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1. Introduction 

 

In recent years, computer-aided topology optimization 

has been in increasing attention. Since the pioneering study 

by Bendnsøe and Kikuchi (1988), structural optimization 

has made a remarkable progress as an innovative numerical 

and design method, attracting enormous amounts of 

attention from scientific communities (e.g., Lee et al. 2012, 

2016a Lee and Shin 2015a, b, 2016a, Doan and Lee 2017, 

Banh and Lee 2018). In the field of topology optimization, 

multi-material topology optimization finds the optimal 

density distribution of different types of material in given 

conditions. Zhou and Wang (2006) introduced a phase field 

method for the multi-material structural topology 

optimization with a generalized Cahn-Hilliard model. 

Sigmund and Torquato (1997) introduced the design of 

materials with extreme thermal expansion using the three-

phase topology optimization method. Alonso et al. (2014) 

studied topology synthesis of multiple materials by using a 

multi Sequential Element Rejection and Admission (SERA) 

method. Yun and Youn (2017) investigated optimized 

topologies using multiple materials for viscoelastically 

damped structures under time-dependent loading. 

Composite materials are generally made of two or more 

constituent multi-materials with variant mechanical 

properties and have advantageous overall characteristics. 

When compared to traditional material, Xia et al. (2018) 

proposed a numerical framework for optimizing the fracture 

resistance of quasi-brittle composites through a modifica-

tion of the topology of the inclusion phase. 
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Regarding the numerical simulation of optimized 

topology problems for plate structures, by using Reissner-

Mindlin plate theory, Belblidia et al. (2001) presented a 

novel topology optimization algorithm for single- or three-

layered artificial material model. Goo et al. (2016) studied 

optimal topologies for thin plate structures with bending 

stress constraints. Yan et al. (2016) studied optimal 

topology design of damped vibrating plate structures 

subject to initial excitations. Nevertheless, adding hard 

materials with the same amount of total material may 

produce stiffer structures than single material. 

The Reissner-Mindlin theory of plates is an extension of 

Kirchhoff–Love plate theory that takes into account shear 

deformations through the thickness of a plate. Therefore 

Reissner-Mindlin plate bending model has a wider range of 

applicability than the Kirchhoff-Love model (Arnold et al. 

2002). This study focuses on the application of multiple 

materials to topology optimization of plate structures by 

using Reissner-Mindlin plate theory. To overcome shear 

locking phenomenon of thick plate, a MITC (mixed 

interpolation of tensorial components) (Bathe and Dvorkin 

1985) approach is used, instead of a classical reduced 

integration. This element interpolates the out-of-plane shear 

stresses using collocation points at the element boundaries. 

It uses the standard bending stiffness part, and the shear 

stiffness part is replaced by the mixed interpolation of 

tensorial components. To discover the multi-material design 

distribution in structure, the alternating active phase 

algorithm of optimal criteria introduced by Tavakoli and 

Mohseni (2014) is used. The multi-material-phase field 

approach is based on the Cahn-Hilliard equation, and a 

general method to solve multiphase structure topology 

optimization problems was presented in Zhou and Wang 

(2006). Due to simplicity and efficiency in topology 

optimization problem with single constraint and objective 
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function, Optimality Criteria method (Andreassen et al. 

2011) is used in this study. 

The obtained numerical example results demonstrate the 

success, performance, and effectiveness of the present 

method. This study contributes to give engineers and 

designers design information for plate-like structures by 

using multi-material topology optimization. 

The body of this study begins in Section 2 with a brief 

of Reissner–Mindlin plate theory. In Section 3, an analysis 

model of multi-material topology problem as well as 

stiffness formulation and sensitivity analysis of compliance 

for plates structures are described, including the 

computation procedure of multi-material topology 

optimization of Reissner-Mindlin for placte structures. 

Section 4 shows numerical applications to verify the present 

method. Conclusions and remark are presented in Section 5. 
 

 

2. Finite element formulation of MITC4 
for Mindlin plates 
 

2.1 A brief of Reissner–Mindlin plate theory 
 

Reissner–Mindlin plate model determines functions w 

and (θx, θy) as shown in Fig. 1, which are defined as 

transverse displacement and the rotation vectors, 

respectively, in the middle surface of the plate. Total plate 

energy Π based on potential energy for bending and shear is 

written as 
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with Πext is the potential energy of the applied loads and 
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where G = E / 2(1+v). t is thickness. E is Young‟s modulus 

and v is Poisson‟s ratio. Shear correction factor κ is chosen 

to be 5/6 for the purpose of removal of shear locking. 

 

2.2 Finite element implementation (Q4) 
 

In finite element method, the sectional rotations and the 

transverse mid-surface displacements are bilinearly 

interpolated as 
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where θxi, θyi, and wi are the nodal point values of the 

variables θx, θy, and w, respectively. The curvature-

displacement and shear strain-displacement relations are 

written as 
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where qi = [wi θxi θyi]
T is an unknown value at node i. The 

curvature-displacement matrix and strain-displacement 

matrix are written as 
 

,

,

,

,

, ,

0 0
0

0 0 ;
0

0

e

i x e e

i x ie

bi i y si e e

i y ie e

i y i x

N
N N

N
N N

N N

 
  

    
   

 

B B

 

(6) 

 

2.3 Mixed-interpolated tensorial components 
4 nodes element 

 

According to Reissner-Mindlin plate theory, the 

deflection and the rotation are independently defined each 

other. In bilinear interpolation for displacements and 

rotations, transverse shear strains appear at all points in the 

element subjected to a constant bending moment. 

Therefore, the low-order standard iso-parametric 

displacement-based plate elements without special 

treatments produce poor results in the thin plate case due to 

the false shear strains which result in the shear locking 

  

(a) y direction (b) x direction 

Fig. 1 Deformed plate cross section view in two directions 
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Fig. 2 MITC4 element 
 

 

phenomenon. In the classical approach to avoid this 

deficiency, the shear part of the stiffness matrix is integrated 

by using 1 × 1 Gauss quadrature. In the present work, 

MITC (mixed interpolation of tensorial components) by 

Bathe and Dvorkin (1985) approach is utilized to eliminate 

shear locking. 

In MITC4, the bending stiffness part is approximated as 

above section, and the approximation of the shear strains 

components may be expressed as 
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where the components of  𝑁𝑘
𝑠 𝑘=1:4    and 𝛾𝑥𝑧

𝐴 , 𝛾𝑥𝑧
𝐵 , 𝛾𝑦𝑧

𝐶 , 𝛾𝑦𝑧
𝐷  

are shown as follows. 
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and 
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where a and b are respectively the lengths of edges 

connected by vertices 1-2 and 1-4. The approximation of 

the shear strains may be re-written as follows. 
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where the shear part of the shear stiffness matrix is written 

as follows. 
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(11) 

3. Topology optimization formulation 
for multiple materials 
 

3.1 Multi-phase topology optimization 
 

Similar to topology optimization for single material, 

multi-material topology optimization is an optimization 

technique that seeks an optimal layout in a given design 

domain by using multiple materials. It typically uses finite 

element method (FEM) and sensitivity analysis as an 

analysis model. In topology optimization, the minimum 

structural compliance is often sought, with relative densities 

as the only design parameters. Element densities are set as 

design variables which can physically attain integer values, 

i.e., αj  {0, 1}. A single element may contain multiple 

material densities corresponding to a number of contributed 

materials. To avoid singularities in computation, material 

densities are relaxed for densities between 0 and 1 by a very 

small lower bound non-zero value εi. The general 

mathematical formulation of problem is written as follows. 
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where C is structural compliance. αi is the density vector for 

phase material i-th. Vi is the per-material volume fraction 

constraint with i = 1 : n + 1 such that the summation should 

be equal to unity  𝑉𝑖 = 1𝑖 . U and F are global load and 

displacement vectors, respectively. K is global stiffness 

matrix and Ω is a given design domain. 
 

3.2 Alternating active-phase algorithm 
 

Through alternating active phase algorithm, the multi-

phase topology optimization problem is solved by 

converting multi-phase into p (p ‒ 1)/2 binary phases sub-

problem. Each binary sub-problem is a so-called active 

phase. The binary phase material densities αj are modified 

to αab, with „a‟ and „b‟ which denote the active phase. 

Overlaps are not allowed in a desired optimal design, and 

then summation of the densities at each point x  Ω should 

be equal to unity  𝛼𝑗
𝑝
𝑗=1 = 1. The densities summation of 

two active phases „a‟ and „b‟ at each location x for each sub-

problem may be calculated as follows 
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Therefore, the summation of per-material volume 

fraction constraints Vi should be equal to unity as follows. 
 

 
1

1
p

i

i

V x



 

(14) 

 

3.3 Compliance sensitivity formulation 
for stiffness of Reissner-Mindlin plate 
in terms of multi-material densities 
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The stiffness matrix is given as follows. 
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where 𝐃𝑘
𝑟0 is the material property matrix corresponding to 

the phase material, k-th, including Poisson‟s ratio ν, and 

nominal elastic modulus 𝐸𝑘
0.  By using Eq. (13), 

sensitivities of multi-material stiffness formulation in terms 

of density variables can be written as follows 
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where 𝛼𝑎
𝑒  and Ue are density of phase „a‟ and the element 

displacement vector of element e-th, respectively. Finally, 

the sensitivities of objective function C for multi-material 

topology optimization is written by using the adjoint 

equation as follows. 
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3.4 Computational procedures of multi-material 
topology optimization of Reissner-Mindlin 
plates using MITC4 

 

 

A briefly summarized computational procedures of the 

present multi-material topology optimization is shown in 

Fig. 3. This procedure describes optimality criteria-based 

alternating active-phase algorithm using Gauss-Seidel 

iteration version of multi-material. 

In addition, the multi-material topology optimization for 

a thick plate structure by using Reissner–Mindlin plate 

theory is considered. To perform the finite element analysis 

step, the geometry, material properties, and loading and 

boundary conditions are determined. By using MITC4 

scheme, the shear part of the stiffness matrix is derived 

from Eqs. (7)-(11). And then the stiffness matrix K can be 

calculated by Eq. (15). By linear static analysis KU = F, the 

displacement can be obtained. By using Eq. (16), the 

sensitivity analysis of objective with respect to element 

design variables is calculated, and the sensitivity filtering is 

applied. For the next step, the design variables of a binary 

sub-problem are updated, and the iterative process 

continues until the desired optimum convergence, such as 

the reach of the minimum of compliance or the given 

number of iterations. 
 

 

4. Numerical application and discussion 
 

An accurate modeling test of the non-dimensional 

central displacement of a square plate for several meshes is 

executed under uniform transverse pressure considering 

 

 

Fig. 3 Flowchart of multi-material topology optimization procedure for thick plates using alternating 

active-phase algorithm and MITC4 

30



 

Multi-material topology optimization of Reissner-Mindlin plates using MITC4 

 

Fig. 4 Accurate modeling test results of fully clamped plate 
 

 

 

Fig. 5 Definition of load and boundary conditions for 

steel plate 
 

 

fully clamped boundary conditions at four sides is shown in 

Fig. 4. The non-dimensional transverse displacement is set 

as 𝑤 = 𝑤𝐸𝑡3/(23𝑃𝑙4 1 − 𝑣2 ). Through the increase of 

element numbers , the present plate model with MITC 4 

element gradually converges to analytical solutions of 

Zienkiewicẓ and Taylor (2000). As can be seen, 

convergence of MITC4 usage is better than that of Q4 

element. 

Next, examples of thickness plate structures subject to 

bending load are carried out as shown in Fig. 5. The 

structure is modeled as a full y clamped square steel plate. 

The dimension of the structure is 30×30 and the plate‟s 

thickness is constant to be a nominal value of 3. The 

magnitude of force F is 200. 40×40 MITC4 elements are 

discretized in a given design domain. The penalization 

factor for interpolating elasticity properties of stiffness is 

equal to 3 for all materials. The optimized results are 

surveyed in cases one, two, three and four various materials. 

Their material properties are non-dimensional nominal 

values as shown in Table 1. The material is assumed to be 

isotropic. Poisson‟s ratio for all materials is 0.3, which is 

steel material (Lee 2016). The total volume fraction is fixed 

to be 40% during every optimization iteration. 

Figs. 6, 7, 8 and 9 show optimal topologies of steel thick 

plates in terms of the assignment of single and multiple 

materials. As can be seen, optimal topologies of Reissner-

Mindlin plates absolutely depend on the number of material 

types. Multi-material usage may result in the stiffest 

 

Fig. 6 Optimal Mindlin plate topology with single material 

(C = 0.9918) 
 

 

 

Fig. 7 Optimal Mindlin plate topology with two materials 

(C = 0.7791) 
 

 

 

Fig. 8 Optimal Mindlin plate topology with three materials 

(C = 0.6797) 
 

 

 

Fig. 9 Optimal Mindlin plate topology with four materials 

(C = 0.6001) 
 

 

optimal topologies, i.e., the minimal strain energy 

structures. 
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Especially, stiff materials are automatically assigned 

within strong stress concentration regions such as loading 

points and clamped boundary areas. In this example, 

applied loading areas have more influence on stiff material 

assignment than that of clamped boundary areas. Fig. 10 

describes convergence histories of objective function 

(compliance) and intermediate topologies at several 

iterations. Under the condition of the same amount of total 

material, multi-material can produce stiffer structure than 

single material. 
 

 

5. Conclusions 
 

This study contributes a novel usage of multiple 

materials for topology optimization of steel plate-like-

structures based on Reissner-Mindlin plate theory with 

MITC4 to avoid shear locking. Numerical applications are 

conducted to investigate optimal topologies of Reissner-

Mindlin plates depending on multi-material types. It would 

provide design possibilities that multi-material structures 

using additional stiff materials may produce higher stiffness 

and offer more cost savings than single material structures, 

especially in case steel thick plate of this study. 
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