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1. Introduction 

 

The growing applications of small-scale structures like 

microbeams in micro-electro-mechanical systems (MEMS) 

and nano-electro-mechanical systems (NEMS) are the 

reason of the many theoretical and experimental 

investigations on the behavior of such structures. 

An investigation into the response of a resonant 

microbeam to an electric actuation was presented by Younis 

and Nayfeh (2003). The improved macromodel of the fixed-

fixed microbeam-based MEMS capacitive switch was 

presented by He et al. (2009) to investigate the behavior of 

electrically actuated MEMS capacitive switch. A nonlinear 

model was used to account for the mid-plane stretching, a 

DC electrostatic force, and an AC harmonic force. Krylov  

et al. (2011) investigated the feasibility of two-directional 

switching of initially curved or pre-buckled electrostatically 

actuated microbeams using a single electrode fabricated 

from the same structural layer. The dynamic response of 

parametrically excited microbeam arrays was governed by 

Gutschmidt and Gottlieb (2012) using nonlinear effects 

which directly influence their performance. To date, most 

widely used theoretical approaches, although opposite 

extremes with respect to complexity, were nonlinear 
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lumped-mass and finite-element models. Ghayesh et al. 

(2017) used Timoshenko beam theory and modified couple 

stress theory (MCST) to investigate the nonlinear forced 

vibrations of a functionally graded (FG) microbeam. Rezaei 

and Zamanian (2017) performed a two-dimensional 

vibration analysis of piezoelectrically actuated microbeam. 

They modeled the structure based on Euler-Bernoulli beam 

theory and considered the effect of geometric nonlinearity. 

Dai et al. (2015) explored the nonlinear dynamics behavior 

of cantilevered microbeams on the basis of MCST. They 

derived the governing equations using Hamilton’s principle 

and solved them employing Galerkin method. Jahangiri et 

al. (2015) investigated mechanical behavior of the 

functional gradient materials (FGM) micro-gripper under 

thermal load and DC voltage numerically taking into 

account the effect of intermolecular forces. Bataineh and 

Younis (2015) presented an investigation into the static and 

dynamic behavior of an electrostatically actuated clamped–

clamped polysilicon microbeam resonator accounting for its 

fabrication imperfections. Free flexural vibration of 

geometrically imperfect FG microbeams is probed by 

Dehrouyesh-Semnani et al. (2016). They assumed that the 

mechanical properties of the FG microbeam vary through 

the thickness direction based on a power-law distribution. 

They also considered the size effect employing MCST. 

Ghayesh and Farokhi (2017), Peng et al. (2017), 

Dehrouyesh-Semnani et al. (2015) and Shafiei et al. (2016) 

are the other authors who employed MCST to study the size 
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effect phenomenon in the microstructures. Erfani and 

Akrami (2016) studied evaluation of cyclic fracture in 

perforated beams using micromechanical fatigue model. 

Aya and Tufekci (2017) investigated the out-of-plane static 

behavior of curved nanobeams. They presented an exact 

analytical solution using initial value method. Pan et al. 

(2017) studied out-of-plane bending stiffness of carbon 

nanotube films on the basis of energy analysis. They 

validated their results by finite element simulations. 

Furthermore, Jafari-Talookolaei et al. (2017) investigated 

the in-plane and out-of-plane vibration modes of thin-to-

moderately thick laminated composite beams with arbitrary 

lay-ups. They used first order shear deformation theory 

(FSDT) to develop the mathematical model. Also, Liu et al. 

(2017), Rostami et al. (2016) and Wang et al. (2016) 

investigated in-plane vibration of various structures. 

Vibration of an embedded nanocomposite curved 

microbeam was investigated by Allahkarami and Nikkhah-

Bahrami (2017) based on the modified couple stress theory 

and Timoshenko beam model. In another work, Allahkarami 

et al. (2017) studied dynamic buckling analysis of an 

embedded curved microbeam reinforced by functionally 

graded carbon nanotubes. Atcı and Bağdatlı (2017a) 

presented the effects of non-ideal boundary conditions 

(BCs) on fundamental parametric resonance behavior of 

fluid conveying clamped microbeams. In another work by 

Atcı and Bağdatlı (2017b), vibration analysis of fluid 

conveying microbeams under non-ideal boundary 

conditions (BCs) was performed. 

For the first time, the in-plane and out-of-plane forced 

vibration of a curved nanocomposite microbeam is studied 

in the present research. Therefore, the results of this work 

are of great importance in MEMS and NEMS. The FG-

CNTs reinforced curved microbeam is modeled by FSDT 

and the material properties of the structure are estimated 

using the extended rule of mixture. Also, the small scale 

effect is considered using strain gradient theory. The 

structure is rested on a nonlinear orthotropic viscoelastic 

foundation and is subjected to concentrated transverse 

harmonic external force, thermal and magnetic loads. 

Differential quadrature (DQ) method along with integral 

quadrature (IQ) and Newmark methods are used to solve 

the problem and study the effect of various parameters on 

the frequency responses and force responses of the 

structure. 
 

 

2. Theoretical model of problem 
 

Fig. 1(a) represents a schematic view of a FG-CNTs 

reinforced curved microbeam with the length of L, radius of 

R and thickness of h. The structure is rested on an 

orthotropic viscoelastic foundation which is modeled with 

linear and nonlinear spring, damper and orthotropic shear 

elements. Furthermore, four various CNTs distribution 

types are shown in Fig. 1(b) which are including UD, FGA, 

FGO and FGX. 

 

2.1 Displacement field 
 

The displacement field components of an arbitrary point 

 

(a) 

 

 

 

(b) 

Fig. 1 (a) A schematic of FG-CNTs reinforced curved 

microbeam; (b) different distribution of CNTs 

(1) UD; (2) FGA; (3) FGO; (4) FGX 
 

 

within the curved microbeam are expressed based on FSDT 

as follows 
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in which u(x, y, t), v(x, y, t) and w(x, y, t) denote the 

displacement components of the middle surface (i.e., at z = 

0) in direction of the x, y- and z-axis, respectively. 

Moreover, φx(x, y, t), φy(x, y, t) and φz(x, y, t) indicate the 

rotation of the cross section of the curved microbeam 

around the x, y- and z-direction, respectively. 
 

2.2 Kinematic relations 
 

Considering Eq. (1) and nonlinear term of axial strain, 

we have 
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2.3 Extended rule of mixture 
 

The effective material properties of the CNTs reinforced 

composite curved microbeam are estimated using extended 

rule of mixture. So, the CNTs are considered as short fibers 

which are aligned and straight. Thus, the effective Young’s 

modulus and shear modulus of the CNTs reinforced 

composite curved beam can be obtained as (Shen 2009) 
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where Er11, Er22 and Gr12 represent Young’s and shear 

moduli of CNTs, respectively. Also, Em and Gm are the 

mechanical properties of the matrix material, and VCNT 

indicates the volume fraction of CNTs. Furthermore, εi (i = 

1, 2, 3) indicates the CNTs efficiency parameters. In present 

research, four various CNTs distribution types through the 

thickness direction of composite curved beam are 

considered, comprising the uniform (UD) and functionally 

graded (FG) distributions which can be expresses as 
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In which wCNT denotes the mass fraction of CNTs. Also, 

ρm and ρCNT represent the mass densities of matrix and 

CNTs, respectively. In a similar manner, the effective 

thermal expansion coefficients and mass density of the 

CNTs reinforced composite microbeam can be obtained by 

the following relations 
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(12) 

 

where αr11 and αr22 denote the thermal expansion 

coefficients of CNTs in the longitudinal and transverse 

directions, respectively. Furthermore, ρm and ρr indicate the 

mass densities of matrix and CNTs, respectively. It should 

be noted that the Poisson’s ratio is assumed to be constant 

along the thickness direction. 
 

 

3. Derivation of motion equations 
 

The governing equations of the structure are derived 

using Hamilton’s principle which can be expressed as 
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in which U, K and W indicate the total potential strain 

energy, total kinetic energy and work done by external 

forces, respectively. 

The total potential energy of the structure is considered 

based on SGT as follows 
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in which εij, γi, 𝜂𝑖𝑗𝑘
(1)

 and χij denote the strain tensor, the 

dilatation gradient vector, the deviatoric stretch gradient and 

the symmetric rotation gradient tensors, respectively. Based 

on Eq. (14), SGT is capable to consider three independent 

material length scale parameters and expresses the potential 

energy as a function of the symmetric strain tensor, the 

dilatation gradient vector, the deviatoric stretch gradient 

tensor and the symmetric rotation gradient tensor which can 

be considered as follows (Zhang et al. 2013) 
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in which ui and δij denote the displacement vector and the 

knocker delta, respectively. Also, the rotation vector (ζi) can 

be expressed as 
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The classical stress tensor, ij, the higher-order stresses, 

pi, 𝜏𝑖𝑗𝑘
(1)

 and mij which mentioned in Eq. (14) can be 

expressed as 
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in which λ and μ denote the Lamé Constants. Also, (l0, l1, l2) 

represent independent material length scale parameters. 

Using Eqs. (1) and (2a)-(2c) we have 
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Furthermore, the classical stresses tensor and the higher-

order stresses terms can be simplified as 
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in which αxx and ΔT are thermal expansion and temperature 

difference, respectively and 
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Eventually, the total potential energy of the structure can 

be expressed as 
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The kinetic energy of the curved microbeam can be 

written as 
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in which ρ denotes the mass density of the nanocomposite 

structure. Also, the work done by the external forces is 

subjected by surrounding viscoelastic foundation and axial 

magnetic field which can be calculated as below (Shen and 

Zhang 2011, Kolahchi et al. 2015) 
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(27) 

 

where kw and k2w indicate the linear and nonlinear spring 

constant of the Winkler type, respectively. Also, cd, Gξ and 

Gδ represent the damper constant of foundation and the 

shear constants in ξ and δ directions, respectively. 

Moreover, ε is the magnetic field permeability and Hx 

denotes the axial magnetic field; F0 and Ω represent 

amplitude and excitation frequency of the concentrated 

transverse harmonic external force, respectively. δ and x0 

denote Dirac delta function  and location of harmonic load. 

The foundation stiffness kw for soft medium can be 

considered as below 
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in which 
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where Es, vs, Hs denote Young’s modulus, Poisson’s ratio 

and depth of the foundation, respectively. Here, Es is 

considered to be temperature-dependent despite vs is 

assumed to be a constant. 

Substituting Eqs. (25)-(27) into Eq. (13), the motion 

equations can be derived as follows 
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where the moment of inertias and the thermal force can be 

defined as 
 

   
/2 /2

2 2

1 2 3 4 5 6

/2 /2

, , , , , ( ) 1, z, y,zy,z , ,

h b

h b

I I I I I I z y dydz
 

  
 
(35a) 

 

 11(z) .T

x xx

s

N Q T dA  
 

(35b) 

 

The stress resultants which mentioned in above 

equations are defined in Appendix A. 

Moreover, the size-dependent various boundary 

conditions at both ends of the composite curved microbeam 

can be expressed based on Hamilton’s principle as follows 
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 Clamped-Clamped (CC) 

At x = 0, L 
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 Clamped-Simply Supported (CS) 
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4. Solving the problem 
 

4.1 DQ method 
 

In this part, DQ method is applied to solve the 

governing equations of the curved nanocomposite beam. 

For this goal, the governing differential equations are turned 

into a set of first order algebraic equations employing the 

weighting coefficients. DQ method approximates a 

derivative of a function at a given discrete point as a 

weighted linear sum of the function values at all discrete 

points selected in the solution domain. Therefore, the one-

dimensional derivative of the function may be expressed as 

below (Kolahchi and Moniribidgoli 2016, Kolahchi et al. 

2015, 2016a, b, 2017a, b) 
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where f(x) denotes the mentioned function, N represents the 

number of the grid points, xi denotes a sample point of the 

function domain, fi is the value of the function at ith sample 

point and Cij represent the weighting coefficients. So, it can 

be concluded that choosing the grid points and weighting 

coefficients are significant factors for obtaining the accurate 

results. The grid points are defined based on the Chebyshev 

polynomials which are considered as below 
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On the basis of Chebyshev polynomials, the grid points 
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are closer together near the borders and in distant parts of 

the borders, they are considered away from each other. 

Also, the weighting coefficients can be considered as the 

following simple algebraic relations 
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Moreover, the higher-order derivatives are defined as 

below 
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4.2 IQ method 
 

IQ method is also on the basis of the analysis of a high-

order polynomial approximation in a linear vector space. As 

a general case, the integral of f(x) over a part of the whole 

domain can be approximated using a linear combination of 

all the functional values in the whole domain as the 

following form (Shu et al. 1995) 

 

1

( ) ( ), ,
j

i

Nx
ij ij I I

k k k jk ik
x

k

f x dx C f x with C w w


  
 
(44) 

 

in which xi and xj represents the numbers which can be 

altered; wI = a-1 that we have 
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where 𝐴𝑖𝑗
(1)

 denotes the  weighting coefficient of the first-

order derivative in DQ method. Also, c indicates a constant 

which are considered as 0.01 (Shu et al. 1995). Finally, 

employing DQ-IQ methods, the motion equations can be 

rewritten in a compact matrix form as below 
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(47) 

 

in which [d] = [u v w φx φy φz]
T; the indexes of b and d are 

related to boundary and domain points, respectively. 

Furthermore, [KL], [KNL] and [C] represent the linear and 

nonlinear stiffness matrices and damping matrix, 

respectively. Also, [M] denotes the mass matrix. 

4.3 Newmark time integration scheme 
 

In this section, the average acceleration method of 

Newmark-β  (Simsek and Kocaturk 2009) in conjunction 

with an iteration method is employed. This method reduces 

the time domain Eq. (47) as the following set of nonlinear 

algebraic equations 
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(48) 

 

in which subscript i + 1 indicates the number of steps for 

the concerned time t = ti+1. Also, K* (di+1) represents the 

effective stiffness matrix and Qi+1 denotes the effective load 

vector, which may be defined as below 
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in which γ = 0.5 and χ = 0.25 (Simsek and Kocaturk 2009). 

According to the mentioned iteration method, Eq. (48) can 

be solved for any fixed time and then, the new acceleration 

and velocity vectors can be achieved as below 

 

,)( 32101 iiiii ddddd      
(52) 
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(53) 

 

Similarly, the mentioned procedure can be repeated for 

each time step. 
 

 

5. Results and discussion 
 

To investigate the in-plane and out-of-plane forced 

vibration of FG-CNTs reinforced curved microbeam, a 

curved microbeam with matrix material made of Poly 

methyl methacrylate (PMMA) is chosen with Poisson’s 

ratios of vm = 0.34, temperature-dependent thermal 

coefficient of αm = (1+0.0005ΔT) ×10-6/K and temperature-

dependent Young moduli of Em = (3.52 ‒ 0.0034T) GPa in 

which T = T0 + ΔT and T0 = 300 K (room temperature). The 

structure is reinforced by (10, 10) SWCNTs with the 

mechanical properties listed in Table 1. Moreover, the 

temperature-dependent elastic foundation is composed of 

Poly dimethylsiloxane (PDMS) with Poisson’s ratios of vs = 

0.48 and Young moduli of Es = (3.22 ‒ 0.0034T) GPa (Shen 

and Zhang 2011). 
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Table 1 Temperature-dependent material properties of (10, 10) 

SWCNT (L = 9.26 nm, R = 0.68 nm, h = 0.067 nm, 

𝜐12
𝐶𝑁𝑇 = 0.175) 

Temperature 

(K) 
𝐸11
𝐶𝑁𝑇  

(TPa) 
𝐸22
𝐶𝑁𝑇  

(TPa) 
𝐺12
𝐶𝑁𝑇  

(TPa) 

𝛼11
𝐶𝑁𝑇  

(10-6/K) 
𝛼22
𝐶𝑁𝑇  

(10-6/K) 

300 5.6466 7.0800 1.9445 3.4584 5.1682 

500 5.5308 6.9348 1.9643 4.5361 5.0189 

700 5.4744 6.8641 1.9644 4.6677 4.8943 
 

 

 

5.1 Convergence of DQ method 
 

In this section, the convergence of DQ method is 

appraised by Fig. 2. It can be seen that fast rate of 

convergence in DQ can be found in this figure, Based on 

this figure, the sufficient number of grid points to achieve 

the accurate result is N = 17. 
 

5.2 Verification of results 
 

In Table 2, a comparison study is performed to validate 

the obtained results. For this purpose, a simply supported 

curved beam with radius of R = 48.34 m, width of b = 5 m, 

thickness of h = 1.8 m, central angle of ζ = π / 6, Poisson’s 

ratio of v = 0.2 is assumed. The first three dimensionless 

frequency of the structure is reported in Table 2.  As can 

be seen from Table 2, the present results are in good 

agreement with the results reported by references 

(Malekzadeh et al. 2010) and Wu and Chiang (2003). 
 

5.3 The effect of different parameters 
 

In this section, the effects of different parameters on the 

frequency and force responses of the curved micro beam 

under the harmonic transverse centralized force (x0 = L/2) 

are studied. For parametric study, a CC curved microbeam 

reinforced by 𝑉𝐶𝑁𝑇
∗

 = 0.28 CNTs distributed as FGX pattern 

and subjected to magnetic field with Hx = le8 A/m is 

considered with the central angle of ζ = π / 6, width to 

thickness ratio of b/h = 4, thickness to size parameter ratio 

of h / l = 2 and temperature of T = 500 K. 
 

 

 

Fig. 2 Convergence and accuracy of DQM 

Table 2 Comparison of the first three frequency parameters of the 

hard simply supported isotropic circular curved beam 

Method Ω1 Ω2 Ω3 

DQM 

(Malekzadeh et al. 2010) 
34.4745 137.783 299.541 

FEM 

(Wu and Chiang 2003) 
34.543 138.019 300.285 

DQM (Present) 34.4742 137.7815 299.5315 
 

 

 

In Fig. 3 the effect of in-plane and out-of-plane motions 

on the frequency response and force response of the 

structure is shown. In this figures, dimensionless maximum 

deflection and dimensionless forcing amplitude are defined 

as Wmax = w / h and P = F0 / A11 at T = 500 K. As can be 

seen, due to consider the geometric nonlinearity, a 

hardening-type behavior is observed in the frequency 

response and force response curves. From Fig. 3(a) it can be 
 

 

 

(a) 
 

 

(b) 

Fig. 3 Comparison between in-plane and out of plane 

motions on the (a) frequency response; (b) force 

response 
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seen that considering the in-plane and out-of-plane motions 

together yields the highest dimensionless vibration 

amplitude with respect to the in-plane motion lonely. 

Furthermore, the frequency of the structure with only in-

plane motion is larger than the structure with in-plane and 

out-of-plane motions. Also, it can be deduced that the 

hardening-type response of the structure with in-plane 

motion is more noticeable with respect to the structure with 

in-plane and out-of-plane motions. Furthermore, from Fig. 

3(b), it can be observed that for lower values of forcing 

amplitudes, with increasing the forcing amplitude, two limit 

point bifurcations and a jump phenomenon is happened. 

Moreover, for properly large values of forcing amplitude, 

with increasing the forcing amplitude, the maximum 

vibration amplitude of structure increases. 

Fig. 4 illustrates the effect of CNTs distribution types on 

the frequency and force responses of the nonlinear 

hardening-type behavior of the structure. It is apparent that 

the highest frequency and lowest vibration amplitude 

belongs to FGX distribution type while the inverse 

condition can be observed for FGO distribution type. 

 

 

 

(a) 

 

 

(b) 

Fig. 4 The effect of SWCNTs distribution on the (a) 

frequency response; (b) force response 

Therefore, it can be stated that the hardening-type response 

of the structure with FGX distribution type is more intense 

with respect to the other distribution types. Also, the greater 

amplitude and jump height belongs to the FGO distribution 

type because the structure with FGO has the lowest stiffness 

(see Fig. 4 (b)). 

The effect of volume fraction of CNTs on the frequency 

and force responses of the structure is depicted in Fig. 5. It 

can be found that with increasing the volume fraction of 

CNTs, the frequency increases while the amplitude peak of 

the structure decreases (see Fig. 5(a)). Also, from Fig. 5(b) 

it can be concluded that increasing the CNTs volume 

fraction decreases the amplitude and jump height and it is 

due to an increase in the stiffness of the system. 

The effect of the central angle of the curved microbeam 

on the frequency response and force response of the 

structure is examined by Fig. 6. It is apparent that as the 

central angle decreases, the frequency increases and as 

results the vibration amplitude of the curved microbeam 

decreases and the hardening-type response of the system 

intensify. Hence, it can be stated that by increasing the 

 

 

 

(a) 

 

 

(b) 

Fig. 5 The effect of SWCNTs volume percent on the 

(a) frequency response; (b) force response 
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(a) 

 

 

(b) 

Fig. 6 The effect of the central angle of the curved 

microbeam on the (a) frequency response; 

(b) force response 

 

 

 

 

(a) 

Fig. 7 The effect of different boundary conditions on the 

(a) frequency response; (b) force response 

 

(b) 

Fig. 7 Continued 

 

 

 

 

(a) 

 

 

(b) 

Fig. 8 The effect of magnetic field on the (a) frequency 

response; (b) force response 
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central angle of the curved microbeam, the stiffness of the 

structure decreases and so the jump height increases. 

Fig. 7 shows the effect of various boundary conditions 

on the frequency and force responses of the system. As can 

be seen, the maximum frequency and the minimum 

vibration amplitude belong to the structure with CC 

boundary condition. It was expectable because the CC 

boundary condition provides more constraint on the 

structure and so the stiffness of the system increases. 

Furthermore, it can be observed that the greater jump height 

is occurred for SS boundary condition type. 

Fig. 8 illustrates the effect of magnetic field of the 

frequency and force responses of the structure. From this 

figure, it can be found that applying the magnetic field 

increases the frequency of the system which is indicative of 

an increase in the stiffness of the curved microbeam. As a 

result, by applying the magnetic field the vibration 

amplitude decreases. 

The effect of thickness to material length scale 

parameter ratio on the behavior of the structure is shown in 

 

 

 

(a) 

 

 

(b) 

Fig. 9 The effect of thickness to material length scale 

parameter ratio on the (a) frequency response; (b) 

force response 

Fig. 9. It can be deduced that as thickness to material length 

scale parameter ratio decreases, the frequency of the system 

increases and the vibration amplitude decreases and 

consequently the jump height of the structure decreases. On 

the other word, with increasing the thickness to material 

length scale parameter ratio, the effect of size-scale 

becomes less significant and lessens. 

From Fig. 10, it can be found that considering the elastic 

foundation leads to an increase in the stiffness of the system 

and so the frequency increases. Moreover, the structure with 

the visco-Pasternak foundation has the lowest vibration 

amplitude with respect to Winkler foundation. From this 

figure, it can be stated that the most intense hardening-type 

response belongs to the structure with visco-Pasternak 

foundation. 

Fig. 11 depicts the effect of temperature change on the 

frequency response and force response of the curved 

microbeam. As expected, with increasing temperature the 

frequency of the structure decreases while the vibration 

amplitude increases. The reason is that increasing 

temperature decreases the mechanical properties of the 
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(b) 

Fig. 10 The effect of viscoelastic medium type on the 

(a) frequency response; (b) force response 
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(a) 

 

 

(b) 

Fig. 11 The effect of temperature on the (a) frequency 

response; (b) force response 

 

 

structure and so the stiffness of the system gets smaller. 

Furthermore, as temperature increases, the jump height of 

the structure increases. 

Fig. 12 illustrates the effect of width to thickness ratio 

on the frequency and force responses of the structure. As 

can be seen, with increasing the width to thickness ration, 

the frequency of the system decreases whilst the amplitude 

peak increases. The reason is that with increasing the width 

to thickness ratio, the curved microbeam becomes thinner 

and so the stiffness of the structure decreases. Therefore, the 

hardening effects become more noticeable for the structure 

with lower values of width to thickness ratio. 
 

 

6. Conclusions 
 

In this research, the in-plane and out-of-plane forced 

vibration of a curved nanocomposite microbeam was 

analyzed. The in-plane and out-of-plane displacements of 

the structure were considered based on FSDT. The curved 

microbeam was reinforced by FG-CNTs and so the 

 

(a) 

 

 

(b) 

Fig. 12 The effect of width to thickness ratio on the 

(a) frequency response; (b) force response 

 

 

extended rule of mixture was employed to estimate the 

effective material properties of the structure. Also, the small 

scale effect was taken into account using SGT. The structure 

was rested by a nonlinear orthotropic viscoelastic 

foundation and was subjected to concentrated harmonic 

force, thermal and magnetic loads. The derivation of the 

governing equations was performed using energy method 

and Hamilton’s principle. DQ method along with IQ and 

Newmark methods were employed to solve the problem. 

The most important results may be listed as follows 

 

 The highest frequency and lowest vibration 

amplitude belongs to FGX distribution type while 

the inverse condition is observed for FGO 

distribution type. Thus, it can be stated that the 

hardening-type response of the structure with FGX 

distribution type is more intense with respect to the 

other distribution types. 

 With increasing the volume fraction of CNTs, the 

frequency increases while the amplitude peak of the 

structure decreases. Furthermore, it is concluded that 
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increasing the CNTs volume fraction decreases the 

amplitude and jump height and it is due to an 

increase in the stiffness of the system. 

 As the central angle decreases, the frequency 

increases and as a results the vibration amplitude of 

the curved microbeam decreases. 

 Comparing the effect of boundary condition, the 

higher frequency and the lower vibration amplitude 

belong to the structure with CC boundary condition. 

Furthermore, it is seen that the greater jump height is 

occurred for SS boundary condition type. 

 Applying the magnetic field increases the frequency 

of the system which is indicative of an increase in 

the stiffness of the curved microbeam. As a result, by 

applying the magnetic field the vibration amplitude 

decreases. 

 It is deduced that as thickness to material length 

scale parameter ratio decreases, the frequency of the 

system increases and the vibration amplitude 

decreases and consequently the jump height of the 

structure decreases. 

 With increasing the width to thickness ratio, the 

frequency of the system decreases whilst the 

amplitude peak increases. 
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