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1. Introduction 

 
In recent decades, steel-concrete-steel (SCS) sandwich 

composite structures composed of two steel face plates and 
a concrete core have been noticed due to their low cost and 
resistance. The first application of such these materials was 
in civil and structural engineering. Their flexibility in 
weight and thickness and easy-to-make process with 
popular instruments in construction sites resulted in the 
development of their application in submerged tube tunnels, 
floating breakwaters, anti-collision structures, liquid 
containment, ship hull and offshore deck structures (Wright 
and Oduyemi 1991). The main advantage of these materials 
is related to external steel face plates acting as the primary 
reinforcement and permanent framework and a resistant 
membrane against leakage, impact and blast. In SCS 
sandwich structures, cohesive material such as epoxy or 
mechanical shear connectors are common measures to bond 
the steel and concrete together. Compared to cohesive 
material,  mechanical shear connectors are more 
advantageous in terms of transverse shear resistance 
(Solomon et al. 1976). To improve the composite behavior 
of SCS system, different shear connectors are developed, 
including C-shaped connectors as in Fig. 1(a) (Shariati et al. 
2012), L-shaped connectors as in Fig. 1(b) (Soty and Shima 
2011), overlapped headed studs in double-skin composite 
structure (DSC) as in Fig. 1(c) (Tomlinson et al. 1989), 
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friction welding connectors in Bi-steel structure as in Fig. 
1(d) (Bowerman and Chapman 2000) and J-hook 
connectors as in Fig. 1(e) (Liew and Sohel 2009, Liew et al. 
2009, Yan et al. 2014, 2015). Valente and Cruz (2010) also 
studied the performance of light weight concrete in SCS 
sandwich structures to achieve a light weight concrete and 
steel composite beam similar to the behavior of composite 
beam with normal density concrete. There is limited 
literature on development of corrugated-strip connectors 
(CSC) (see Fig. 1(f)) that were first proposed by 
Leekitwattana et al. in 2010 (Leekitwattana et al. 2010, 
2011). One of the advantages of this system compared to 
other shear connectors is that unlike previous models in 
which shear connectors are normal to steel face plates, the 
angle of shear connectors can be aligned perpendicular to 
diagonal crack line of concrete approximately. In this 
system, shear connectors are welded to steel face plates 
from both sides that create thickness limitation in practice 
and need modern welding equipment to connect both sides 
of connectors to both steel face plates. Practical restrictions 
can be the main reason of non-development of these shear 
connectors. 

The idea used in the present article is extracted from 
DSC and CSC models, since in the proposed system as in 
Fig. 2, corrugated-strip connectors are used according to 
CSC model connectors, but like DSC model, connectors are 
connected to one face and double skin connection is 
provided by burying shear connectors in the concrete core. 
The combined system is known as double skin with 
corrugated-strip connectors (DSCS) system. One of the 
advantages of the system is that the connector is welded to 
the plates easily using electric arc welding, and it was 
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(Yousefi and Ghalehnovi 2017) are used to verify FE 
model. Geometrical dimensions of samples and CSC 
connectors are named in Fig. 4 and their dimensions are 
listed in Table 1. In Fig. 5, push-out test setting is shown. 
According to Fig. 5, quasi-static load is applied to the rigid 
component through load cell and then, it is transferred to 
the concrete core and CSC connectors. LVDTs are used to 
register the slip between concrete and steel face plates. 
Finally, shear force against the slip of any sample is 
registered by data processing system. 

 
 

3. Finite element model 
 
ABAQUS CAE Software and explicit Solver are used to 

make the finite element model of push-out tests under 
quasi-static loading. 

 
 

 
 

 
 
3.1 Explicit quasi-static analysis 
 
Dynamic explicit solution is usually used to solve two 

groups of mechanical processes including quasi-static 
analysis and transient dynamic response. Quasi-static 
analysis is used for processes including complex nonlinear 
effects such as complex conditions of contact. Explicit 
integration uses very small time steps and central difference 
operator can be stable or unstable in terms of temporal 
conditions. Stability limit estimation is automatic in 
ABAQUS/Explicit software and there is no need for user's 
intervention. The real value of the biggest frequency in the 
system is based on some complex factors that are related to 
each other and the precise value cannot be obtained. So, an 
effective conservative estimate is used in this software. In 
other words, maximum frequency is calculated for any 
element of model instead of considering the whole model. 

 
T: Tension force of connector; C: Compressive forces in the section; 

P: Tensile forces in the section; M: Bending moment; τ: Interfacial shear force in the connector 

Fig. 3 Transfer of internal forces and supply of transverse shear resistance by CSC connectors 

Fig. 4 Naming geometrical dimensions of test samples and CSC connectors (Yousefi and Ghalehnovi 2017) 

 

Fig. 5 Test setting (Yousefi and Ghalehnovi 2017) 
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According to this element-to-element method, for any time 
step, the basic value Δt can be calculated in terms of the 
element’s characteristic length obtained in the previous step 
(Le) and also the current wave velocity (cd) inside the 
material as follows (ABAQUS and Manual 2010) 

 

e
stable

d

L
t

c
  (1)

 

Wave velocity is also a characteristic of the material that 
is calculated as Eq. (2) and is calculated by Eq. (3) for 
elastic material with zero poisson’s ratio in the software 
(ABAQUS and Manual 2010) 

 

2
dc

 




 

(2)

 

d

E
c


 (3)

 

Where λ and μ are Lame constants, E is Young’s 
modulus and ρ is density of material. According to Eq. (2), 
it is clear that the increase in density can decrease the wave 
velocity, and stable time step increases according to Eq. (1). 
Using the same principle, explicit solver presents a 
technique to decrease the time of simulation that is known 
as mass-scaling. In this technique, the total mass of the 
model or a part of it increases virtually and the stable time 
step also increases. If mass-scaling is performed correctly, it 
can keep the solution precision at an acceptable level in 
addition to decreasing the solution time. An important point 
is that mass-scaling techniques used in quasi-static 
problems can be completely different for transient dynamic 

 
 
problems. Mass-scaling can be performed in ABAQUS/ 
Explicit in several ways (ABAQUS and Manual 2010): 

 
(1) Mass-scaling of all elements with a constant that is 

given by the user to the software. 
(2) Indirect mass-scaling in which the user uses an 

arbitrary time step for the whole model instead of 
determining the mass index for elements. In this 
case, minimum stable time step of all elements is 
equal to the limit defined by the user. 

(3) Indirect mass-scaling in which the user requires the 
software to use the time step defined by him only 
for elements whose stable time step is less than the 
limit. 

(4) Automatic mass-scaling that is determined by the 
software based on the mesh geometry used and 
initial conditions. 

 
In the present study, loading time is increased until the 

acceleration vanishes. The increase in loading time 
significantly increases the analysis time. Therefore in the 
next step, the second way of mass-scaling is used that is 
based on an arbitrary time step for the whole model in order 
that the analysis time is reduced. Loading time and time 
step must be chosen in a way that the model is affected by 
quasi-static loading. 

 
3.2 Verification of results 
 
A suitable method for controlling problem solution 

using quasi-static technique is to compare kinetic and 
internal energies. A quasi-static solution is acceptable when 
the kinetic energy does not exceed 5% to 10% of the 
internal energy. The lower the kinetic energy is, the higher 

Table 1 Geometrical dimensions of DSCS samples for push-out test (Yousefi and Ghalehnovi 2017) 

Unit 
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Specimen tp bc fc hc lc hcon c hh = hc/hcon lhl = lc/hcon kcb = bc/b

6D-1 6 20 27.90 79 56 100 45 0.79 0.56 0.08 

8D-2 8 20 27.90 79 56 100 45 0.79 0.56 0.08 

10D-3 10 20 27.90 79 56 100 45 0.79 0.56 0.08 

12D- 4 12 20 27.90 79 56 100 45 0.79 0.56 0.08 

6Db70-5 6 70 27.90 79 56 100 45 0.79 0.56 0.28 

6Da90- 6 6 20 25.50 79 56 100 90 0.79 0.56 0.08 

6Da60-7 6 20 27.40 79 56 100 60 0.79 0.56 0.08 

6Dh100w-8 6 20 26.20 100 100 100 55 1.00 1.00 0.08 

6Dh100- 9 6 20 26.20 100 100 100 55 1.00 1.00 0.08 

6Dh80- 10 6 20 25.20 79 73 85 53 0.93 0.86 0.08 

6Dh65- 11 6 20 25.00 64 58 70 53 0.91 0.83 0.08 

6Dh55- 12 6 20 26.00 54 48 60 55 0.90 0.80 0.08 
 

*Notes: width of steel face plates b = 250 mm, thickness of corrugated-strips tc = 4 mm 
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Table 2 Tensile stress-strain values of the concrete 37 MPa and 
tension damage index 

Stress (σt) (N/mm2) Cracking strain )~( ck
t  Damage (dt) 

3.2 0 0 
0.032 0.00111 0.9 

 

 
 

Table 3 Compressive stress-strain values of the concrete 37 MPa 
and compression damage index 

Stress (σt) N/mm2 Inelastic strain )~( in
c  Damage (dt)

16.0 0 0.0 
21.5 0.00013 0.0 
23.5 0.00015 0.0 
33.2 0.00038 0.0 
37.0 0.00077 0.1 
25.0 0.00204 0.3 
14.1 0.00340 0.5 
5.1 0.00597 0.7 
2.3 0.00794 0.9 

 

 
 

Table 4 Plastic behavior parameters of concrete 

ψ Eccentricity f k Viscosity parameter

38 0.1 1.16 0.667 0.001 
 

 
 

0(1 ). .( )pl
c c c cd E     

 (5)
 
Also, cracking strain, ,~ck

t  and compressive inelastic 
strain, ,~ in

c  can be obtained as follows 
 

ck el
t t ot   

 (6)

 
in el
c c oc   

 
(7)

 
Here, 0/ Et

el
ot    and 0/ Ec

el
oc    that are tensile and 

compressive elastic strains for undamaged material, 
respectively. Tensile stress-strain values and their tension 
damage index are listed in Table 2 and compressive stress-
strain values and their compression damage index are listed 
in Table 3. 

Other parameters of plastic behavior of concrete include 
dilation angle, ψ, plastic flow potential eccentricity, 
characteristic parameter of failure function, i.e., the ratio of 
biaxial to uniaxial compressive strain, f = fb0 / fc0, parameter 
of distortion of stress plane or confinement angle, k, and 
viscoplastic parameter for plastic damaged model based on 
ABAQUS Manual as in Table 4. 

 
4.1.2 Steel modeling 
Isotropic/kinematic stiffening model with Von Mises 

yield criterion is used to define yielding for steel material in 
ABAQUS Material Library. Elastic Young’s modulus, Es, 
and poisson’s ratio must be defined for elastic behavior of 
steel material. Plastic behavior is defined for steel thickness 

Table 5 The mechanical properties of steel 

Thickness
(mm) 

0.2% proof
stress MPa)

Ult. Stress 
(MPa) 

s in 
Ult. Stress

Es 
(GPa)

4 (CSCs) 250 380 0.3 207

6 285 495 0.23 202

8 411 615 0.176 205

10 367 620 0.198 203

12 310 516 0.180 207

 
 

4, 6, 8, 10 and 12 mm based on stress-strain curve obtained 
from direct tensile test of dog-bone shaped samples. 
Properties of steel materials with their thicknesses are 
obtained based on the test and are summarized in Table 5. 

 
4.2 Boundary conditions, loading, interactions 

and solutions 
 

In push-out test modeling, the lower end of steel face 
plates is bound against displacement in all directions as in 
Fig. 6. In the Fig. 6, it is observed that bounds of rotation 
around Y and Z axes and displacements in X-axis are 
applied to the symmetry surface. According to Fig. 6, quasi-
static loading is applied to the rigid component. The contact 
between concrete and steel face plates and the contact 
between connectors and concrete core are surface-to-surface 
simulated with hard contact formulation in normal direction 
and penalty friction in tangential direction. In the 
Interaction Menu of ABAQUS Library, hard formulation 
means that when two surfaces are contacted, pressure is 
transferred; however, when they are separated, no force is 
transferred. Penalty friction means that there is a relative 
slip between two contact surfaces and the interacting 
friction force is proportional to the defined friction 
coefficient. This contact makes it possible that two contact 
surfaces are separated but they cannot penetrate into each 
other. Friction coefficient is taken as 0.2 for CSCs and steel 
face plates that interact with concrete. This value is taken as 
zero for concrete loading surface and rigid block 
interaction. The connection between connector and steel 
face plates is full-bound, and since there is no failure in the 
welding area almost in all samples, welded connection 
modeling is ignored. 

Mass-scaling is used in explicit solver for quasi-static 
analysis. Many control parameters are related to 
convergence criterion in ABAQUS/Explicit. Normally, 
there are predefined values that are set in a way that the 
precision and effectiveness of solution are optimized for a 
wide range of nonlinear problems. 

 
4.3 Quasi-static behavior of finite element model 
 
In the tests performed, loading rate is similar to static 

behavior and can be independent of acceleration. For this 
reason, finite element models must also show quasi-static 
behavior. As it was mentioned in previous sections, kinetic 
and internal energies can be suitable criteria for evaluation 
of the analysis results. For this purpose, kinetic energy 
curve must not have excessive fluctuations and must not 
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Ultimate shear strength of CSC connectors from FEA are 
compared with shear strengths of push-out tests in table 7. 
According to the table, the mean ratio of ultimate shear 
strength test to its prediction is 0.98 for 12 push-out tests 
with a Coefficient of Variance (COV) 0.038. It can be 
concluded that ultimate shear strengths of CSC connectors 
obtained from FEA are consistent with test results. 

Two types of failure modes observed in push-out test are 
shear shank failure (SS) and concrete cracking failure (CC). 
Fig. 10 shows the comparison of CC and SS failure modes 
in the test and finite element model. The main contours of 
plastic strain are used in finite element model to help the 
judgment on these two types of material. Tension damage 
index, dt, is defined to show the tension crack growth in 
concrete. Also, plastic strain is limited to 0.3 (see Table 5) 
to limit the tension crack of CSC connectors. If strains 
exceed the permitted value in steel members, failure of steel 
sections is expected. According to Fig. 10, it is observed 
that these failure modes can be simulated by finite element 
model well. According to Fig. 10(a), failure mode of 
connector occurred for the sample 8D-2 in the test in a way 
that tension crack of concrete was developing as 
herringbone around the bond of connectors and steel face 
plates. Finite element model also shows that the trend of 
cracks development in the model was consistent with the 
test and plastic strain at the end of connectors did not 
exceed 0.3. According to Fig. 10(b) in 6Db70-5 sample, the 
test and modeling show that the increase in the breadth of 
connector resulted in the extension of concrete crack 
development along the vertical branch of connectors and the 
concrete clove before metal material yielded. Also, Figs. 
10(c)-(d) show a good agreement between the path of 
concrete crushing in the sample 6Da90-6 and finite element 
model. Failure modes predicted by finite element model are 
compared with those observed in push-out tests in Table 7. 
According to the table, in 83% of cases, failure modes 
predicted by finite element model are consistent with those 
observed in the test. The 17% error in prediction of failure 

 
 

modes can be due to concentration of shear load on one side 
of sample during the test that led to early failure of shear 
connector (see Fig. 10(e)). 

 
4.5 Discussion 
 

In addition to verifying finite element model, push-out 
test on 12 DSCS samples shows that structures with 
complex interactions can be modeled with an acceptable 
speed and precision using explicit quasi-static analysis. 

 
 

5. Conclusions 
 

In this study, a 3D finite element model is presented 
using explicit quasi-static analysis based on push-out test on 
SCS samples with CSC connectors. In finite element model, 
only the welded connection of connectors to steel face 
plates was simplified and full connection is used based on 
the test, because failure was not observed in the welding 
area. The results of push-out tests showed that in spite of 
complexity of finite element model, load-slip behavior of 
CSC connectors and failure modes of SCS sandwich 
structures can be simulated with acceptable precision and 
speed using explicit quasi-static analysis. Using mass-
scaling also reduced the analysis time significantly and 
prevented from non-convergence and early termination of 
finite element analysis. 
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