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1. Introduction 

 

Sandwich shells are widely used in many engineering 

applications, especially in aerospace and marine industries. 

They commonly consist of two load carrying faces 

connected by usually soft inner layer (core). The faces are 

made of materials with high stiffnesses, as steel, aluminum 

alloys, reinforced plastics and the core can be made of 

corrugated sheet, wood, foam, rubber, etc. Generally, the 

sandwich shells are lightweight structures with very high 

stiffness to weight and strength to weight ratios and they 

also have very good thermal and acoustic isolation 

properties. 

To date the study on the shell behavior is well-

developed and historically is back-dated to early 40s. A 

summary of early works can be found in some textbooks 

written by Plantema (1966), Allen (1969), and Zenkert 

(1995). Some newer comprehensive reviews can be found 

in (Noor et al. 1996, Librescu and Hause 2000, Vinson 

2001, Altenbach 2011) in which various analytical and 

computational models for sandwich structures are 

presented. Moreover, some analytical and numerical 

solution of shells can be found in (Ng and Lam 1999, 

Civalek 2007a, b, 2008a, b, Zhong and Yu 2009). In 

overview of these works it can be concluded that when the 

overall or global response of a sandwich shell is under 

consideration, there is no need to use complicated or high-

order theories. That is an accurate prediction of the shell 

response can be achieved using the classical sandwich shell 

theory assumptions. However, in the case of sandwich 
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structures with a soft-core highly deformable in the 

thickness direction, the Murakami’s function is suggested to 

be added to the kinematic model to capture the zig-zag 

effect. More details about this issue can be found in 

(Carrera 2003, 2004, Tornabene et al. 2017). 

Generalized differential quadrature method (GDQM) is 

a rather new numerical method which has been used widely 

in solving problems in different engineering fields 

(Allahkarami et al. 2017, Mohammadimehr and Shahedi 

2016, Hamzehkolaei et al. 2011). The GDQM was 

developed by Shu and coworkers (Shu 2000, Shu and 

Richards 1992) based on the DQ technique (Bellman et al. 

1972). On the other hand, the harmonic differential 

quadrature method (HDQM) is a fast converging version of 

the GDQM (Civalek 2004). In general, in all different 

versions of the DQ method, the partial derivative of a 

function, with respect to a spatial variable at a given 

discrete point, will be approximated by a linear summation 

of weighted function values at all discrete points chosen in 

the solution domain of the spatial variable (Shu 2000, Shu 

and Richards 1992). Some advantages of the DQ method in 

comparison with the finite element method (FEM) are the 

ease of its implementation on the governing equations and 

spending less computational efforts in solving any problem. 

The reason lies in the fact that in the DQ method the natural 

and essential boundary conditions must be satisfied 

simultaneously, while in FEM the natural boundary 

conditions are included in the weak form solution of the 

governing equations, and the approximate displacement 

functions must satisfy only the essential boundary 

conditions of the problem. In other words, the DQM and 

FEM deal with strong and weak form of governing 

differential equations, respectively. 

A review of several applications of the numerical 

technique at issue, including different approaches, can be 
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found in Tornabene et al. (2015). Also, some studies about 

other solution methods of panel and shells can be found in 

Abouhamze et al. (2007) for Extended Kantorovich 

Method, in Civalek and Gürses (2009) for discrete singular 

convolution technique, in Zhao et al. (2004), for the mesh-

free Kp-Ritz method, in (Civalek 2008a, Gürses et al. 2009, 

2012, Baltacıoglu et al. 2010) for the method of discrete 

singular convolution, and in Bhimaraddi and 

Chandrashekhara (1992) for three-dimensional elasticity 

solution. There are some works in the literatures in which 

the DQM has been used in static analysis of the laminated 

cylindrical shell panel. For example, Maleki et al. (2012) 

used GDQM in static and transient analysis of 

thin/moderately thick laminated shell panels subjected to 

different loadings and boundary conditions. Tornabene et al. 

(2012) applied the GDQM in the static analysis of 

laminated composite shell panel of revolution with various 

lamination schemes and different layers. Malekzadeh 

(2009) used the DQM in the in-plane static analysis of 

laminated composite arches with any type of boundary 

conditions. On the other hand, the analytical solutions are 

limited to the type of boundary conditions. For example, 

Alankaya and Oktem (2016) used an analytical method for 

the problem of static analysis of cross-ply doubly-curved 

shells with the mixed type simply supported boundary 

conditions prescribed on the edges. 

To the best knowledge of the author, reported works in 

the literatures were only for the case of fully simply 

supported sandwich shells, in which exact closed-form 

solutions are presented using Fourier series. The aim of 

present work is to study the behavior of cylindrical 

sandwich shells with any sort of boundary conditions under 

a generally distributed static loading using HDQM. The 

obtained results are compared with finite element results. 

As a result, one can find that if an accurate prediction of the 

shell overall response can be achieved using the classical 

sandwich shell theory assumptions. Then, the effects of 

changing different parameters on the stress and displace- 

 

 

 

Fig. 1 Geometry of the sandwich cylindrical shell and 

applied loading 

ment components of sandwich cylindrical shells are 

investigated. 
 

 

2. Problem definition and assumptions 
 

Fig. 1 shows an open sandwich cylindrical shell with 

general boundary conditions subjected to arbitrary lateral 

loadings (as a function of x and θ) imposed simultaneously 

at inner and outer surfaces. It is assumed that the loads are 

exerted in a rather quasi-static manner. The displacement 

components corresponding to the x (longitudinal), θ 

(circumferential) and z (radial) directions are represented by 

u, v and w, respectively. According to Fig. 1, β represents 

the subtended angle, R is the radii of curvature of the core 

mid-plane, L is the length of the shell, ht, hc and hb are the 

upper face, core and lower face thicknesses, respectively. 

The faces and the core are assumed to be made of isotropic 

materials. The faces are modeled as thin cylindrical shells 

and analyzed based on the classical Love’s shell theory. The 

core material is assumed to be thick and its in-plane stresses 

are negligible. The core and the faces are perfectly bonded 

that is no delamination will occur in the core/face 

interfaces. Also, following assumptions prevailing in the 

macro-mechanical modeling of the sandwich structures are 

used (Altenbach et al. 2004): 
 

 The thickness of the core is much greater than the 

thicknesses of faces, i.e. ht, hb << hc. 

 The out-of-plane transverse shear stresses, τθz and τxz, 

are neglected within the faces. 

 The core only transmits shear stresses, τθz and τxz, 

and its other stress components i.e. σx, σθ, τxθ and σz 

are negligible. 
 

 

3. Formulation 
 

3.1 Strain displacement relations 
 

Referred to Fig. 1, the displacement components ut, vt, 

and wt of an arbitrary point located on the domain 

contributed to the upper face i.e., –hc/2–ht ≤ z ≤ –hc/2 are as 

follows (Jaskula and Zielnica 2011) 
 

𝑢𝑡(𝑥, 𝜃, 𝑧) = 𝑢1(𝑥, 𝜃) +  𝑧 +
ℎ𝑐 + ℎ𝑡

2
 
𝜕𝑤1(𝑥, 𝜃)

𝜕𝑥
 (1a) 

 

𝑣𝑡(𝑥, 𝜃, 𝑧) = 𝑣1(𝑥, 𝜃) +  𝑧 +
ℎ𝑐 + ℎ𝑡

2
 

1

𝑅𝑡

𝜕𝑤1(𝑥, 𝜃)

𝜕𝜃
 (1b) 

 

𝑤𝑡(𝑥, 𝜃, 𝑧) = 𝑤1(𝑥, 𝜃) (1c) 
 

where Rt = R + (hc + ht)  / 2 and, u1, v1 and w1 are the 

displacements of an arbitrary point located on mid-surface 

of the upper face in x, θ and z directions, respectively. Also 

the displacement components ub, vb and wb of an arbitrary 

point located on the domain contributed to any point on the 

lower face i.e., hc / 2 ≤ z ≤ hc / 2 + hb are as follows (Jaskula 

and Zielnica 2011) 
 

𝑢𝑏(𝑥, 𝜃, 𝑧) = 𝑢2(𝑥, 𝜃) +  𝑧 −
ℎ𝑐 + ℎ𝑏

2
 
𝜕𝑤2(𝑥, 𝜃)

𝜕𝑥
 (2a) 
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𝑣𝑏(𝑥, 𝜃, 𝑧) = 𝑣2(𝑥, 𝜃) +  𝑧 −
ℎ𝑐 + ℎ𝑏

2
 

1

𝑅𝑏

𝜕𝑤1(𝑥, 𝜃)

𝜕𝜃
 (2b) 

 

𝑤𝑏(𝑥, 𝜃, 𝑧) = 𝑤2(𝑥, 𝜃) (2c) 
 

where Rb = R – (hc + ht) / 2 and, u2, v2 and w2 are the 

displacements of an arbitrary point located on mid-surface 

of the lower face in x, θ and z directions, respectively. 

It is further assumed that at a specific section, any 

neighbouring point between the core and faces undergo 

similar transverse displacements throughout the thickness 

(z) direction during the deformation. In other words, wc (x, 

θ, z) = wt (x, θ, z) = wb (x, θ, z) = w (x, θ) at each cross-

section. 

The displacement components, uc, vc and wc of an 

arbitrary point located on domain contributed to the core 

section i.e., –hc/2 ≤ z ≤ hc/2 are as follows (Jaskula and 

Zielnica 2011) 
 

𝑢𝑐 𝑥, 𝜃, 𝑧 =
𝑢1 𝑥, 𝜃 + 𝑢2 𝑥, 𝜃 

2
+
ℎ𝑡 − ℎ𝑏

4

𝜕𝑤 𝑥, 𝜃 

𝜕𝑥
 

+
2𝑧

ℎ𝑐
 
𝑢1(𝑥, 𝜃) − 𝑢2(𝑥, 𝜃)

2
+
ℎ𝑡 + ℎ𝑏

4

𝜕𝑤(𝑥, 𝜃)

𝜕𝑥
  

(3a) 

 

𝑣𝑐 𝑥, 𝜃, 𝑧 =
𝑣1 𝑥, 𝜃 + 𝑣2 𝑥, 𝜃 

2
+
ℎ𝑡 − ℎ𝑏

4𝑅

𝜕𝑤 𝑥, 𝜃 

𝜕𝜃
 

+
2𝑧

ℎ𝑐
 
𝑣1(𝑥, 𝜃) − 𝑣2(𝑥, 𝜃)

2
+
ℎ𝑡 + ℎ𝑏

4𝑅

𝜕𝑤(𝑥, 𝜃)

𝜕𝜃
  

(3b) 

 

𝑤𝑐(𝑥, 𝜃, 𝑧) = 𝑤(𝑥, 𝜃) (3c) 
 

According to the classical Love’s shell theory, the strain 

components in the upper and lower faces of the considered 

shell are as follows (Soedel 2004) 
 

𝜀𝑥
𝑖 =

𝜕𝑢𝑖(𝑥, 𝜃, 𝑧)

𝜕𝑥
          ; 𝑖 = 𝑡, 𝑏 (4a) 

 

𝜀𝜃
𝑖 =

1

𝑅𝑖

𝜕𝑣𝑖(𝑥, 𝜃, 𝑧)

𝜕𝜃
−
𝑤(𝑥, 𝜃)

𝑅𝑖
          ; 𝑖 = 𝑡, 𝑏 (4b) 

 

𝛾𝑥𝜃
𝑖 =

𝜕𝑣𝑖(𝑥, 𝜃, 𝑧)

𝜕𝑥
+

1

𝑅𝑖

𝜕𝑢𝑖(𝑥, 𝜃, 𝑧)

𝜕𝜃
          ; 𝑖 = 𝑡, 𝑏 (4c) 

 

where the subscripts x and θ address the longitudinal and 

circumferential directions, respectively. Also, the out of 

plane shear components of strain field in the core are as 

follows 
 

𝛾𝑥𝑧
𝑐 =

𝜕𝑤(𝑥, 𝜃)

𝜕𝑥
+
𝜕𝑢𝑐(𝑥, 𝜃, 𝑧)

𝜕𝑧
 (5a) 

 

𝛾𝜃𝑧
𝑐 =

𝜕𝑣𝑐(𝑥, 𝜃, 𝑧)

𝜕𝑧
+

1

𝑅 − 𝑧

𝜕𝑤(𝑥, 𝜃)

𝜕𝜃
+
𝑣𝑐(𝑥, 𝜃, 𝑧)

𝑅 − 𝑧
 (5b) 

 

3.2 Stress-strain relations 
 

Both faces and core isotropic materials will undergo an 

elastic deformation. From infinitesimal point of view the 

general form for the in-plane stresses vs. strains relations in 

elastic range for both faces will be (Soedel 2004) 

𝜎𝑥
𝑖 =

𝐸𝑖

1 − 𝜈𝑖
2  𝜀𝑥

𝑖 + 𝜈𝑖𝜀𝜃
𝑖  = 𝐶11

𝑖 𝜀𝑥
𝑖 + 𝐶12

𝑖 𝜀𝜃
𝑖     ; 𝑖 = 𝑡, 𝑏 (6a) 

 

𝜎𝜃
𝑖 =

𝐸𝑖

1 − 𝜈𝑖
2  𝜀𝜃

𝑖 + 𝜈𝑖𝜀𝑥
𝑖  = 𝐶12

𝑖 𝜀𝑥
𝑖 + 𝐶22

𝑖 𝜀𝜃
𝑖     ; 𝑖 = 𝑡, 𝑏 (6b) 

 

𝜏𝑥𝜃
𝑖 =

𝐸𝑖

2 1 + 𝜈𝑖 
𝛾𝑥𝜃
𝑖 = 𝐶33

𝑖 𝛾𝑥𝜃
𝑖     ; 𝑖 = 𝑡, 𝑏 (6c) 

 

where E and ν are the Young’s modulus and Poisson’s ratio, 

respectively. 

Based on aforementioned assumptions, the general form 

for shear stresses vs. shear strains relations in elastic range 

of the core section made of an isotropic material will be 
 

𝜏𝑖𝑧
𝑐 = 𝐺𝑐𝛾𝑖𝑧

𝑐         ; 𝑖 = 𝑥, 𝜃 (7) 
 

where Gc is the elastic shear modulus of the core. 
 

 

4. Governing equations and solution procedure 
 

In order to arrive to the governing differential equations 

in the considered shell geometry, the principle of the 

stationary potential energy is employed (Washizu 1975) 
 

𝛿𝛱 = 𝛿 𝑈 −𝑊 = 0 (8) 
 

where , U and W are the total potential energy, 

deformation energy and the work done by the external 

loadings, respectively. 

The total deformation energy can be expressed as the 

summation of deformation energy of each part that is, top, 

bottom faces and the core section as 
 

𝑈 = 𝑈𝑡 + 𝑈𝑐 + 𝑈𝑏  (9) 
 

Moreover, the total deformation energy can be also 

expressed in terms of stress and strain components as 

(Washizu 1975) 
 

𝑈 =
1

2
  𝜎𝑥

𝑡𝜀𝑥
𝑡 + 𝜎𝜃

𝑡𝜀𝜃
𝑡 + 𝜏𝑥𝜃

𝑡 𝛾𝑥𝜃
𝑡  𝑑𝑉𝑡

 

𝑉𝑡

 

+
1

2
  𝜏𝑥𝑧

𝑐 𝛾𝑥𝑧
𝑐 + 𝜏𝜃𝑧

𝑐 𝛾𝜃𝑧
𝑐  𝑑𝑉𝑐

 

𝑉𝑐

 

+
1

2
  𝜎𝑥

𝑏𝜀𝑥
𝑏 + 𝜎𝜃

𝑏𝜀𝜃
𝑏 + 𝜏𝑥𝜃

𝑏 𝛾𝑥𝜃
𝑏  𝑑𝑉𝑏

 

𝑉𝑏

 

(10) 

 

in which subscript t, c and b are addressing the top, core and 

bottom parts of the shell. After substituting stress relations 

from Eqs. (6) and (7) in Eq. (10), one would get 
 

𝑈 =
𝑅𝑡

2
    𝐶11

𝑡  𝜀𝑥
𝑡 2 + 2𝐶12

𝑡 𝜀𝑥
𝑡𝜀𝜃

𝑡
𝐿

0

𝛽

0

−ℎ𝑐 2 

−ℎ𝑐 2−ℎ𝑡 

+ 𝐶22
𝑡  𝜀𝜃

𝑡  2 + 𝐶33
𝑡  𝛾𝑥𝜃

𝑡  2 𝑑𝑥 𝑑𝜃 𝑑𝑧 

+
𝑅

2
    𝐺𝑐 𝛾𝑥𝑧

𝑡  2 + 𝐺𝑐 𝛾𝜃𝑧
𝑡  2 

𝐿

0

𝛽

0

ℎ𝑐 2 

−ℎ𝑐 2 

𝑑𝑥 𝑑𝜃 𝑑𝑧 

+
𝑅𝑏

2
    𝐶11

𝑏  𝜀𝑥
𝑏 2 + 2𝐶12

𝑏 𝜀𝑥
𝑏𝜀𝜃

𝑏
𝐿

0

𝛽

0

ℎ𝑐 2 +ℎ𝑏

ℎ𝑐 2 

+ 𝐶22
𝑏  𝜀𝜃

𝑏 
2

+ 𝐶33
𝑏  𝛾𝑥𝜃

𝑏  
2
 𝑑𝑥 𝑑𝜃 𝑑𝑧 

(11) 
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Now, by substituting strains in terms of displacement 

field in Eq. (11), U becomes a function of displacement. For 

brevity, this expression has not been given here. 

Also the work done due to external loads in terms of 

displacement filed is 
 

𝑊 =   𝑞𝑡 𝑥, 𝜃  𝑤 𝑥, 𝜃  𝑅𝑡  𝑑𝑥
𝐿

0

𝑑𝜃
𝛽

0

 

+  𝑞𝑏 𝑥, 𝜃  𝑤 𝑥, 𝜃  𝑅𝑏  𝑑𝑥
𝐿

0

𝑑𝜃
𝛽

0

 

(12) 

 

in which q(x, θ) represents the shape of distributive external 

loading. Having on hand the U and W in terms of 

displacement components, one can establish the expression 

for the total potential energy. After substituting 

displacement field in the total potential energy expression 

then one can impose the minimization principle. 

By doing this, the governing coupled differential 

equations and related boundary conditions are obtained in 

terms of displacement components, which are presented in 

Appendix A. 

For solving the obtained equations, the HDQM is used. 

In this method, the partial derivative of a function, with 

respect to a spatial variable at a given discrete point, 

approximated by a linear summation of weighted function 

values at all discrete points chosen in the solution domain of 

the spatial variable. Suppose the domain of considered shell 

are represented by (0 < x < L, 0 < θ < β) and being 

discretized by Nx × Nθ grid points along x and θ coordinates. 

If F(x,  θ) representing either of deformation functions; (u, 

v, w) within the shell domain, then the partial derivatives of 

F(x,  θ) with respect to x and θ at the point (xi,  θj) can be 

expressed discretely as (Civalek 2004) 
 

𝑑𝑛𝐹 𝑥𝑖 , 𝜃𝑗  

𝑑𝑥𝑛
=  𝐴𝑖𝑘

 𝑛 𝐹 𝑥𝑘 , 𝜃𝑗  

𝑁𝑥

𝑘=1

;  𝑛 = 1,2, … , 𝑁𝑥 − 1; (13) 

 

𝑑𝑚𝐹 𝑥𝑖 , 𝜃𝑗  

𝑑𝜃𝑚
=  𝐵𝑗𝑙

 𝑚 
𝐹 𝑥𝑖 , 𝜃𝑙 

𝑁𝜃

𝑙=1

;  𝑚 = 1,2, … , 𝑁𝜃 − 1; (14) 

 

𝑑𝑛+𝑚𝐹 𝑥𝑖 , 𝜃𝑗  

𝑑𝑥𝑛𝑑𝜃𝑚
=   𝐴𝑖𝑘

 𝑛 𝐵𝑗𝑙
 𝑚 

𝐹 𝑥𝑘 , 𝜃𝑙 

𝑁𝜃

𝑙=1

𝑁𝑥

𝑘=1

; 

𝑛 = 1,2, … , 𝑁𝑥 − 1;  𝑚 = 1,2, … , 𝑁𝜃 − 1; 

(15) 

 

where 𝐴𝑖𝑘
 𝑛 

 and 𝐵𝑗𝑙
 𝑚 

 are the weighting coefficients in 

conjunction to the order of partial derivative of F(x,  θ)  

with respect to x, i.e., n and  the order of derivative with 

respect to θ, i.e., m at the discrete points xi and θj, 

respectively. The description of HDQ method and how to 

choose the positions of the grid points using Chebyshev 

polynomials can be found in detail in (Civalek 2004). Now, 

the HDQM can be used to discretize the coupled Eqs. (A1)-

(A5), governing equations, (A6)-(A11), boundary condition 

equations for straight edges, and (A12)-(A17), boundary 

condition equations for curved edges. The discretized forms 

of all 17 equations using HDQM are obtained. However, in 

order to avoid repetitive representations on this regard, only 

the discretized form of Eq. (A1) is presented in this study, 

as shown in the Appendix B. 

For any sort of boundary conditions, after separating 

domain and boundary degrees of freedom (DOF), the 

following assembled matrix equations are obtained 
 

 
 𝐾𝑏𝑏   𝐾𝑏𝑑  

 𝐾𝑑𝑏   𝐾𝑑𝑑  
  
 𝑑𝑏 

 𝑑𝑑 
 =  

0
 𝑃 

  (16) 

 

where {db} and {dd} represent the boundary and domain 

DOF, respectively, and {P} is the load vector. After doing 

some mathematical simplifications on Eq. (16), the 

displacement components can be calculated by solving the 

following relation 
 

  𝐾𝑑𝑑  −  𝐾𝑑𝑏   𝐾𝑏𝑏  
−1 𝐾𝑏𝑑    𝑑

𝑑 =  𝑃  (17) 

 

Based on the above outlined formulations, and by aids 

of the MATLAB program solver a self-developed computer 

program is written by which the displacements, strains and 

stresses in different points of the shell faces and core can be 

obtained. Again it should be emphasized that no limitations 

on the type of boundary conditions and loading exist on 

solving these equations. 
 

 

4. Results and discussions 
 

Primarily, to check on the convergences of the results as 

the initial step in employing the HDQ method, several cases 

with different number of grid points were examined. Also, 

two types of grid points including equally and non-equally 

spaced, are used. In the case of the non-equally spaced grid 

points the positions of the grid points are determined using 

Chebyshev polynomials. More details about this issue can 

be found in (Striz et al. 1995, Civalek and Ü lker 2004). 

Briefly, the outcome of this part indicated that the selection 

a non-equally spaced grid with minimum 21×21 points will 

yield to a stable answer in the problem under consideration. 

Therefore, in all up-coming case studies in this section, this 

gird scheme has been used. For example, for a cylindrical 

sandwich shell panel with clamped edges subjected to a 

uniform lateral loading of qt = 1 kPa the convergence of the 

solution for the central transverse displacement w of the 

shell panel, is presented in Fig. 2. The geometrical 

parameters are L = 0.9 m, R = 1.2 m, β = 35°, ht = 1 mm, hb 

= 1 mm, hc = 10 mm (Fig. 1). Also, the structural steel with 

Ef = 210 GPa, νf = 0.3, has been chosen for both face 

materials. The core material is AirexR63.50 (Rao 2002) 

with Ec= 37.5 MPa and Gc = 14.05 MPa. 

In order to show the independency of the solution 

method to the loading type, in addition to the uniform 

lateral loading, which is generally used in static analysis, 

the sinusoidal loading is also applied. The obtained results 

using HDQM are compared with those similar ones 

acquired from FEM. 
 

5.1 Case study 1: Evaluation of proper functionality 
and verification 

 

A cylindrical sandwich shell subjected to uniform lateral 

pressure is considered. The geometrical parameters are L = 
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Fig. 2 The maximum lateral deflection of the shell panel 

with clamped edges, for different grid points 

 

 

 

 

 

 

0.9 m, R = 1.2 m, β = 35°, ht = 1 mm, hb = 1 mm, hc = 10 

mm (see Fig. 1). Also, the structural steel with Ef = 210 

GPa, νf = 0.3, has been chosen for both face materials. The 

core material is AirexR63.50 (Rao 2002) with Ec= 37.5 

MPa and Gc = 14.05 MPa. 

Based on the above data the developed program was 

executed out of which for the sandwich shell with different 

boundary conditions, the values of maximum shell 

deflection are obtained. The results related to the maximum 

lateral deflection of the shell under lateral uniform pressure 

of qt = 100 Pa are compared with those obtained using FEM 

in Table 1. In this table various combinations of boundary 

conditions including simply supported (S), clamped (C) and 

free (F) are considered (for example, CFSS denotes a 

cylindrical shell with clamped one curved edge, free one 

axial edge and simply supported two other edges). Note that 

the details of boundary conditions are presented in the end 

of Appendix A. 

The comparison of the results in Table 1 shows a very 

good agreement between the HDQM and FEM results. 

It has to be mentioned that in constructing the FE 

model, the ANSYS software (version 13) has been used. 

The FE model comprises 11892 three dimensional 20-node 

brick type elements with total number of nodes of 85273. 

The faces and the core are modeled as linear elastic 

materials. The static analyses are done in the software. It is 

to be noted that the core and the faces are modeled as 3D 

solids, so that no restricting assumptions such as neglecting 

the in-plane stresses in the core or neglecting the out-of- 

 

 

 

 
 

plane stresses in the x are imposed in finite element 

modeling. 

The variations of the transverse deflection w in the core 

mid-surface along θ and x directions are presented in Fig. 3, 

for the shell with all edges clamped and under uniform 

pressure of qt = 1 kPa. For this shell, distributions of 

transverse shear stresses, τxz and τθz, of core mid-surface 

along x direction are shown in Fig. 4. In addition, in-plane 

normal stress σθθ of top and bottom surfaces of shell along θ 

direction and in-plane normal stress σxx of top and bottom 

surfaces of shell along x direction are shown in Fig. 5 and 6, 

respectively. In all above cases, the FEM results are also 

shown along with the HDQM results. A close inspection of 

Table 1 Maximum deflection of the shell, for lateral pressure of qt = 100 Pa 

B.C.s FEM (10-6 m) HDQM (10-6 m) %disc.
*
 B.C.s FEM (10-6 m) HDQM (10-6 m) %disc. 

CCCC 0.4387 0.4369 0.39 SSSS 3.3060 3.2320 2.26 

CSCC 3.0450 2.9890 1.86 SSCS 3.0680 3.0070 2.00 

CCSC 0.4163 0.4151 0.29 SCSC 0.4069 0.4048 0.50 

CSCS 2.8263 2.7822 1.56 SCSS 3.8295 3.7223 2.80 

CCSS 3.4090 3.3170 2.70 CFCF 15.614 15.177 2.80 

CFCC 18.177 17.8135 2.00 CFSS 21.971 21.629 1.55 
 

*%disc. = (FEM-HDQM)/FEM×100 

  

(a) (b) 

Fig. 3 Transverse deflection in core mid-surface for uniform loading along θ (a) and x (b) directions 
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these results indicates very good agreement between the 

HDQM and FEM results. Note that based on the Saint-

Venant’s principle the results near to the boundaries cannot 

be trusted. 

It should be further clarified that for a case of cylindrical 

sandwich shell under CCCC type of boundary conditions, 

the CPU time used in solving this problem by the self-

developed program based on implementation of HDQM and 

a FEM model comprising 11892 of 20-noded brick type 

elements with total number of nodes of 85273 reveals a 
 

 

 

 

 
 

minimum 50.6% saving in CPU time with respect to the 

FEM model. Furthermore, it has been verified that upon 

equal number of nodes in a specified grid size, the 

developed program based of HDQ method leads to a more 

accurate result than FEM. Note that this advantage of the 

DQ methods over FEM has been frequently reported by 

other researchers as well (Civalek 2004, Maleki et al. 2012, 

Bozdogan 2012). 

Similar analysis was performed for a sandwich shell 

with the same geometrical and material parameters 

 

 

 

 

  

(a) (b) 

Fig. 4 Transverse shear stresses, τxz (a) and τθz (b), in core mid-surface along x direction for uniform loading 

  

(a) (b) 

Fig. 5 In-plane normal stress σθθ of top (a) and bottom (b) surfaces of shell along θ direction for uniform loading 

  

(a) (b) 

Fig. 6 In-plane normal stress σxx of top (a) and bottom (b) surfaces of shell along x direction for uniform loading 
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subjected to sinusoidal lateral pressure. For the loading 

function a loading of the form 𝑞𝑡 𝑥, 𝜃 = 𝑞0 sin  
𝜋𝑥

𝐿
  

sin⁡ 
𝜋𝜃

𝛽
  is considered. By setting the q0 = 100 Pa and 

under three different boundary conditions namely; CCCC, 

SSSS and CFSS, the variations of transverse deflection w in 

core mid-surface along θ and x directions are depicted in 

Fig. 7. For this shell, distributions of transverse shear 

stresses, τxz and τθz, of core mid-surface along x direction are 

shown in Fig. 8. In addition, in-plane normal stress σθθ of 

 

 

 

 

 

 

top and bottom surfaces of shell along θ direction and in-

plane normal stress σxx of top and bottom surfaces of shell 

along x direction are shown in Figs. 9 and 10, respectively. 

Note that in this case only the results of HDQM are 

presented. 
 

5.2 Case study 2: Effects of core flexibility 
 

To investigate on the effect of core flexibility, another 

study is performed. In this case all edges of sandwich shell 

under uniform pressure of qt = 1 kPa are clamped. 

  

(a) (b) 

Fig. 7 Transverse deflection in core mid-surface for sinusoidal loading along θ (a) and x (b) directions 

  

(a) (b) 

Fig. 8 Transverse shear stresses, τxz (a) and τθz (b), in core mid-surface along x direction for sinusoidal loading 

  

(a) (b) 

Fig. 9 In-plane normal stress σθθ of top (a) and bottom (b) surfaces of shell along θ direction for sinusoidal loading 
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Furthermore, the geometry of the shell comprises of the 

following parameters; L = 0.9 m, R = 1.2 m, β = 60°, ht = 1 

mm, hb = 1 mm, hc = 10 mm. The faces are made of the 

structural steel with mechanical properties of the same as 

the one considered in Section 5.1. Nonetheless, several 

isotropic materials are selected for the core material with 

the values of their Ec, varying in the range of 20 to 1000 

MPa. This problem was solved thoroughly and out of 

different obtained results only the variation of transverse 

displacement at core mid-surface, in-plane normal stress σxx 

on the external surface of shell and in-plane normal stress 

σθθ on the internal surface of shell are listed in Tables 2, 3 

and 4, respectively, for six different ratios of Ef/Ec and three 

different ratios of hc/hf. As indicated in these tables, 

comparison of these results shows very good agreement 

between HDQM and suitably developed FEM model (at the 

worst case about 3.52% error in the case of σxx). Moreover, 

 

 

 

 

 

 

no specific trend can be seen in increasing or decreasing the 

core flexibility of the shell by changing Ef/Ec ratios. 
 

5.3 Case study 3: Effects of geometric parameters 
 

Referred to different indicated geometrical parameters, 

two important ratios are studied in this section. The first one 

is the core to the face thickness ratio (hc/hf) and the second 

one is the ratio of shell curvature to thickness (R/h). 

To study the core to the face thickness ratio a cylindrical 

sandwich shell with clamped edges (CCCC) subjected to 

uniform lateral pressure of qt = 1 kPa is considered. The 

geometrical parameters are L = 0.9 m, R = 1.2 m, β = 60°, ht 

= 1 mm, hb = 1 mm and hc has some values between 5 and 

40 mm. Also, the faces and the core materials are made of 

the structural steel and AirexR63.50, respectively, whose 

properties are given in Section 5.1. 

  

(a) (b) 

Fig. 10 In-plane normal stress σxx of top (a) and bottom (b) surfaces of shell along x direction for sinusoidal loading 

Table 2 Transverse displacement, w (10-6m) at x = L/3, θ = β/3 and z = 0 

Ef/Ec 
hc/hf = 5 hc/hf = 10 hc/hf = 20 

HDQM FEM %disc. HDQM FEM %disc. HDQM FEM %disc. 

210 -4.0165 -3.9797 0.92 -4.0561 -3.9882 1.70 -3.7505 -3.6287 3.36 

525 -3.8628 -3.8474 0.40 3.9330 -3.9118 0.54 -3.8051 -3.7679 0.99 

1050 -3.7148 -3.7011 0.37 -3.8034 -3.7921 0.30 -3.7949 -3.7828 0.32 

2625 -3.5052 -3.4856 0.56 -3.6101 -3.5991 0.31 -3.6939 -3.6917 0.06 

5250 -3.3493 -3.3225 0.81 -3.4613 3.4460 0.44 3.5740 -3.5706 0.10 

10500 -3.2029 -3.1682 1.10 -3.3131 -3.2908 0.68 -3.4372 3.4290 0.24 
 

Table 3 In-plane normal stress, σxx (Pa) at x = L/3, θ = β/3 and z = –hc/2–ht 

Ef/Ec 
hc/hf = 5 hc/hf = 10 hc/hf = 20 

HDQM FEM %disc. HDQM FEM %disc. HDQM FEM %disc. 

210 -193130 -187470 3.02 -222210 -214460 3.61 -246700 -234740 5.09 

525 -188100 -186320 0.96 -204000 -201500 1.24 -216260 -212850 1.60 

1050 -183570 -183470 0.05 -191200 -190920 0.15 -196090 -196010 0.04 

2625 -177800 -178460 -0.37 -179980 -181120 -0.63 -180230 -182620 -1.31 

5250 -174070 -174930 -0.49 -175270 -177030 -0.99 -175030 -178910 -2.17 

10500 -171000 -172380 -0.80 -172090 -174960 -1.64 -172350 -178640 -3.52 
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The obtained values of transverse displacement at core 

mid-surface, in-plane normal stress σxx of top surface of 

shell and in-plane normal stress σθθ of bottom surface of 

shell for four different thickness ratios at specified places 

are listed in Table 5. All results show very good agreement 

between HDQM and FEM. As indicated in this table, 

comparison of these results shows very good agreement (at 

the worst case about 2.74% error in the case of σxx) between 

HDQM and suitably developed FEM model. 

To study the variation effect of the curvature to 

thickness ratio, a cylindrical sandwich shell with clamped 

edges (CCCC) subjected to a uniform lateral pressure of q = 

1 kPa is considered. The geometrical parameters are L = 0.9 

m, β = 60°, ht = hb = hc/10 and the problem has been solved 

for four different values of R/h from 20 to 500. Also, the 

faces and the core materials are made of structural steel and 

AirexR63.50, respectively, with mechanical properties the 

same as those used in the case study 1. 

The obtained values of transverse displacement at core 

mid-surface, in-plane normal stress σxx on the external 

 

 

 

 

 

 

surface of shell and in-plane normal stress σθθ on the 

internal surface of shell are listed in Table 6. This table 

shows that by decreasing the curvature to thickness ratio, 

the difference between HDQM and FEM increases. The 

comparison of the results indicate that for the ratios of 20 or 

less, implementation of the classical theory will yield to 

unsatisfactory results and hence, using another shell theory 

may resolve this shortcomings. 

 

 

5. Conclusions 
 

Cylindrical sandwich shells under general type of 

distributive lateral loadings are modeled based on a 

classical theory of sandwich structures. The faces are 

modeled as thin cylindrical shells obeying the Kirchhoff-

Love assumptions. For the core material it is assumed to be 

thick and the in-plane stresses are negligible. The governing 

equations are derived using the principle of the stationary 

potential energy and solved using harmonic differential 

Table 4 In-plane normal stress, σθθ (Pa) at x = L/3, θ = β/3 and z = hc/2+hb 

Ef/Ec 
hc/hf = 5 hc/hf = 10 hc/hf = 20 

HDQM FEM %disc. HDQM FEM %disc. HDQM FEM %disc. 

210 -584800 -584910 -0.02 -546680 -543050 0.67 -464480 -457300 1.57 

525 -586240 -589700 -0.59 -562860 -565510 -0.47 -515920 -519390 -0.67 

1050 -589900 -593780 -0.65 -576170 -579960 -0.65 -551940 -558580 -1.19 

2625 -597220 -599870 -0.44 -591260 -593820 -0.43 -583640 -589980 -1.07 

5250 -602310 -602960 -0.11 -599320 -598960 0.06 -596430 -598650 -0.38 

10500 -605740 -603290 0.41 -604480 -598760 0.96 -603640 -596530 1.19 
 

Table 5 Transverse displacement and in-plane normal stresses at x = L/3 and θ = β/3 

hc/hf 
w (10

-6
 m) at z = 0 σxx (Pa) at z = –hc/2–ht σθθ (Pa) at z = hc/2+hb 

HDQM FEM %disc. hc/hf HDQM FEM HDQM FEM %disc. 

5 -3.3493 -3.3225 0.81 -174070 -174930 -0.49 -602310 -602960 -0.11 

10 -3.4613 3.4460 0.44 -175270 -177030 -0.99 -599320 -598960 0.06 

20 3.5740 -3.5706 0.10 -175030 -178910 -2.17 -596430 -598650 -0.38 

40 -3.6639 -3.6667 -0.08 -172280 -177140 -2.74 -593250 -584030 1.58 
 

Table 6 Transverse displacement and in-plane normal stresses at x = L/3 and θ = β/ 

 
R/h w (10

-6
 m) at z = 0 σxx (Pa) at z = –hc/2–ht σθθ (Pa) at z = hc/2+hb 

HDQM FEM %disc. HDQM FEM %disc. HDQM FEM %disc. 

h = 12 

mm 

500 -64.222 -63.034 1.88 -376410 -394710 -4.64 -2654000 -2655800 -0.07 

100 -2.9524 -2.9446 0.26 -156030 -155000 0.66 -551250 -555130 -0.70 

50 -0.8403 -0.8499 -1.13 -81551 -80463 1.35 -276140 -285660 -3.33 

20 -0.1486 -0.1523 -2.44 -31592 -27781 13.72 -110850 -131610 -15.77 

R = 1.2 m 

200 -6.7320 -6.8166 -1.24 -355710 -339370 4.81 -1207300 -1209300 -0.17 

100 -3.4264 -3.4495 0.67 -170990 -166570 2.65 -602660 -609740 1.16 

50 -1.7594 -1.7686 0.52 -83606 -80148 4.31 -299460 -315500 5.08 

25 -0.92587 -0.94033 -1.54 -41372 -34717 19.2 -149080 -176470 15.5 
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quadrature method (HDQM). The obtained results using 

HDQM are compared by results out of the finite element 

method solutions. Based on this study, following are 

concluded: 
 

 In using HDQM for static analysis of sandwich 

shells, there are no limits on type of boundary 

conditions and loadings. 

 The HDQM leads to more accurate results than FEM 

for the same number of grid points. 

 By increasing the core to the face thickness ratio and 

the curvature to thickness ratio, the transverse 

displacement at core mid-surface increases. 
 

By decreasing the curvature to thickness ratio, the 

difference between the obtained results using classical 

theory and FEM increases. The results show that for the R/h 

ratios of less than 20, the obtained results using classical 

theory are not trustable, especially for stresses. 
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Appendix A 
 

Governing Equations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

−
𝐺𝑐𝑅

ℎ𝑐
𝑢2 +

𝐺𝑐𝑅

ℎ𝑐
𝑢1 −

𝐶23
𝑡 ℎ𝑡
𝑅𝑡

𝜕𝑤

𝜕𝜃
−
𝐶33
𝑡 ℎ𝑡
𝑅𝑡

𝜕2𝑢1

𝜕𝜃2
−
𝐶23
𝑡 ℎ𝑡
𝑅𝑡

𝜕2𝑣1

𝜕𝜃2
+  −𝐶12

𝑡 ℎ𝑡 + 𝐺𝑥𝑧𝑅
ℎ𝑏 + 2ℎ𝑐 + ℎ𝑡

2ℎ𝑐
 
𝜕𝑤

𝜕𝑥
 

−2𝐶13
𝑡 ℎ𝑡

𝜕2𝑢1

𝜕𝑥𝜕𝜃
−  𝐶12

𝑡 ℎ𝑡 + 𝐶33
𝑡 ℎ𝑡 

𝜕2𝑣1

𝜕𝑥𝜕𝜃
− 𝐶11

𝑡 ℎ𝑡𝑅𝑡

𝜕2𝑢1

𝜕𝑥2
− 𝐶13

𝑡 ℎ𝑡𝑅𝑡

𝜕2𝑣1

𝜕𝑥2
= 0 

(A1) 

𝐺𝑐𝑅

ℎ𝑐
𝑢2 −

𝐺𝑐𝑅

ℎ𝑐
𝑢1 −

𝐶23
𝑏 ℎ𝑏
𝑅𝑏

𝜕𝑤

𝜕𝜃
−
𝐶33
𝑏 ℎ𝑏
𝑅𝑏

𝜕2𝑢2

𝜕𝜃2
−
𝐶23
𝑏 ℎ𝑏
𝑅𝑏

𝜕2𝑣2

𝜕𝜃2
−  𝐶12

𝑏 ℎ𝑏 + 𝐺𝑥𝑧𝑅 + 𝐺𝑥𝑧𝑅
ℎ𝑏 + ℎ𝑡

2ℎ𝑐
 
𝜕𝑤

𝜕𝑥
 

−2𝐶13
𝑏 ℎ𝑏

𝜕2𝑢2

𝜕𝑥𝜕𝜃
−  𝐶12

𝑏 ℎ𝑏 + 𝐶33
𝑏 ℎ𝑏 

𝜕2𝑣2

𝜕𝑥𝜕𝜃
− 𝐶11

𝑏 ℎ𝑏𝑅𝑏

𝜕2𝑢2

𝜕𝑥2
− 𝐶13

𝑏 ℎ𝑏𝑅𝑏

𝜕2𝑣2

𝜕𝑥2
= 0 

(A2) 

4𝑅2 − ℎ𝑐
2

4ℎ𝑐
2

𝐺𝑐𝐿𝑜𝑔  
2𝑅 − ℎ𝑐
2𝑅 + ℎ𝑐

 𝑣2 +
4𝑅ℎ𝑐 − 4𝑅2 − ℎ𝑐

2

4ℎ𝑐
2

𝐺𝑐𝐿𝑜𝑔  
2𝑅 − ℎ𝑐
2𝑅 + ℎ𝑐

 𝑣1 +  
1

8𝑅ℎ𝑐
2

(4𝑅ℎ𝑐
2 + 4𝑅ℎ𝑐ℎ𝑡   

+ ℎ𝑏 − ℎ𝑡 ℎ𝑐
2 − 4 ℎ𝑏 + ℎ𝑡 𝑅

2 − 8𝑅2ℎ𝑐)𝐺𝑐𝐿𝑜𝑔  
2𝑅 − ℎ𝑐
2𝑅 + ℎ𝑐

  −
𝐶22
𝑡 ℎ𝑡
𝑅𝑡

 
𝜕𝑤

𝜕𝜃
−
𝐶23
𝑡 ℎ𝑡
𝑅𝑡

𝜕2𝑢1

𝜕𝜃2
−
𝐶22
𝑡 ℎ𝑡

3

12𝑅𝑡
3

𝜕2𝑣1

𝜕𝜃2
 

−
𝐶22
𝑡 ℎ𝑡
𝑅𝑡

𝜕2𝑣1

𝜕𝜃2
+
𝐶22
𝑡 ℎ𝑡

3

12𝑅𝑡
3

𝜕3𝑤

𝜕𝜃3
− 𝐶23

𝑡 ℎ𝑡
𝜕𝑤

𝜕𝑥
−  𝐶12

𝑡 ℎ𝑡 + 𝐶33
𝑡 ℎ𝑡 

𝜕2𝑢1

𝜕𝑥𝜕𝜃
− 2𝐶23

𝑡 ℎ𝑡
𝜕2𝑣1

𝜕𝑥𝜕𝜃
−
𝐶23
𝑡 ℎ𝑡

3

6𝑅𝑡
2

𝜕2𝑣1

𝜕𝑥𝜕𝜃
+
𝐶23
𝑡 ℎ𝑡

3

4𝑅𝑡
2

𝜕3𝑤

𝜕𝑥𝜕𝜃2
 

−𝐶13
𝑡 ℎ𝑡𝑅𝑡

𝜕2𝑢1

𝜕𝑥2
−
𝐶33
𝑡 ℎ𝑡

3

12𝑅𝑡

𝜕2𝑣1

𝜕𝑥2
− 𝐶33

𝑡 ℎ𝑡𝑅𝑡

𝜕2𝑣1

𝜕𝑥2
+
𝐶12
𝑡 ℎ𝑡

3

12𝑅𝑡

𝜕3𝑤

𝜕𝑥2𝜕𝜃
+
𝐶33
𝑡 ℎ𝑡

3

6𝑅𝑡

𝜕3𝑤

𝜕𝑥2𝜕𝜃
+
𝐶13
𝑡 ℎ𝑡

3

12

𝜕3𝑤

𝜕𝑥3
= 0 

(A3) 

−
1

4ℎ𝑐
2
 4𝑅ℎ𝑐 + 4𝑅2 + ℎ𝑐

2 𝐺𝑐𝐿𝑜𝑔  
2𝑅 − ℎ𝑐
2𝑅 + ℎ𝑐

 𝑣2 +
4𝑅2 − ℎ𝑐

2

4ℎ𝑐
2

𝐺𝑐𝐿𝑜𝑔  
2𝑅 − ℎ𝑐
2𝑅 + ℎ𝑐

 𝑣1 +  
1

8𝑅ℎ𝑐
2

(4𝑅ℎ𝑐
2 + 4𝑅ℎ𝑐ℎ𝑏   

+ ℎ𝑏 − ℎ𝑡 ℎ𝑐
2 + 4 ℎ𝑏 + ℎ𝑡 𝑅

2 + 8𝑅2ℎ𝑐)𝐺𝑐𝐿𝑜𝑔  
2𝑅 − ℎ𝑐
2𝑅 + ℎ𝑐

  −
𝐶22
𝑏 ℎ𝑏
𝑅𝑏

 
𝜕𝑤

𝜕𝜃
−
𝐶23
𝑏 ℎ𝑏
𝑅𝑏

𝜕2𝑢2

𝜕𝜃2
−  

𝐶22
𝑏 ℎ𝑏

3

12𝑅𝑏
3 +

𝐶22
𝑏 ℎ𝑏
𝑅𝑏

 
𝜕2𝑣2

𝜕𝜃2
 

+
𝐶22
𝑏 ℎ𝑏

3

12𝑅𝑏
3

𝜕3𝑤

𝜕𝜃3
− 𝐶23

𝑏 ℎ𝑏
𝜕𝑤

𝜕𝑥
−  𝐶12

𝑏 ℎ𝑏 + 𝐶33
𝑏 ℎ𝑏 

𝜕2𝑢2

𝜕𝑥𝜕𝜃
−  2𝐶23

𝑏 ℎ𝑏 +
𝐶23
𝑏 ℎ𝑏

3

6𝑅𝑏
2  

𝜕2𝑣2

𝜕𝑥𝜕𝜃
+
𝐶23
𝑏 ℎ𝑏

3

4𝑅𝑏
2

𝜕3𝑤

𝜕𝑥𝜕𝜃2
 

−𝐶13
𝑏 ℎ𝑏𝑅𝑏

𝜕2𝑢2

𝜕𝑥2
−  

𝐶33
𝑏 ℎ𝑏

3

12𝑅𝑏
+ 𝐶33

𝑏 ℎ𝑏𝑅𝑏 
𝜕2𝑣2

𝜕𝑥2
+  

𝐶12
𝑏 ℎ𝑏

3

12𝑅𝑏
+
𝐶33
𝑏 ℎ𝑏

3

6𝑅𝑏
 

𝜕3𝑤

𝜕𝑥2𝜕𝜃
+
𝐶13
𝑏 ℎ𝑏

3

12

𝜕3𝑤

𝜕𝑥3
= 0 

(A4) 

𝑞𝑡𝑅𝑡 + 𝑞𝑏𝑅𝑏 +  
𝐶22
𝑏 ℎ𝑏
𝑅𝑏

+
𝐶22
𝑡 ℎ𝑡
𝑅𝑡

 𝑤 +
𝐶23
𝑏 ℎ𝑏
𝑅𝑏

𝜕𝑢2

𝜕𝜃
+
𝐶23
𝑡 ℎ𝑡
𝑅𝑡

𝜕𝑢1

𝜕𝜃
 

+ 
𝐶22
𝑏 ℎ𝑏
𝑅𝑏

−
1

8𝑅ℎ𝑐
2

(4𝑅ℎ𝑐
2 + 4𝑅ℎ𝑐ℎ𝑏   + ℎ𝑏 − ℎ𝑡 ℎ𝑐

2 + 4 ℎ𝑏 + ℎ𝑡 𝑅
2 + 8𝑅2ℎ𝑐)𝐺𝑐𝐿𝑜𝑔

2𝑅 − ℎ𝑐
2𝑅 + ℎ𝑐

 
𝜕𝑣2

𝜕𝜃
 

+ 
𝐶22
𝑡 ℎ𝑡
𝑅𝑡

−
1

8𝑅ℎ𝑐
2

(4𝑅ℎ𝑐
2 + 4𝑅ℎ𝑐ℎ𝑡   + ℎ𝑏 − ℎ𝑡 ℎ𝑐

2. −4 ℎ𝑏 + ℎ𝑡 𝑅
2 − 8𝑅2ℎ𝑐)𝐺𝑐𝐿𝑜𝑔

2𝑅 − ℎ𝑐
2𝑅 + ℎ𝑐

 
𝜕𝑣1

𝜕𝜃
 

+ 
1

16𝑅2ℎ𝑐
2
 4𝑅2 + ℎ𝑐

2  ℎ𝑏
2 + ℎ𝑡

2   +
ℎ𝑐 + ℎ𝑏 + ℎ𝑡

ℎ𝑐
+
 4𝑅2 − ℎ𝑐

2 ℎ𝑡ℎ𝑏
8𝑅2ℎ𝑐

2
+

2ℎ𝑐 ℎ𝑏 − ℎ𝑡 + ℎ𝑏
2 − ℎ𝑡

2

4𝑅ℎ𝑐
 𝐺𝑐  

𝐿𝑜𝑔  
2𝑅 − ℎ𝑐
2𝑅 + ℎ𝑐

 
𝜕2𝑤

𝜕𝜃2
−
𝐶22
𝑏 ℎ𝑏

3

12𝑅𝑏
3

𝜕3𝑣2

𝜕𝜃3
−
𝐶22
𝑡 ℎ𝑡

3

12𝑅𝑡
3

𝜕3𝑣1

𝜕𝜃3
+  

𝐶22
𝑏 ℎ𝑏

3

12𝑅𝑏
3 +

𝐶22
𝑡 ℎ𝑡

3

12𝑅𝑡
3 

𝜕4𝑤

𝜕𝜃4
+  𝐶12

𝑏 ℎ𝑏 + 𝐺𝑐𝑅 +
𝐺𝑐𝑅 ℎ𝑏 + ℎ𝑡 

2ℎ𝑐
 
𝜕𝑢2

𝜕𝑥
 

+ 𝐶12
𝑡 ℎ𝑡 − 𝐺𝑐𝑅 −

𝐺𝑐𝑅 ℎ𝑏 + ℎ𝑡 

2ℎ𝑐
 
𝜕𝑢1

𝜕𝑥
+ 𝐶23

𝑏 ℎ𝑏
𝜕𝑣2

𝜕𝑥
−  

𝐶33
𝑏 ℎ𝑏

3

6𝑅𝑏
+
𝐶12
𝑏 ℎ𝑏

3

12𝑅𝑏
 

𝜕3𝑣2

𝜕𝑥2𝜕𝜃
+ 𝐶23

𝑡 ℎ𝑡
𝜕𝑣1

𝜕𝑥
 

− 
𝐶33
𝑡 ℎ𝑡

3

6𝑅𝑡
+
𝐶12
𝑡 ℎ𝑡

3

12𝑅𝑡
 

𝜕3𝑣1

𝜕𝑥2𝜕𝜃
+  

𝐶33
𝑏 ℎ𝑏

3

3𝑅𝑏
+
𝐶33
𝑡 ℎ𝑡

3

3𝑅𝑡
+
𝐶12
𝑏 ℎ𝑏

3

6𝑅𝑏
+
𝐶12
𝑡 ℎ𝑡

3

6𝑅𝑡
 

𝜕4𝑤

𝜕𝑥2𝜕𝜃2
−
𝐶23
𝑏 ℎ𝑏

3

4𝑅𝑏
2

𝜕3𝑣2

𝜕𝑥𝜕𝜃2
−
𝐶23
𝑡 ℎ𝑡

3

4𝑅𝑡
2

𝜕3𝑣1

𝜕𝑥𝜕𝜃2
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+ 
𝐶23
𝑏 ℎ𝑏

3

3𝑅𝑏
2 +

𝐶23
𝑡 ℎ𝑡

3

3𝑅𝑡
2  

𝜕4𝑤

𝜕𝑥𝜕𝜃3
−

1

4ℎ𝑐
 4ℎ𝑐 ℎ𝑏 + ℎ𝑐 + ℎ𝑡 + ℎ𝑏

2 + 2ℎ𝑏ℎ𝑡 + ℎ𝑡
2 𝐺𝑐𝑅

𝜕2𝑤

𝜕𝑥2
  

–
𝐶13
𝑏 ℎ𝑏

3

12

𝜕3𝑣2

𝜕𝑥3
−
𝐶13
𝑡 ℎ𝑡

3

12

𝜕3𝑣1

𝜕𝑥3
+  

𝐶13
𝑏 ℎ𝑏

3

3
+
𝐶13
𝑡 ℎ𝑡

3

3
 

𝜕4𝑤

𝜕𝑥3𝜕𝜃
+  

𝐶11
𝑏 ℎ𝑏

3𝑅𝑏

12
+
𝐶11
𝑡 ℎ𝑡

3𝑅𝑡

12
 
𝜕4𝑤

𝜕𝑥4
= 0 

(A5) 

𝛿𝑢1  
𝐶23
𝑡 ℎ𝑡
𝑅𝑡

𝑤 +
𝐶33
𝑡 ℎ𝑡
𝑅𝑡

𝜕𝑢1

𝜕𝜃
+
𝐶23
𝑡 ℎ𝑡
𝑅𝑡

𝜕𝑣1

𝜕𝜃
+ 𝐶13

𝑡 ℎ𝑡
𝜕𝑢1

𝜕𝑥
+ 𝐶33

𝑡 ℎ𝑡
𝜕𝑣1

𝜕𝑥
 = 0 (A6) 

𝛿𝑢2  
𝐶23
𝑏 ℎ𝑏
𝑅𝑏

𝑤 +
𝐶33
𝑏 ℎ𝑏
𝑅𝑏

𝜕𝑢2

𝜕𝜃
+
𝐶23
𝑏 ℎ𝑏
𝑅𝑏

𝜕𝑣2

𝜕𝜃
+ 𝐶13

𝑏 ℎ𝑏
𝜕𝑢2

𝜕𝑥
+ 𝐶33

𝑏 ℎ𝑏
𝜕𝑣2

𝜕𝑥
 = 0 (A7) 

𝛿𝑣1  
𝐶22
𝑡 ℎ𝑡
𝑅𝑡

𝑤 +
𝐶23
𝑡 ℎ𝑡
𝑅𝑡

𝜕𝑢1

𝜕𝜃
+  

𝐶22
𝑡 ℎ𝑡

3

12𝑅𝑡
3 +

𝐶22
𝑡 ℎ𝑡
𝑅𝑡

 
𝜕𝑣1

𝜕𝜃
−
𝐶22
𝑡 ℎ𝑡

3

12𝑅𝑡
3

𝜕2𝑤

𝜕𝜃2
  

 +𝐶12
𝑡 ℎ𝑡

𝜕𝑢1

𝜕𝑥
+  𝐶23

𝑡 ℎ𝑡 +
𝐶23
𝑡 ℎ𝑡

3

12𝑅𝑡
2 

𝜕𝑣1

𝜕𝑥
−
𝐶23
𝑡 ℎ𝑡

3

6𝑅𝑡
2

𝜕2𝑤

𝜕𝑥𝜕𝜃
−
𝐶12
𝑡 ℎ𝑡

3

12𝑅𝑡

𝜕2𝑤

𝜕𝑥2
 = 0 

(A8) 

𝛿𝑣2  
𝐶22
𝑏 ℎ𝑏
𝑅𝑏

𝑤 +
𝐶23
𝑏 ℎ𝑏
𝑅𝑏

𝜕𝑢2

𝜕𝜃
+  

𝐶22
𝑏 ℎ𝑏

3

12𝑅𝑏
3 +

𝐶22
𝑏 ℎ𝑏
𝑅𝑏

 
𝜕𝑣2

𝜕𝜃
−
𝐶22
𝑏 ℎ𝑏

3

12𝑅𝑏
3

𝜕2𝑤

𝜕𝜃2
  

 +𝐶12
𝑏 ℎ𝑏

𝜕𝑢2

𝜕𝑥
+  𝐶23

𝑏 ℎ𝑏 +
𝐶23
𝑏 ℎ𝑏

3

12𝑅𝑏
2 

𝜕𝑣2

𝜕𝑥
−
𝐶23
𝑏 ℎ𝑏

3

6𝑅𝑏
2

𝜕2𝑤

𝜕𝑥𝜕𝜃
−
𝐶12
𝑏 ℎ𝑏

3

12𝑅𝑏

𝜕2𝑤

𝜕𝑥2
 = 0 

(A9) 

𝛿𝑤  
1

16ℎ𝑐
2𝑅2

𝐺𝑐 ℎ𝑐 ℎ𝑏 − ℎ𝑡 + 2 ℎ𝑏 + 2ℎ𝑐 + ℎ𝑡 𝑅 𝐿𝑜𝑔  
2𝑅 − ℎ𝑐
2𝑅 + ℎ𝑐

   2𝑅 ℎ𝑐 + 2𝑅 𝑣2 + 2𝑅 ℎ𝑐 − 2𝑅 𝑣1
  

 − ℎ𝑐 ℎ𝑏 − ℎ𝑡 + 2 ℎ𝑏 + 2ℎ𝑐 + ℎ𝑡 𝑅 
𝜕𝑤

𝜕𝜃
 +

𝐶22
𝑏 ℎ𝑏

3

12𝑅𝑏
3

𝜕2𝑣2

𝜕𝜃2
+
𝐶22
𝑡 ℎ𝑡

3

12𝑅𝑡
3

𝜕2𝑣1

𝜕𝜃2
−  

𝐶22
𝑏 ℎ𝑏

3

12𝑅𝑏
3 +

𝐶22
𝑡 ℎ𝑡

3

12𝑅𝑡
3 

𝜕3𝑤

𝜕𝜃3
+
𝐶23
𝑏 ℎ𝑏

3

4𝑅𝑏
2

𝜕2𝑣2

𝜕𝑥𝜕𝜃
 

+
𝐶23
𝑡 ℎ𝑡

3

4𝑅𝑡
2

𝜕2𝑣1

𝜕𝑥𝜕𝜃
−  

𝐶23
𝑏 ℎ𝑏

3

3𝑅𝑏
2 +

𝐶23
𝑡 ℎ𝑡

3

3𝑅𝑡
2  

𝜕3𝑤

𝜕𝑥𝜕𝜃2
+
𝐶33
𝑏 ℎ𝑏

3

6𝑅𝑏

𝜕2𝑣2

𝜕𝑥2
+
𝐶33
𝑡 ℎ𝑡

3

6𝑅𝑡

𝜕2𝑣1

𝜕𝑥2
 

 −  
𝐶12
𝑏 ℎ𝑏

3

12𝑅𝑏
+
𝐶33
𝑏 ℎ𝑏

3

3𝑅𝑏
+
𝐶12
𝑡 ℎ𝑡

3

12𝑅𝑡
+
𝐶33
𝑡 ℎ𝑡

3

3𝑅𝑡
 

𝜕3𝑤

𝜕𝑥2𝜕𝜃
−  

𝐶13
𝑏 ℎ𝑏

3

6
+
𝐶13
𝑡 ℎ𝑡

3

6
 
𝜕3𝑤

𝜕𝑥3
 = 0 

(A10) 

𝛿
𝜕𝑤

𝜕𝜃
 −

𝐶22
𝑏 ℎ𝑏

3

12𝑅𝑏
3

𝜕𝑣2

𝜕𝜃
−
𝐶22
𝑡 ℎ𝑡

3

12𝑅𝑡
3

𝜕𝑣1

𝜕𝜃
+  

𝐶22
𝑏 ℎ𝑏

3

12𝑅𝑏
3 +

𝐶22
𝑡 ℎ𝑡

3

12𝑅𝑡
3 

𝜕2𝑤

𝜕𝜃2
  

 −
𝐶23
𝑏 ℎ𝑏

3

12𝑅𝑏
2

𝜕𝑣2

𝜕𝑥
−
𝐶23
𝑡 ℎ𝑡

3

12𝑅𝑡
2

𝜕𝑣1

𝜕𝑥
+  

𝐶23
𝑏 ℎ𝑏

3

6𝑅𝑏
2 +

𝐶23
𝑡 ℎ𝑡

3

6𝑅𝑡
2  

𝜕2𝑤

𝜕𝑥𝜕𝜃
+  

𝐶12
𝑏 ℎ𝑏

3

12𝑅𝑏
+
𝐶12
𝑡 ℎ𝑡

3

12𝑅𝑡
 
𝜕2𝑤

𝜕𝑥2
 = 0 

(A11) 

 𝛿𝑢1 = 𝛿𝑢2 = 𝛿𝑣1 = 𝛿𝑣2 = 𝛿𝑤 = 𝛿
𝜕𝑤

𝜕𝜃
= 0 

𝛿𝑢1 = 𝛿𝑢2 = 𝛿𝑤 = 0;  𝛿𝑣1 ≠ 0;  𝛿𝑣2 ≠ 0;  𝛿
𝜕𝑤

𝜕𝜃
≠ 0 

𝛿𝑢1 ≠ 0; 𝛿𝑢2 ≠ 0; 𝛿𝑤 ≠ 0;  𝛿𝑣1 ≠ 0;  𝛿𝑣2 ≠ 0;  𝛿
𝜕𝑤

𝜕𝜃
≠ 0 

Note that in addition to above equations, for considered boundary conditions, some other relations must be implemented, 

as following: 

 

Clamped (C): 

Simply supported (S): 

Free (F): 

 

Boundary conditions, on x = 0, L 
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Appendix B 
 

Discretized form of Equation (A1) 

 

 

 

 −
𝐶23
𝑏 ℎ𝑏

3

12𝑅𝑏
2

𝜕𝑣2

𝜕𝑥
−
𝐶23
𝑡 ℎ𝑡

3

12𝑅𝑡
2

𝜕𝑣1

𝜕𝑥
+  

𝐶23
𝑏 ℎ𝑏

3

6𝑅𝑏
2 +

𝐶23
𝑡 ℎ𝑡

3

6𝑅𝑡
2  

𝜕2𝑤

𝜕𝑥𝜕𝜃
+  

𝐶12
𝑏 ℎ𝑏

3

12𝑅𝑏
+
𝐶12
𝑡 ℎ𝑡

3

12𝑅𝑡
 
𝜕2𝑤

𝜕𝑥2
  (A12) 

𝛿𝑢2  𝐶12
𝑏 ℎ𝑏𝑤 + 𝐶13

𝑏 ℎ𝑏
𝜕𝑢2

𝜕𝜃
+ 𝐶12

𝑏 ℎ𝑏
𝜕𝑣2

𝜕𝜃
+ 𝐶11

𝑏 ℎ𝑏𝑅𝑏

𝜕𝑢2

𝜕𝑥
+ 𝐶13

𝑏 ℎ𝑏𝑅𝑏

𝜕𝑣2

𝜕𝑥
 = 0 (A13) 

𝛿𝑣1  𝐶23
𝑡 ℎ𝑡𝑤 + 𝐶33

𝑡 ℎ𝑡
𝜕𝑢1

𝜕𝜃
+  

𝐶23
𝑡 ℎ𝑡

3

12𝑅𝑡
2 + 𝐶23

𝑡 ℎ𝑡 
𝜕𝑣1

𝜕𝜃
−
𝐶23
𝑡 ℎ𝑡

3

12𝑅𝑡
2

𝜕2𝑤

𝜕𝜃2
  

 +𝐶13
𝑡 ℎ𝑡𝑅𝑡

𝜕𝑢1

𝜕𝑥
+  𝐶33

𝑡 ℎ𝑡𝑅𝑡 +
𝐶33
𝑡 ℎ𝑡

3

12𝑅𝑡
 
𝜕𝑣1

𝜕𝑥
−
𝐶33
𝑡 ℎ𝑡

3

6𝑅𝑡

𝜕2𝑤

𝜕𝑥𝜕𝜃
−
𝐶13
𝑡 ℎ𝑡

3

12

𝜕2𝑤

𝜕𝑥2
  = 0 

(A14) 

𝛿𝑣2  𝐶23
𝑏 ℎ𝑏𝑤 + 𝐶33

𝑏 ℎ𝑏
𝜕𝑢2

𝜕𝜃
+  

𝐶23
𝑏 ℎ𝑏

3

12𝑅𝑏
2 + 𝐶23

𝑏 ℎ𝑏 
𝜕𝑣2

𝜕𝜃
−
𝐶23
𝑏 ℎ𝑏

3

12𝑅𝑏
2

𝜕2𝑤

𝜕𝜃2
  

 +𝐶13
𝑏 ℎ𝑏𝑅𝑏

𝜕𝑢2

𝜕𝑥
+  𝐶33

𝑏 ℎ𝑏𝑅𝑏 +
𝐶33
𝑏 ℎ𝑏

3

12𝑅𝑏
 
𝜕𝑣2

𝜕𝑥
−
𝐶33
𝑏 ℎ𝑏

3

6𝑅𝑏

𝜕2𝑤

𝜕𝑥𝜕𝜃
−
𝐶13
𝑏 ℎ𝑏

3

12

𝜕2𝑤

𝜕𝑥2
 = 0 

(A15) 

𝛿𝑤  
𝐶23
𝑏 ℎ𝑏

3

6𝑅𝑏
2

𝜕2𝑣2

𝜕𝜃2
+
𝐶23
𝑡 ℎ𝑡

3

6𝑅𝑡
2

𝜕2𝑣1

𝜕𝜃2
−  

𝐶23
𝑏 ℎ𝑏

3

6𝑅𝑏
2 +

𝐶23
𝑡 ℎ𝑡

3

6𝑅𝑡
2  

𝜕3𝑤

𝜕𝜃3
+
𝐺𝑐 ℎ𝑏 + 2ℎ𝑐 + ℎ𝑡 𝑅

4ℎ𝑐
 −2𝑢2 + 2𝑢1 +  ℎ𝑏 + 2ℎ𝑐 + ℎ𝑡 

𝜕𝑤

𝜕𝑥
   

+ 
𝐶12
𝑏 ℎ𝑏

3

12𝑅𝑏
+
𝐶33
𝑏 ℎ𝑏

3

6𝑅𝑏
 
𝜕2𝑣2

𝜕𝑥𝜕𝜃
+  

𝐶12
𝑡 ℎ𝑡

3

12𝑅𝑡
+
𝐶33
𝑡 ℎ𝑡

3

6𝑅𝑡
 
𝜕2𝑣1

𝜕𝑥𝜕𝜃
−  

𝐶12
𝑏 ℎ𝑏

3

12𝑅𝑏
+
𝐶33
𝑏 ℎ𝑏

3

3𝑅𝑏
+
𝐶12
𝑡 ℎ𝑡

3

12𝑅𝑡
+
𝐶33
𝑡 ℎ𝑡

3

3𝑅𝑡
 

𝜕3𝑤

𝜕𝑥𝜕𝜃2
 

 +
𝐶13
𝑏 ℎ𝑏

3

12

𝜕2𝑣2

𝜕𝑥2
+
𝐶13
𝑡 ℎ𝑡

3

12

𝜕2𝑣1

𝜕𝑥2
−  

𝐶13
𝑏 ℎ𝑏

3

3
+
𝐶13
𝑡 ℎ𝑡

3

3
 

𝜕3𝑤

𝜕𝑥2𝜕𝜃
−  

𝐶11
𝑏 ℎ𝑏

3𝑅𝑏

12
+
𝐶11
𝑡 ℎ𝑡

3𝑅𝑡

6
 
𝜕3𝑤

𝜕𝑥3
 = 0 

(A16) 

𝛿
𝜕𝑤

𝜕𝑥
 −

𝐶12
𝑏 ℎ𝑏

3

12𝑅𝑏

𝜕𝑣2

𝜕𝜃
−
𝐶12
𝑡 ℎ𝑡

3

12𝑅𝑡

𝜕𝑣1

𝜕𝜃
+  

𝐶12
𝑏 ℎ𝑏

3

12𝑅𝑏

+
𝐶12
𝑡 ℎ𝑡

3

12𝑅𝑡

 
𝜕2𝑤

𝜕𝜃2
−
𝐶13
𝑏 ℎ𝑏

3

12

𝜕𝑣2

𝜕𝑥
−
𝐶13
𝑡 ℎ𝑡

3

12

𝜕𝑣1

𝜕𝑥
  

 +  
𝐶13
𝑏 ℎ𝑏

3

6
+
𝐶13
𝑡 ℎ𝑡

3

6
 
𝜕2𝑤

𝜕𝑥𝜕𝜃
+  

𝐶11
𝑏 ℎ𝑏

3𝑅𝑏

12
+
𝐶11
𝑡 ℎ𝑡

3𝑅𝑡

12
 
𝜕2𝑤

𝜕𝑥2
 = 0 

(A17) 

𝛿𝑢1 = 𝛿𝑢2 = 𝛿𝑣1 = 𝛿𝑣2 = 𝛿𝑤 = 𝛿
𝜕𝑤

𝜕𝑥
= 0 

𝛿𝑣1 = 𝛿𝑣2 = 𝛿𝑤 = 0;  𝛿𝑢1 ≠ 0;  𝛿𝑢2 ≠ 0;  𝛿
𝜕𝑤

𝜕𝑥
≠ 0 

𝛿𝑢1 ≠ 0; 𝛿𝑢2 ≠ 0; 𝛿𝑤 ≠ 0;  𝛿𝑣1 ≠ 0;  𝛿𝑣2 ≠ 0;  𝛿
𝜕𝑤

𝜕𝑥
≠ 0 

Note that in addition to above equations, for considered boundary conditions, some other relations must be implemented, 

as following: 

Clamped (C): 

Simply supported (S): 

Free (F): 

−
𝐺𝑐𝑅

ℎ𝑐
𝑢2𝑖,𝑗

+
𝐺𝑐𝑅

ℎ𝑐
𝑢1𝑖,𝑗

−
𝐶23
𝑡 ℎ𝑡
𝑅𝑡

 𝐵𝑗𝑙
 1 𝑤𝑖,𝑙

𝑁𝜃

𝑙=1

−
𝐶33
𝑡 ℎ𝑡
𝑅𝑡

 𝐵𝑗𝑙
 2 𝑢1𝑖,𝑙

𝑁𝜃

𝑙=1

−
𝐶23
𝑡 ℎ𝑡
𝑅𝑡

 𝐵𝑗𝑙
 2 𝑣1𝑖,𝑙

𝑁𝜃

𝑙=1

 

+ −𝐶12
𝑡 ℎ𝑡 + 𝐺𝑐𝑅

ℎ𝑏 + 2ℎ𝑐 + ℎ𝑡
2ℎ𝑐

  𝐴𝑖𝑘
 1 𝑤𝑘,𝑗

𝑁𝑥

𝑘=1

− 2𝐶13
𝑡 ℎ𝑡   𝐴𝑖𝑘

 1 𝐵𝑗𝑙
 1 𝑢1𝑘,𝑙

𝑁𝜃

𝑙=1

𝑁𝑥

𝑘=1

 

− 𝐶12
𝑡 ℎ𝑡 + 𝐶33

𝑡 ℎ𝑡   𝐴𝑖𝑘
 1 𝐵𝑗𝑙

 1 𝑣1𝑘,𝑙

𝑁𝜃

𝑙=1

𝑁𝑥

𝑘=1

− 𝐶11
𝑡 ℎ𝑡𝑅𝑡  𝐴𝑖𝑘

 2 𝑢1𝑘,𝑗

𝑁𝑥

𝑘=1

− 𝐶13
𝑡 ℎ𝑡𝑅𝑡  𝐴𝑖𝑘

 2 𝑣1𝑘,𝑗

𝑁𝑥

𝑘=1

= 0 

(B1) 
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