the x are imposed in finite element
modeling.

The variations of the transverse deflection w in the core
mid-surface along 6 and x directions are presented in Fig. 3,
for the shell with all edges clamped and under uniform
pressure of g, = 1 kPa. For this shell, distributions of
transverse shear stresses, t,, and z,, of core mid-surface
along x direction are shown in Fig. 4. In addition, in-plane
normal stress oy, of top and bottom surfaces of shell along 8
direction and in-plane normal stress oy, of top and bottom
surfaces of shell along x direction are shown in Fig. 5 and 6,
respectively. In all above cases, the FEM results are also
shown along with the HDQM results. A close inspection of
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these results indicates very good agreement between the
HDQM and FEM results. Note that based on the Saint-
Venant’s principle the results near to the boundaries cannot

be trusted.

It should be further clarified that for a case of cylindrical
sandwich shell under CCCC type of boundary conditions,
the CPU time used in solving this problem by the self-
developed program based on implementation of HDQM and
a FEM model comprising 11892 of 20-noded brick type
elements with total number of nodes of 85273 reveals a
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Fig. 4 Transverse shear stresses, 7., (@) and z, (b), in core mid-surface along x direction for uniform loading

0.6 0.7 08

CCCCq;=1KkPa,atx=L/2,z=-hJ/2-h;

0.9

0.4

T

02

60 (MPa)
&

0.4

02 03 04 05

x/L

(b)

0.6 0.7 08 0.9 1

minimum 50.6% saving in CPU time with respect to the
FEM model. Furthermore, it has been verified that upon
equal number of nodes in a specified grid size, the
developed program based of HDQ method leads to a more
accurate result than FEM. Note that this advantage of the
DQ methods over FEM has been frequently reported by
other researchers as well (Civalek 2004, Maleki et al. 2012,
Bozdogan 2012).

Similar analysis was performed for a sandwich shell
with the same geometrical and material parameters
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Fig. 5 In-plane normal stress o, of top (a) and bottom (b) surfaces
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Fig. 6 In-plane normal stress oy, of top (a) and bottom (b) surfaces of shell along x direction for uniform loading
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Fig. 8 Transverse shear stresses, z,, (2) and z, (b), in core mid-surface along x direction for sinusoidal loading
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Fig. 9 In-plane normal stress o, of top (a) and bottom (b) surfaces of shell along & direction for sinusoidal loading

subjected to sinusoidal lateral pressure. For the loading
X
L

function a loading of the form q.(x,08) = q, sin( )
siniEE@%) is considered. By setting the o = 100 Pa and

under three different boundary conditions namely; CCCC,
SSSS and CFSS, the variations of transverse deflection w in
core mid-surface along 6 and x directions are depicted in
Fig. 7. For this shell, distributions of transverse shear
stresses, 7y, and 4., of core mid-surface along x direction are
shown in Fig. 8. In addition, in-plane normal stress o,y of

top and bottom surfaces of shell along 6 direction and in-
plane normal stress oy Of top and bottom surfaces of shell
along x direction are shown in Figs. 9 and 10, respectively.
Note that in this case only the results of HDQM are
presented.

5.2 Case study 2: Effects of core flexibility

To investigate on the effect of core flexibility, another
study is performed. In this case all edges of sandwich shell
under uniform pressure of q; = 1 kPa are clamped.
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Fig. 10 In-plane normal stress oy, of top (a) and bottom (b) surfaces of shell along x direction for sinusoidal loading

Table 2 Transverse displacement, w (10°m) atx = L/3, #=p/3and 2= 0

EJE, h/hf=5 h./hs =10 h/hs = 20
HDQM FEM %disc. HDQM FEM %disc. HDQM FEM %disc.
210 -4.0165 -3.9797 0.92 -4.0561 -3.9882 1.70 -3.7505 -3.6287 3.36
525 -3.8628 -3.8474 0.40 3.9330 -3.9118 0.54 -3.8051 -3.7679 0.99
1050 -3.7148 -3.7011 0.37 -3.8034 -3.7921 0.30 -3.7949 -3.7828 0.32
2625 -3.5052 -3.4856 0.56 -3.6101 -3.5991 0.31 -3.6939 -3.6917 0.06
5250 -3.3493 -3.3225 0.81 -3.4613 3.4460 0.44 3.5740 -3.5706 0.10
10500 -3.2029 -3.1682 1.10 -3.3131 -3.2908 0.68 -3.4372 3.4290 0.24
Table 3 In-plane normal stress, ay (Pa) at x = L/3, 8 = /3 and z = —h./2-h,
EJE, h/hf=5 he/hs =10 h/hs =20
HDQM FEM %disc.  HDQM FEM %disc.  HDQM FEM %.disc.
210 -193130  -187470 3.02 -222210  -214460 3.61 -246700  -234740 5.09
525 -188100  -186320 0.96 -204000  -201500 1.24 -216260  -212850 1.60
1050 -183570  -183470 0.05 -191200  -190920 0.15 -196090  -196010 0.04
2625 -177800  -178460 -0.37 -179980  -181120 -0.63 -180230  -182620 -1.31
5250 -174070 -174930 -0.49 -175270 -177030 -0.99 -175030 -178910 -2.17
10500 -171000  -172380 -0.80 -172090  -174960 -1.64 -172350  -178640 -3.52

Furthermore, the geometry of the shell comprises of the
following parameters; L=0.9m,R=1.2m, =60° h,=1
mm, h, = 1 mm, h, = 10 mm. The faces are made of the
structural steel with mechanical properties of the same as
the one considered in Section 5.1. Nonetheless, several
isotropic materials are selected for the core material with
the values of their E., varying in the range of 20 to 1000
MPa. This problem was solved thoroughly and out of
different obtained results only the variation of transverse
displacement at core mid-surface, in-plane normal stress oy,
on the external surface of shell and in-plane normal stress
ogp ON the internal surface of shell are listed in Tables 2, 3
and 4, respectively, for six different ratios of E{/E. and three
different ratios of h./h;. As indicated in these tables,
comparison of these results shows very good agreement
between HDQM and suitably developed FEM model (at the
worst case about 3.52% error in the case of o,,). Moreover,

no specific trend can be seen in increasing or decreasing the
core flexibility of the shell by changing E{/E_ ratios.

5.3 Case study 3: Effects of geometric parameters

Referred to different indicated geometrical parameters,
two important ratios are studied in this section. The first one
is the core to the face thickness ratio (h¢/hy) and the second
one is the ratio of shell curvature to thickness (R/h).

To study the core to the face thickness ratio a cylindrical
sandwich shell with clamped edges (CCCC) subjected to
uniform lateral pressure of g, = 1 kPa is considered. The
geometrical parametersare L=09m,R=1.2m, f=60°, h
=1 mm, hy, =1 mm and h, has some values between 5 and
40 mm. Also, the faces and the core materials are made of
the structural steel and AirexR63.50, respectively, whose
properties are given in Section 5.1.
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Table 4 In-plane normal stress, oy (Pa) at x = L/3, 8 = /3 and z = h/2+h,

EJE, hJhe=5 he/hs = 10 ho/h = 20
HDQM  FEM  %disc. ~HDQM  FEM  %disc. HDQM  FEM  %disc.
210 584800 -584910  -0.02  -546680 -543050  0.67  -464480 -457300 157
525 586240 -589700  -0.59  -562860 -565510  -0.47  -515920  -519390  -0.67
1050  -589900 -593780  -0.65  -576170  -579960  -0.65  -551940  -558580  -1.19
2625 ~ -597220  -599870  -0.44  -591260 -593820  -0.43  -583640  -589980  -1.07
5250  -602310  -602960  -0.11  -599320  -598960  0.06  -596430  -598650  -0.38
10500  -605740 -603290 041  -604480 -598760 096  -603640  -596530  1.19

Table 5 Transverse displacement and in-plane normal stresses at x = L/3 and 6 = /3

w(10®m)atz=0

ho/hy oxx (Pa) at z = —h/2-h; 69 (P2) at z = h/2+hy,
HDQM FEM %disc. he/h¢ HDQM FEM HDQM FEM %disc.
5 -3.3493 -3.3225 0.81 -174070  -174930 -0.49 -602310  -602960 -0.11
10 -3.4613 3.4460 0.44 -175270  -177030 -0.99 -599320  -598960 0.06
20 3.5740 -3.5706 0.10 -175030  -178910 -2.17 -596430  -598650 -0.38
40 -3.6639 -3.6667 -0.08 -172280  -177140 -2.74 -593250  -584030 1.58

Table 6 Transverse displacement and in-plane normal stresses at x = L/3 and 6 = i/

R/h w(10®m)atz=0 o (Pa) at z = —h/2—h; 6o (Pa) at z = h/2+h,

HDQM FEM %odisc. HDQM FEM %odisc. HDQM FEM %disc.

500 -64.222 -63.034 1.88 -376410 -394710 -4.64 -2654000 -2655800 -0.07

h=12 100 -2.9524 -2.9446 0.26 -156030 -155000 0.66 -551250 -555130 -0.70
mm 50 -0.8403 -0.8499 -1.13 -81551 -80463 1.35 -276140  -285660 -3.33
20 -0.1486 -0.1523 -2.44 -31592 -27781 13.72 -110850 -131610 -15.77

200 -6.7320 -6.8166 -1.24 -355710 -339370 4.81 -1207300 -1209300 -0.17

R=12m 100 -3.4264 -3.4495 0.67 -170990 -166570 2.65 -602660 -609740 1.16
50 -1.7594 -1.7686 0.52 -83606 -80148 431 -299460 -315500 5.08

25 -0.92587 -0.94033 -1.54 -41372 -34717 19.2 -149080 -176470 15.5

The obtained values of transverse displacement at core
mid-surface, in-plane normal stress oy, of top surface of
shell and in-plane normal stress a4y of bottom surface of
shell for four different thickness ratios at specified places
are listed in Table 5. All results show very good agreement
between HDQM and FEM. As indicated in this table,
comparison of these results shows very good agreement (at
the worst case about 2.74% error in the case of ay,) between
HDQM and suitably developed FEM model.

To study the variation effect of the curvature to
thickness ratio, a cylindrical sandwich shell with clamped
edges (CCCC) subjected to a uniform lateral pressure of q =
1 kPa is considered. The geometrical parameters are L = 0.9
m, # = 60°, h, = h, = h/10 and the problem has been solved
for four different values of R/h from 20 to 500. Also, the
faces and the core materials are made of structural steel and
AirexR63.50, respectively, with mechanical properties the
same as those used in the case study 1.

The obtained values of transverse displacement at core
mid-surface, in-plane normal stress oy on the external

surface of shell and in-plane normal stress oy oOn the
internal surface of shell are listed in Table 6. This table
shows that by decreasing the curvature to thickness ratio,
the difference between HDQM and FEM increases. The
comparison of the results indicate that for the ratios of 20 or
less, implementation of the classical theory will yield to
unsatisfactory results and hence, using another shell theory
may resolve this shortcomings.

5. Conclusions

Cylindrical sandwich shells under general type of
distributive lateral loadings are modeled based on a
classical theory of sandwich structures. The faces are
modeled as thin cylindrical shells obeying the Kirchhoff-
Love assumptions. For the core material it is assumed to be
thick and the in-plane stresses are negligible. The governing
equations are derived using the principle of the stationary
potential energy and solved using harmonic differential
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quadrature method (HDQM). The obtained results using
HDQM are compared by results out of the finite element
method solutions. Based on this study, following are
concluded:

® In using HDQM for static analysis of sandwich
shells, there are no limits on type of boundary
conditions and loadings.

e The HDQM leads to more accurate results than FEM
for the same number of grid points.

® By increasing the core to the face thickness ratio and
the curvature to thickness ratio, the transverse
displacement at core mid-surface increases.

By decreasing the curvature to thickness ratio, the
difference between the obtained results using classical
theory and FEM increases. The results show that for the R/h
ratios of less than 20, the obtained results using classical
theory are not trustable, especially for stresses.

References

Abouhamze, M., Aghdam, M.M. and Alijani, F. (2007), “Bending
analysis of symmetrically laminated cylindrical panels using the
extended Kantorovich method”, Mech. Adv. Mater. Struct.,
14(7), 523-530.

Alankaya, V. and Oktem, A.S. (2016), “Static analysis of
laminated and sandwich composite doubly-curved shallow
shells”, Steel Compos. Struct., Int. J., 20(5), 1043-1066.

Allahkarami, F., Nikkhah-Bahrami, M. and Saryazdi, M.G. (2017),
“Damping and vibration analysis of viscoelastic curved
microbeam reinforced with FG-CNTs resting on viscoelastic
medium using strain gradient theory and dgm”, Steel Compos.
Struct., Int. J., 25(2), 141-155.

Allen, H.G. (1969), Analysis and Design of Structural Sandwich
Panels, Pergamon Press Inc., Oxford, UK.

Altenbach, H. (2011), “Mechanics of advanced materials for
lightweight structures”, Proceedings of the Institution of
Mechanical Engineers, Part C: Journal of Mechanical
Engineering Science, 225(11), 2481-2496.

Altenbach, H., Altenbach, J. and Kissing, W. (2004), Mechanics of
Composite Structural Elements, Springer, New York, USA.

Baltacioglu, A.K., Akgoz, B. and Civalek, O. (2010), “Nonlinear
static response of laminated composite plates by discrete
singular convolution method”, Compos. Struct., 93(1), 153-161.

Bellman, R., Kashef, B.G. and Casti, J. (1972), “Differential
quadrature: A technique for the rapid solution of nonlinear
partial differential equations”, J. Comput. Phys., 10(1), 4-52.

Bhimaraddi, A. and Chandrashekhara, K. (1992), “Three-
dimensional elasticity solution for static response of simply
supported orthotropic cylindrical shells”, Compos. Struct.,
20(4), 227-235.

Bozdogan, K.B. (2012), “Differential quadrature method for free
vibration analysis of coupled shear walls”, Struct. Eng. Mech.,
Int. J., 41(1), 67-81.

Carrera, E. (2003), “Historical review of Zig-Zag theories for
multilayered plates and shells”, Appl. Mech. Rev., 56(3), 287-
308.

Carrera, E. (2004), “On the use of the Murakami's zig-zag function
in the modeling of layered plates and shells”, Comput. Struct.,
82(7-8), 541-554.

Civalek, 0. (2004), “Application of differential quadrature (DQ)
and harmonic differential quadrature (HDQ) for buckling
analysis of thin isotropic plates and elastic columns”, Eng.

Struct., 26(2), 171-186.

Civalek, 0. (2007a), “Linear vibration analysis of isotropic conical
shells by discrete singular convolution (DSC)”, Struct. Eng.
Mech., Int. J., 25(1), 127-130.

Civalek O. (2007b), “A parametric study of the free vibration
analysis of rotating laminated cylindrical shells using the
method of discrete singular convolution”, Thin-Wall. Struct.,
45(7-8), 692-698.

Civalek, O. (2008a), “Vibration analysis of conical panels using
the method of discrete singular convolution”, Commun. Numer.
Meth. Eng., 24(3), 169-181.

Civalek, 0. (2008b), “Analysis of thick rectangular plates with
symmetric cross-ply laminates based on first-order shear
deformation theory”, J. Compos. Mater., 42(26), 2853-2867.

Civalek, O. and Giirses, M. (2009), “Free vibration analysis of
rotating cylindrical shells using discrete singular convolution
technique”, Int. J. Pres. Ves. Pip., 86(10), 677-683.

Civalek, O. and Ulker, M. (2004), “Harmonic differential
quadrature (HDQ) for axisymmetric bending analysis of thin
isotropic circular plates”, Struct. Eng. Mech., Int. J., 17(1), 1-
14.

Giirses, M., Civalek, O., Korkmaz, A. and Ersoy, H. (2009), “Free
vibration analysis of symmetric laminated skew plates by
discrete singular convolution technique based on first-order
shear deformation theory”, Int. J. Numer. Meth. Eng., 79(3),
290-313.

Giirses, M., Akgdz, B. and Civalek, O. (2012), “Mathematical
modeling of vibration problem of nano-sized annular sector
plates using the nonlocal continuum theory via eight-node
discrete singular convolution transformation”, Appl. Math.
Comput., 219(6), 3226-3240.

Hamzehkolaei, N.S., Malekzadeh, P. and Vaseghi, J. (2011),
“Thermal effect on axisymmetric bending of functionally
graded circular and annular plates using dqm”, Steel Compos.
Struct., Int. J., 11(4), 341-358.

Jaskula, L. and Zielnica, J. (2011), “Large displacement stability
analysis of elastic-plastic unsymmetrical sandwich cylindrical
shells”, Thin Wall. Struct., 49(5), 611-617.

Librescu, L. and Hause, T. (2000), “Recent developments in the
modeling and behavior of advanced sandwich constructions: a
survey”, Compos. Struct., 48(1-3), 1-17.

Maleki, S., Tahani, M. and Andakhshideh, A. (2012), “Static and
transient analysis of laminated cylindrical shell panels with
various boundary conditions and general lay-ups”, ZAMM Z.
Angew. Math. Mech., 92(2), 124-140.

Malekzadeh, P. (2009), “A two-dimensional layerwise-differential
quadrature static analysis of thick laminated composite circular
arches”, Appl. Math. Model., 33(4), 1850-1861.

Mohammadimehr, M. and Shahedi, S. (2016), ‘“Nonlinear
magneto-electro-mechanical vibration analysis of double-
bonded sandwich Timoshenko microbeams based on MSGT
using Gdgm”, Steel Compos. Struct., Int. J., 21(1), 1-36.

Ng, T.Y. and Lam, K.Y. (1999), “Effects of elastic foundation on
the dynamic stability of cylindrical shells”, Struct. Eng. Mech.,
Int. J., 8(2), 193-205.

Noor, A.K., Burton, W.S. and Bert, C.W. (1996), “Computational
models for sandwich panels and shells”, Appl. Mech. Rev.,
49(3), 155-199.

Plantema, F.J. (1966), Sandwich Construction, John Wiley &
Sons, New York, USA.

Rao, T. (2002), “Study of core compression using digital image
correlation (DIC)”, Master of Science Dissertation; Michigan
Technological University.

Shu, C. (2000), Differential Quadrature and its Application in
Engineering, Springer, Berlin, Germany.

Shu, C. and Richards, B.E. (1992), “Application of generalized
differential quadrature to solve two-dimensional incompressible



Deformation and stress analysis of a sandwich cylindrical shell using HDQ Method

Navier Stockes equations”, Int. J. Numer. Meth. FI., 15(7), 791-
798.

Soedel, W. (2004), Vibrations of Shells and Plates, Marcel Dekker
Inc., New York, USA.

Striz, A.G.,, Wang, X. and Bert, C.W. (1995), “Harmonic
differential quadrature method and applications to analysis of
structural components”, Act. Mech., 111(1-2), 85-94.

Tornabene, F., Liverani, A. and Caligiana, G. (2012), “Static
analysis of laminated composite curved shells and panels of
revolution with aposteriori shear and normal stress recovery
using generalized differential quadrature method”, Int. J. Mech.
Sci., 61(1), 71-87.

Tornabene, F., Fantuzzi, N., Ubertini, F. and Viola, E. (2015),
“Strong formulation finite element method based on differential
quadrature: A survey”, Appl. Mech. Rev, 67(2), 020801-
020801-55.

Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2017), “Foam
core composite sandwich plates and shells with variable
stiffness: Effect of the curvilinear fiber path on the modal
response”, J. Sandw. Struct. Mater.

DOI: 10.1177/1099636217693623

Vinson, J.R. (2001), “Sandwich structures”, Appl. Mech. Rev.,
54(3), 201-214.

Washizu, K. (1975), Variational Methods in Elasticity and
Plasticity, Pergamon Press, Oxford, UK.

Zhong, H. and Yu, T. (2009), “A weak form quadrature element
method for plane elasticity problems”, Appl. Math. Model.,
33(10), 3801-3814.

Zhao, X., Ng, T.Y. and Liew, K.M. (2004), “Free vibration of two-
side simply supported laminated panels via the mesh-free Kp-
Ritz method”, Int. J. Mech. Sci., 46(1), 123-142.

Zenkert, D. (1995), An Introduction to Sandwich Construction,
Chameleon Press, London, UK.

CcC

45



46 Hassan Shokrollahi
Appendix A

Governing Equations

GCR GCR C£3ht ow C3€3ht azul C2t3ht 02v1 ( h’b + th + ht ow
- —u — —— - —ChLh, + G R—)—

mo et M T TR0 R, 96 R, 862 T\ tufttln 2h, o

(A1)
62 2 2

Uy 0°uy 0%v,
hta 30 (Clzht+C33h)6 69 — CiihR —— %2 — CishRy—— 522 =0

—2Ck5

G.R G.R Chh,ow Chhy,0%*u, CYhy,0%v,
h, 27 Th, TR, a6 Rb 962 ~ R, 002

0%u 0%u, 0%v,
hba 66 (C12hb‘|‘C33hb)a 66 — ChhyRy—— 2 — ChhyRy—— ET% =0

, hy + hy\ dw
_(C]_Zhb+GxZR+GxZR >_

2h ad
¢ 1Ox (A2)

_2C13

R% — h? 2R — h, 4Rh, — 4R* — h? 2R—h
GcLog( ) c og(

4h2 2R + h, 4h? 2R + h,
2R - hc) Cztzh aW C23h azul C%zh? 32171
2R + h, R, a6 R, 06% 12R3 062

Ci,h, 0%v;  Chyh3 03w ow 0%, 0%v;  Chhd 0%v,  CL3hd 33w
- — Clish, — — (CL,h, + Ci3h —2C4h

R, 002 T 12RF 007 (ol gy~ (Cialu + Csh) 5as = 20sh 5 50 ~ ok %00 T 4R? 9x067
0%u; Cihd 0%v, CCLRR 0%v,  Chhd 9%w  CiLhd oPw +Cf3ht3 Bw
“9x2  12R, dax?> 377t 9x2 ' 12R, 0x200 = 6R, 0x2060 12 9x3

1
c 2
)v1 + <8Rh2 (4Rh: + 4Rh h,

+(hy — hy)hZ — 4(hy + h,)R? — 8R2h,)G,Log (
(A3)

_Clt3htR

(4Rh, + 4R? + h2)G,L (ZR_hC) + _thL (ZR_hc) +( ARK? + 4Rh,h
°9\or5n,) " Y anr G0 \Grn, ) T (GRRz b

2R—h,\ ChLh,\ow CY%h,0%u chnd  Cchh,\o%v

_ 244 R2 R2 L < ) 221 23 2 (L2 22 2

T = hodhe + 4Ch, +hOR™ +8R h)GeLog \ o) == = |59 ~ "R, 002 \1283 T R, ) 302
Chh3\ 0%v, +C§’3hl‘°,’ 3w
6R; ) 0x06 = 4R} 0x06?

_Chh R uy C§3h£+Cth 62v2+ C{’Zh§+631’3h§ 3w C{’3h£63w=
BT T9x2  \12R, ' 3PP J9x2 T \12R, ' 6R, )9x206 ' 12 0x3

4h2

A4
Chh3 33w (A4)

+ 2R3 90° Chhy,— 6 — (Chhy + C33hb) o 69 (265’3]11; +
b

R, + @R +(C2bzhb +C2tzht>w Chhy 0u, Clh,ou,
Ry + qu Ry 2 e

R, R, R, 96 R, 00

C22hb 1 2 2 2 2 2R — h)avz
+< i CARRE 4 ARy +(hy — hORE + 4k, + ROR? + BR*.)GLog 5p—) =

Chhe 1 , ; L 2R — h,\ 3w,
( o~ i (4RAE + 4Rhchy +(hy — hOhE.~4(hy + hOOR? — BR?h,)G, L0g2R+h)ae

h.+h, +h,  (4R?> — h¥)h.hy,  2h.(h, —h,) + h2 — hf)

1
2 2 2 2
— A
+ (16R2h§ (4R + he) (hy + hi') + =~ 8RZ2 4RN, (AS)

2R—hc) ’w  Chhid%v, CS,h30%v, [Chh3  CLA}\d*w

2R+ h, 12R} ~ 12R3 ) 96*

G R(hb +h ) aul C aUZ C3I,J3hg C:{thg 63172 R I dv 151
2h, ox 2" 9x \6R, ' 12R, ax206 T (il 5y

C§3ht3 ClchtB 0%y C3b3h13; C3t3h§ Clbzhg’ szh? a*w Czb3hl3; 0%v, C2t3h§ 0*v,
6R,  12R, ) 0x%00 3R, 3R, 6R, 0x200%  AR; 0x06% 4R} 0x062

L
09( 307 ~ 12R} 963 12R} 063

+ (C{’Zhb + G.R +

G.R(hy + h,)\ 0u,
2h, dx

+ (szht - G.R -




Deformation and stress analysis of a sandwich cylindrical shell using HDQ Method

Chhy Cih3\ o*w 1 *w
4h.(hy + he + h) + h} + 2Ry by + h})G.R—
<3R,§ 3R? ) 0x063 4h( (o e he) & hi o+ 2hyhy + h)GR 52

C1b3h,§63172 C1t3ht363771 <C13h13; C1t3h?) a*w (Clblthb Cltlh?Rt)a4W

axt

12 9x3 12 0x3 3 3 )9x306 12 12

Boundary conditions, on =0,

Cish, Cish 0wy  Cish 0v, . 0wy o,

5u1 { Rt w Rt % Rt % + C13h a C33h a 0
Cf:;hb C:?f)’hb auz C23hb 6172 8 6172

6'!,1.2 { Rb w + Rb % + Rb 69 Cl3hb ax + C33hb ax =0

sy [C2he  ClsheOwy | (Chh? | Chh\ovy  Chhi 0w

YR, YR, 98 T\12R? TR, )96 12R} 362
Czt3ht vy Czt3ht3 ’w  CLh3 0*w “o

12Rt2 0x  6R% 0xd6 12R, dx2|

6u

Sv {szhb Czbghb ou, (Ci?zhi Czbzhb>a’72 szhg 0%w
, {22 ) Z227%

R, ' R, 00 '\12R} ' R, )36 12R] 062

Cz3hb avz Czb3hg BZW Clbzhg 82W —0
12R2 ) dx  6RZ 0xd0 12R, dx2|

ou
+Chhy, a_xz + (C% hy +

o

1
16hZR?

2R —h,
G, (h,(hy — h) + 2(hy + 2h, + h)R)Log (2R - )<2R(h +2R)v, + 2R(h, — 2R)v; —

ow\  CLhn3o%v, CLhdd%v chnd  cLn\adw CLhd d%v
_(hc(hb_ht)+2(hb+2hc+ht)R)%>+ »hy 0°v,  Cphi 0°vg < 2hy, | (2 t) 23hy 07,

12R? 967 T 12RF 062 \12R} ' 12R3)36° * 4RZ 0x36
C2t3h? 62171 Czbghl?; C2t3ht3 a3W C??ghg 62172 C§3h? 02171
4R? 9x06 3R;  3R? J9xd6?  6R, 0x?>  6R, 0x?
C1b2h13; + C3bsh1§ n Chrhi n Cizh}\ 9*w C1b3hg n Cl3hi\ 0°w -0
12R, = 3R, 12R, 3R, )0x%060 6 6 Jox3)

ow szhbavz _ Chhion Chhy Ch,h3\0*w
30 | 12R} a0 12R? 96 ' \12R} ' 12R? ) 062

C23hb6v2 623.h§‘au1 (Cfghf, c§3h§> 92w (cfzh;’; c{2h§>azw}_

12RZ dx 12R? dx '\ 6R? ' 6RZ )dxd6 ' \12R, = 12R, ) ax?
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(A5)

(A6)

(A7)

(A8)

(A9)

(A10)

(A11)

Note that in addition to above equations, for considered boundary conditions, some other relations must be implemented,

as following:

Clamped (C):
ow
ouy = duy, = 6vy = 6vy, = 6w = 5% 0
Simply supported (S):

ow
du; =duy; = 0w =0; év; # 0; dv, # 0; 5%;&0
Free (F):

ow
ouy # 0;6u, + 0; 6w + 0; dv, # 0; dv, + 0; 5£¢0

Boundary conditions, onx =0, L
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Cy3hi 0v,  Cishi 0v, Cshi  Cishi\ 9w Chhy | Chh}\o*w (A12)
12RZ dx  12R? ox 6R;  6R? )9xd6 \12R, 12R, ) 0x?
du, v, ou, v,
6”2 {ClbzhbW+C13hb ag +C12hb 69 +C11thb a +Cl3thb a } 0 (A13)
6u1 Czt3 h? 6171 C£3 h? aZW
o1 {Cﬁ3hfw+c§3hfﬁ+<121ﬂ LS 12R? 962
ouy C33h dv,  Chi 0*w  Cfshi 9*w (A1)
CihR, — + | CL3hR - =
Tl Gy +( 33T 12Rt> dx  6R, 9x00 12 axZ}
ou chhn} ov, ChLh}d*w
b 2 23/ b 2 L2zl
ovz {623hbw+c33h” 36 (12R§ +623h”> 30  12R? 062 .
Al5
ou, ChLhi\ov, C%hh3 0w  Chh}o*w
Chh,R,— + | C%h,R —— - =
et Ry 5 +( 3Ky + 12R, ) dx  6R, 0xd0 12 0x?
Chh} 0%v, Cih30%v,  [(Chh3  CLh\od*w  G.(h, + 2h, + h)R ow
- “2uy + 2uy + (hy + 2k, + R —)
{6R§ 262 © 6RZ 062 \ 6RZ ' 6R? ) 963 4h, ( Uz 2ur + (hy + 2he +h) 52
Cf’zhg 631.73}12 82172 szh? szgh? 62’71 szhg C§3h1§ szh? C§3h? *w (AL6)
12R, dxd0  \12R, = 6R, )0xd6 \12R, 3R,  12R, 3R, ) 0x062
C{’3hgazvz+cf3h§azvl_ Chhi ChLR}\ 03w _ ChhiR, CHR3R\O*wW _
12 0x? 12 0x? 3 3 Jox200 12 6 dx3
ow Clzhb dv,  Chhi o Chhi ChLR}\d*w Chhiov, Chhdov,
dx | 12R, 86 12R, 96 12R, = 12R,)962 12 oax 12 odx
(A17)
N Chhi  ChLh}\ 9w Clblhf,Rb_l_Cfltht 2*w)
6 6 |)0xd8 12 12 ) ox?

Note that in addition to above equations, for considered boundary conditions, some other relations must be implemented,
as following:

Clamped (C):
ow
6u1=6u2=é‘v1=6v2=6w=6a=0
Simply supported (S):
ow
5U1=6U2=6W:0; 6u1¢0; 6u2¢0; 5a¢0
Free (F):
ow
Suq # 0;8uy # 0; 6w # 0; dvy # 0; dv, # 0; 5a¢ 0
Appendix B
Discretized form of Equation (Al)
¢ h Ny th Ny Eh Ng
G.R G.R Cyshy ey C33h, @ Cyzhy @
Y +h_cu1i.j "R, By wiy = "R, By uy "R By~ vy,
=1 =1 =1
By + 2he + hey A
+ (_Clcht + G.R bz—hc> Z A(l)ij 2Ci3h, Z Z AEIPngl)ulk,l (B1)
C
Ny NG

~(Chohe + Cish) ). > APB vy, — ChikR, ZALk wyy,, = ClsheR, ZAlk Vi =0





