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1. Introduction 

 

In recent years, the composite curved-beam of different 

materials is often used in bridge structures such as 

horizontally composite curved steel-concrete bridge. The 

composite curved-beam shows very complex structural 

behaviour since the coupling effect of axial, flexural and 

torsional deformation. In addition, the shear connectors 

generally permit the development of only partial composite 

action between the individual components of the member, 

and their analysis requires the consideration of the 

interlayer slip between the subcomponents. Therefore, the 

evaluation of the structural response is of fundamental 

importance in the design of the composite curved structures. 

One of the early work dealing with the stability 

behaviors of curved beam is the one by Vlasov (1961). 

After that, many researchers developed different extensions 

and enhancements to the Vlasov model (Wilson et al. 1999, 

Kim et al. 2005a, b, Gimena et al. 2008, Kim 2009, Yu et 

al. 2011, Prokic et al. 2014, Liu et al. 2016, Arefi and 

Zenkour 2017). However, the analysis and correlative 

research work of horizontally composite curved beams are 

relative scarce. Most of the early researches were limited to 

the assumption of the full interaction between the layers. 

Thevendran et al. (1999, 2000) conducted experiments on 

the steel-concrete composite curved beam to investigate the 

ultimate load behavior and a three-dimensional finite 
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element model which has been adopted to simulate the 

available experimental results. Topkaya et al. (2004) 

conducted experimental and numerical studies to establish 

the performance of composite curved beam bridges during 

construction. Giussani and Mola (2006) developed an 

analytical equation for elastic horizontally curved 

composite beams with the assumption of the full interaction 

between the steel girder and concrete slab. 

On the other hand, the behaviours of composite beam 

are significantly influenced by the flexibility of the shear 

connection. A significant amount of researches have been 

accomplished in regard to the behavior of straight 

composite beam with partial shear interaction (Girhammar 

and Gopu 1993, Dall‟Asta 2001, Ranzi et al. 2003, Liu et 

al. 2005, Zona and Ranzi 2011, Chakrabarti et al. 2012, 

Santos and Silberschmidt 2014). The previous researches 

laid the foundation for the curved composite beam. 

Correspondingly, some researchers have focused on the 

study of curved composite beam with partial shear 

interaction. Palani and Rajesekan (1992) presented a finite 

element formulation for static and stability analysis of thin-

walled curved beam of open cross section based on the 

principle of virtual work. Pi et al. (2006) developed a total 

Lagrangian finite element model for the nonlinear inelastic 

analysis of both composite beams and columns. After that, 

Erkmen and Bradford (2009) further extended a 3D elastic 

total Lagrangian formulation for the numerical analysis of 

curved in-plan composite steel-concrete beams. Tan and Uy 

(2009) conducted experimental tests which consist of eight 

composite steel-concrete beams curved in plan under the 

action of combined flexure and torsion. In their study, the 

composite steel-concrete beams were tested with eight test 

specimens, four were designed with full shear connection, 

and the other four were designed with partial, shear 

connection. Qin et al. (2016) presented a semi-analytical 

solution of the simply supported horizontally composite 

curved I-beam by trigonometric series. But only partial 

interaction in the tangential direction was considered in 
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their research. In fact, due to the coupling effect of bending 

and torsional deformation, the slip between layers of the 

composite curved-beam not only produces in the tangential 

direction but also in the radial direction. Previous 

researches (Tan and Uy 2011, Liu et al. 2012) indicated that 

it is important to consider the partial interaction in the radial 

direction as well as in the tangential direction. 

In the present paper, a semi-analytical solution of the 

simply support horizontally composite curved I-beam by 

trigonometric series is developed. The flexibility of the 

interlayer connectors between layers both in the tangential 

direction and in the radial direction is taken into account in 

the proposed formulation. The beam is assumed to be 

statically determinate with a constant radius of curvature 

along the longitudinal axis. Governing equations and 

boundary conditions are obtained by using the Vlasov 

curved beam‟s theory and the principle of energy variation 

principle. In the procedures, to solve the governing equation 

of the partial interaction composite beam theory, the 

undermined vertical deflection, torsional deflection and 

Lagrange multipliers are approximated by Fourier series, 

respectively. The advantage of this method is that the 

calculation can be easily handled and suitable for practical 

design work. 
 

 

2. Basic assumptions 
 

A horizontally composite curved I-beam is considered as 

shown in Fig. 1. Following assumptions are adopted: 

 

 The slab and I-girder are linear-elastic with different 

materials，all cross-sections remain rigid throughout 

the deformation. The effect of shear deformation, 

warping deformation, distortion deformation and sli

p due to warping are neglected. The slab and I-

girder have the same torsional deflection and vertical 

deflection. 

 The interlayer connectors between the slab and I-

girder are continuous. The load-slip behavior of the 

connectors is described in a linear-elastic range with 

a constant slip modulus Kt [N/m2] in the tangential 

direction and Kt [N/m2] in the radial direction. 
 

 

 

Fig. 1 Model of a horizontally composite curved I-

beam 

 The frictional effects and uplift between the slab and 

girder are neglected .The radius of the curvature is a 

constant along the beam. 
 

 

3. Geometry and constitutive relations for 
each part of the beam 
 

In this paper, the subscripts „i = 1‟ and „i = 2‟ refer to 

the slab and I-girder of the cross-section in this paper, 

respectively. Fig. 2 shows displacement parameters defined 

at the centroid along the z-axis of the beam. oi is the 

centroid on the cross section Ai of the beam. uiz, uiy, uix
 
and 

ϕiz, ϕiy, ϕix
 
are the deflections and rotations of the cross-

section in the tangential, vertical direction and radial 

direction (z-direction, y-direction and x-direction), 

respectively. According to the basic assumptions, there are 
 

1 2z z z     (1a) 

 

1 2y y yu u u   (1b) 

 

The components of the displacement vector for an 

arbitrary point on the thin-walled cross-section can be 

expressed as follows 
 

iz iz iy ixU u x y     (2a) 

 

iy y zU u x   (2b) 

 

ix ix zU u y   (2c) 
 

Where 
'( )iz

iy ix

u
u

R
    , 

'

ix yu  
 

and ' ()
()

d

dz
 . 

According to Eqs. (2a)-(2c), the distributions of strain 

described in Ref. (Yu et al. 2006), on the cross-section, are 
 

'
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Fig. 2 Displacement parameters of the horizontally 

composite curved I-beam 
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'
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ixz z

u
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     (3c) 

 

where 
2

''

2

()
()

d

dz
 . R is the radius of the beam. εiz, γiyz, γixz 

are the normal strain and shear strain for the slab and I-

girder, respectively. Assume that the curvature is small 

enough to assure that 
2(1 ) 1

x
g

R
   . For the case of 

isotropic beam under consideration, the stresses can be 

obtained in terms of the strains as 
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 (4) 

 

where σiz, τixz, τiyz are the normal stress and shear stress for 

the slab and I-girder, respectively. Ei, Gi are the elasticity 

modulus and shear modulus, respectively. 

According to the relation between the internal forces 

and stress, the internal forces are defined by 
 

i izN dxdy   (5a) 

 

ix ixzQ dxdy   (5b) 

 

iy iyzQ dxdy   (5c) 

 

( )iz iyz ixzM x y dxdy      (5d) 

 

ix izM ydxdy    (5e) 

 

iy izM xdxdy   (5f) 

 

 

where Ni 
is the axial force, Qix 

and Qiy
 
are shear forces, Miz 

is torque, Mix and Miy are bending moments. 

Substituting Eqs. (3) and (4) into Eqs. (5a)-(5f) and 

 

 

 

Fig. 3 Force diagram for a micro unit of the horizontally 

composite curved I-beam 

integrating over the cross-section yield the following 

relations between the force and deformation. 
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(6) 

 

where Ai, Iiy, Iix 
and Iiz are the cross-section area, the second 

moment of inertia about y, x and z axes, respectively. 
 

 

4. Equilibrium equations for each part of the beam 
 

Simplifying stress vectors to the centroid Oi on the cross 

section Ai, as shown in Fig. 3. The external forces and 

moments per unit length along the axis of the beam are 

indicated by q0 and m0. 

The equilibrium equations are 
 

{ } [ ]{ } { } {0}i i i

d
Q K Q q

dz
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(7) 
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where 
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, 

1 1 1 1 0{ } [ , , ]T

z x yq q q q q  ,   2 2 2 2{ } [ , , ]T

z x yq q q q , 

1 1 0 1{ } [ , ,0]T

z xm m m m  ,    
2 2 2{ } [ , ,0]T
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Where mix is the distributed bending moment produced 

by shear force qiz, and miz is distributed torque produced by 

shear force qix. For the qiz, qix and qiy, there are 
 

1 2 0z zq q 
 

(9a) 

 

1 2 0x xq q 
 

(9b) 

 

1 2 0y yq q 
 

(9c) 

 

The Eqs. (7) and (8) which lead to 
 

1 2 1 2 1 2{ } [ ]{ } { } {0}
d

Q Q K Q Q q q
dz

     
 

(10a) 
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1 2 1 2

1 2 1 2

{ } [ ]{ }

[ ]{ } { } {0}

d
M M K M M

dz

H Q Q m m

  

    

 (10b) 

 

Using Eqs. (9a)-(9c), by eliminating (Q1x + Q2x) from 

Eqs. (10a) and (10b), we obtain 
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'

1 2'

1 2

( )
( ) 0

y yM M
N N

R


    (11b) 

 

When the beam under vertical load q0 and torque m0 

only, we can get 
 

1 2 1 2, y yN N M M    (12a) 

 

1 2 1 2, y yN N M M     (12b) 

 

 

5. Equilibrium equations at the interface 
 

Considering the Eqs. (7) and (8) and deformations in 

Fig. 4, the force q1z between the slab and girder can be 

written as 
 

1 2 1
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(13) 

 

Where b = b1 + b2, κx = u′y. So the equilibrium at the 

interface in the tangential direction can be written as 
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1
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(14) 

 

Considering the Eqs. (7) and (8) and deformations 

which are shown in Fig. 5, the force q1x between the slab 

 

 

 

Fig. 4 Deformations of differential elements for the 

beam in y-z plane 

and girder can be written as 

 

1 2 1
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(15) 

 

Where κz = ϕz. So the equilibrium at the interface in the 

radial direction can be written as 

 

'' 1
2 1 1

1
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N
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(16) 

 

Using the Eqs. (6), (14) and (16), by eliminating u′2z 
from Eq. (14) and u2x from Eq. (16), One can rearrange Eqs. 

(14) and (16) (equilibriums at the interface) as follows 
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6. Problem formulation 
 

The governing differential equations of the beam will be 

derived through the variational approach. Total potential 

energy Π* of the beam takes the form as follows 
 

*

1 2 K z z y yf f W         (18) 

 
 

 

Fig. 5 Deformations for the composite curved I-beam in 

x-y plane 

4



 

Semi-analytical solution of horizontally composite curved I-beam with partial slip 

Where Π1 and Π2 are the elastic strain energy of the slab 

and I-girder, respectively. ΠK is the strain energy due to the 

connector deformations. W is the potential energy due to the 

external loading. λz, λy are the lagrange multipliers. fz, fy are 

the equilibrium conditions at the interface corresponding to 

Eqs. (17a) and (17b), respectively. These quantities can be 

expressed as follows 
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where θ is the central angle of the beam. qz, qx are the shear 

force between the slab and girder. There are qz = q1z and qx 

= q1x. Mxt, Qyt, Tzt are the total bending moment, total shear 

force and total torsion moment of the beam, respectively. ϕz, 

uy, u1x, u1z, λz and λy are all unknown variables. The 

variation of Π* is 
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(20) 

 

Where Γi (i = 1~6) and Hi (i = 1~14) are calculated from 

the variation of Π*, which are given in the Appendix A. By 

the definition of variational approach, each term for Γi (i = 

1~6) and Hi (i = 1~14) must be identically zero. When Γi (i 

= 5~6) and Hi (i = 8~14) equal to zero, we can get the 

undetermined Lagrange multipliers λz and λy are 
 

' 1
1 1 1 1( )x

z z

u
E A u N

R
   

 
'

'' 1
1 1 1 1( )z

y y x y

u
E I u M

R
   

 

(21) 

 

The Eq. (21) notes that the Lagrange multiplier λz equals 

N1 (axial force) and Lagrange multiplier λy equals M1y 

(bending moment). It is also can be seen from Eq. (21) that 

the Lagrange multipliers (λz, λy) and the deflections (u1z, u1x) 

are related. Therefore, there‟ll be four independent variables 

for the unknown variables. We can take ϕ, w, λz and λy as 

independent variables. The rest of governing equations are 

Γi = 0 (i = 1~4). Which can be rearranged and rendered in 

terms of matrix form, as follows 
 

4 2 2 2 2

4 2 2 2 2 2

2 2 2

2 2 2 2

2 2 2

2 2 2 2

2 2 2 4 2

2 2 2 4 2 2

1 1 1 1
( )

1 1 1 1
( )

x TT
x

x T x
T

A

t r t r

y

t r r t

EI GIGId d d d b d
EI b

dz R dz R dz dz R dz

EI GI EId d b d
GI b

R dz dz R R dz

d b d d
b S

dz R K dz R K RK RK dz

b d d d d d
b S

R dz dz RK RK dz K dz R K dz

 
  

 
 

    
 
 

    
 


   
 

0

0

0

0

y

z

z

y

u q

m





   
   
   
   
    

  



 

(22) 

 

Where EIx = E1I1x + E2I2x, GIT = G1I1z + G2I2z. And we 

can get the pertaining boundary conditions Hi = 0 (i = 1~7). 
 

'
''' ' '

''

2
0

[ ( )

0

( ) ]

R

z
x y z y

yz
T yt y

b
EI u b

R R

u
GI Q u

R R




 




   



  
 

(23a) 

 

'' '

0

[ ( ) ] 0

R

z
x y z y xt y

b
EI u b M u

R R




      
 

(23b) 
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'

' '

0

[ ( ) ] 0

R

y

T z y zt z

u
GI b T

R



     
 

(23c) 

 

'

0
( ) 0

R

y zb


  
 

(23d) 

 

0

( ) ( ) 0

R

y

z zu
R




   
 

(23e) 

 

'

0
( ) ( ) 0

R

y xu


   
 

(23f) 

 

'

0
( ) ( ) 0

R

y xu


   
 

(23g) 

 

Where 

'

1'

1

1
( )

y

z

t

M
u N

K R


   , '' 1

1

1
( )x y

r

N
u M

K R
   . 

 
 

7. The semi-analytical solution by 
trigonometric series 

 

The problem can be solved by applying the expansion of 

Fourier series for a simply supported composite curved I-

beam. The independent variables ϕz, uy, λz and λz 
can be 

express as 

1

sin( )
n

y yk

k

k z
u u

L





 , 

1

sin( )
n

z zk

k

k z

L


 



 ,

 

(24) 

 
 

 

1

sin( )
n

z zk

k

k z

L


 



 , 

1

sin( )
n

y yk

k

k z

L


 




 

(24) 

 

Where uyk, ϕzk, λzk, λyk are the unknown Fourier 

coefficients to be determined for each k (k = 1,…, n). The 

applied distributed loads q0 and m0 are expanded with single 

trigonometric series as 
 

0

1

sin( )
n

zk

k

k z
q q

L






, 

0

1

sin( )
n

zk

k

k z
m m

L






 

(25) 

 

Where qzk and mzk are the Fourier coefficients which can 

be determined by calculus for different load cases, as listed 

in Table 1. Substituting Eqs. (24) and (25) into the Eq. (22), 

the unknowns uyk, ϕzk, λzk, λyk can be determined by solving 

Eq. (22). 
 
 

8. Numerical examples 
 

To demonstrate the application of this theory and verify 

the veracity of the semi-analytical method, the results are 

compared with those available in the literature and with 

those calculated by finite element analysis. 

A FEM (finite element model) proposed by Erkmen 

(2009) and Majdi (2014) was adopted. In the FEM model 

shown as in Fig. 6, both the concrete slab and steel I-girder 

are modeled as 4-node shell elements. The connections 

 

Table 1 The Fourier coefficients for common load cases 

Load case Load diagram Fourier coefficients for qzk and mzk 

1 

 

04
( 1,3,5...)zk

q
q k

k
 

 

2 

 

02
[ cos( ) cos( )]zk

q k c
q k

k l





  

( 1,2,3...)k 
 

3 

 

2
sin( ) ( 1,2,3...)zk

F k c
q k

l l


 

 

4 

 

04
( 1,3,5...)zk

m
m k

k
 

 

5 

 

2
sin( ) ( 1,2,3...)zk

T k c
m k

l l


 

 

6 

 

02
[ cos( ) cos( )]zk

m k c
m k

k l





  

( 1,2,3...)k 
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Fig. 6 FEM model of the I-beam 
 

 

 

Fig. 7 Connection diagram of the FEM model 
 
 

 

Fig. 8 Cross section dimensions of the curved I-beam 
 

 

between the slab and I-girder (shown as in Fig. 7) are 

simulated by multiple-point constraints (MPC), which is 

modeled by two rigid links connected through nodes 

between the slab and I-girder. The spring elements are used 

in the tangential direction and the radial direction to allow 

for the possibility of movement. Coupling degrees of 

freedom in vertical direction are used to prevent the 

uplifting issue. 

 

8.1 Example 1 
 

In this example, a full interaction composite beam with 

simply supported ends is considered, which has been 

studied by Thenvendran et al. (2000). The beam is 

subjected to 150 KN, 200 KN and 250 KN vertical loads at 

the mid-span, respectively. The dimensions of cross section 

are shown in Fig. 8. Material properties and other 

dimensions are shown in Table 2. Here, we take 6 terms 

Fourier series in this case calculation. For the full 

interaction case, the slip parameter is taken as K = Kr = Kt = 

104 MPa. Fig. 9 shows the vertical deflection results based 

on the FEM, this paper solution and Thevendran et al.‟s 

Table 2 Material properties and dimensions of the curved 

I-beam 

 

Young‟s 

modulus 

(MPa) 

Poisson‟s 

ratio 

Density 

(kg/m3) 

Central 

angle 

Radius of 

curvature 

(m) 

Steel 

girder 

Es = 

2.06 × 105 
μs = 0.3 7850 

θ = 

14.3° 
24 

Concrete 

slab 

Ec = 

2.6 × 104 
μc = 0.27 2400 

 

 

 

experimental results. It can be seen that the vertical 

deflections based on this paper and FEM solutions are in 

good agreement. The experimental results are also in 

reasonable agreement with those based on the FEM model 

and this paper solution as shown in Fig. 9. 
 

8.2 Example 2 
 

To validate the accuracy of present model for the partial 

interaction, we use the case described by Erkmen (2009). 

This example also have the same material properties 

,geometric properties and loading with example 1 except 

the shear connector modulus of K = Kr = Kt = 250 MPa. 
 

 

 

Fig. 9 Torsional angle of the beam with K = 104 MPa 
 

 

 

Fig. 10 Vertical deflection of the beam with K = 250 MPa 
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Fig. 11 Torsional angle of the beam with K = 250 MPa 
 
 

 

Fig. 12 Tangential slip of the beam with K = 250 MPa 
 
 

 

Fig. 13 Radial slip of the beam with K = 250 MPa 
 
 

Figs. 10-13 show the vertical deflection, torsional angle, 

tangential slip and radial slip based on the FEM, this paper 

results and NCE solution by Erkmen (2009), respectively. 

As an illustration of convergence of the results, we show 

this paper results by taking 1, 3, and 6 terms of Fourier 

series respectively. In general, this paper results are in good 

agreement with NCE and FEM results. The results of 

numerical calculation show that the method converges very 

fast, so it is feasible to take the first term or the sum of first 

three terms only. In order to ensure the accuracy, six terms 

is adopted in the following example. 

8.3 Example 3 
 

In this example, in order to prove the validity of the 

structure under the load of torque, we examine the load case 

4 and 5 shown in Table 1. The model has the same dimen-

sions and other parameters as example 2. 

For case 4, the model is subjected to uniformly-

distributed load m0 = 420 KN∙m/m over the length of the 

span. For case 5, the model is subjected to a concentrated 

load m0 = 150 KN∙m at the mid-span section (c = 1 2 ). 

Figs. 14-21 show the vertical deflection, torsional angle, 
 
 

 

Fig. 14 Vertical deflection of the case 4 with K = 250 MPa 
 
 

 

Fig. 15 Torsional angle of the case 4 with K = 250 MPa 
 
 

 

Fig. 16 Tangential slip of the case 4 with K = 250 MPa 
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Fig. 17 Radial slip of the case 4 with K = 250 MPa 
 
 

 

Fig. 18 Vertical deflection of the case 5 with K = 250 MPa 
 
 

 

Fig. 19 Torsional angle of the case 5 with K = 250 MPa 

 
 
tangential slip and radial slip based on the FEM and this 

paper results, respectively. 

In Figs. 14-21, it can be seen that this paper results are 

in concordance with the results of FEM. Fig. 17 shows the 

 

Fig. 20 Tangential slip of the case 5 with K = 250 MPa 
 
 

 

Fig. 21 Radial slip of the case 5 with K = 250 MPa 
 

 

 

error of radial slip is bigger at two ends by the comparative 

analysis between the two methods. The error of torsional 

angle in Fig. 19 and the error of radial slip in Fig. 21 are 

bigger between the two methods at midspan section. This 

shows that the local stress concentration is the cause of the 

big error between the two methods. 
 

 

 

9. Conclusions 
 

In this paper, a semi-analytical solution has been 

developed and presented for the simply supported 

composite curved I-beam by trigonometric series. The 

solution is for a static problem of a two-layered composite 

curved beam with flexible shear connection. The solution 

expression use trigonometric functions in terms of span 

coordinate. Governing equations and boundary conditions 

are obtained by using the variational approach. The 

numerical results are compared with other available results 

in the literature and FEM results. From examples one can 

see that this method is simpler, effectiveness, easily handled 

and suitable for practical design work. Thus the model in 

this paper can be applied sufficiently for practical purposes. 
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