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Abstract. The main goal of this research is to examine the in-plane and out-of-plane forced vibration of a curved
nanocomposite microbeam. The in-plane and out-of-plane displacements of the structure are considered based on the first order
shear deformation theory (FSDT). The curved microbeam is reinforced by functionally graded carbon nanotubes (FG-CNTs)
and thus the extended rule of mixture is employed to estimate the effective material properties of the structure. Also, the small
scale effect is captured using the strain gradient theory. The structure is rested on a nonlinear orthotropic viscoelastic foundation
and is subjected to concentrated transverse harmonic external force, thermal and magnetic loads. The derivation of the governing
equations is performed using energy method and Hamilton’s principle. Differential quadrature (DQ) method along with integral
quadrature (1Q) and Newmark methods are employed to solve the problem. The effect of various parameters such as volume
fraction and distribution type of CNTs, boundary conditions, elastic foundation, temperature changes, material length scale
parameters, magnetic field, central angle and width to thickness ratio are studied on the frequency and force responses of the
structure. The results indicate that the highest frequency and lowest vibration amplitude belongs to FGX distribution type while
the inverse condition is observed for FGO distribution type. In addition, the hardening-type response of the structure with FGX
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distribution type is more intense with respect to the other distribution types.
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1. Introduction

The growing applications of small-scale structures like
microbeams in micro-electro-mechanical systems (MEMS)
and nano-electro-mechanical systems (NEMS) are the
reason of the many theoretical and experimental
investigations on the behavior of such structures.

An investigation into the response of a resonant
microbeam to an electric actuation was presented by Younis
and Nayfeh (2003). The improved macromodel of the fixed-
fixed microbeam-based MEMS capacitive switch was
presented by He et al. (2009) to investigate the behavior of
electrically actuated MEMS capacitive switch. A nonlinear
model was used to account for the mid-plane stretching, a
DC electrostatic force, and an AC harmonic force. Krylov
et al. (2011) investigated the feasibility of two-directional
switching of initially curved or pre-buckled electrostatically
actuated microbeams using a single electrode fabricated
from the same structural layer. The dynamic response of
parametrically excited microbeam arrays was governed by
Gutschmidt and Gottlieb (2012) using nonlinear effects
which directly influence their performance. To date, most
widely used theoretical approaches, although opposite
extremes with respect to complexity, were nonlinear
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lumped-mass and finite-element models. Ghayesh et al.
(2017) used Timoshenko beam theory and modified couple
stress theory (MCST) to investigate the nonlinear forced
vibrations of a functionally graded (FG) microbeam. Rezaei
and Zamanian (2017) performed a two-dimensional
vibration analysis of piezoelectrically actuated microbeam.
They modeled the structure based on Euler-Bernoulli beam
theory and considered the effect of geometric nonlinearity.
Dai et al. (2015) explored the nonlinear dynamics behavior
of cantilevered microbeams on the basis of MCST. They
derived the governing equations using Hamilton’s principle
and solved them employing Galerkin method. Jahangiri et
al. (2015) investigated mechanical behavior of the
functional gradient materials (FGM) micro-gripper under
thermal load and DC voltage numerically taking into
account the effect of intermolecular forces. Bataineh and
Younis (2015) presented an investigation into the static and
dynamic behavior of an electrostatically actuated clamped—
clamped polysilicon microbeam resonator accounting for its
fabrication imperfections. Free flexural vibration of
geometrically imperfect FG microbeams is probed by
Dehrouyesh-Semnani et al. (2016). They assumed that the
mechanical properties of the FG microbeam vary through
the thickness direction based on a power-law distribution.
They also considered the size effect employing MCST.
Ghayesh and Farokhi (2017), Peng et al. (2017),
Dehrouyesh-Semnani et al. (2015) and Shafiei et al. (2016)
are the other authors who employed MCST to study the size
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effect phenomenon in the microstructures. Erfani and
Akrami (2016) studied evaluation of cyclic fracture in
perforated beams using micromechanical fatigue model.
Aya and Tufekci (2017) investigated the out-of-plane static
behavior of curved nanobeams. They presented an exact
analytical solution using initial value method. Pan et al.
(2017) studied out-of-plane bending stiffness of carbon
nanotube films on the basis of energy analysis. They
validated their results by finite element simulations.
Furthermore, Jafari-Talookolaei et al. (2017) investigated
the in-plane and out-of-plane vibration modes of thin-to-
moderately thick laminated composite beams with arbitrary
lay-ups. They used first order shear deformation theory
(FSDT) to develop the mathematical model. Also, Liu et al.
(2017), Rostami et al. (2016) and Wang et al. (2016)
investigated in-plane vibration of various structures.
Vibration of an embedded nanocomposite curved
microbeam was investigated by Allahkarami and Nikkhah-
Bahrami (2017) based on the modified couple stress theory
and Timoshenko beam model. In another work, Allahkarami
et al. (2017) studied dynamic buckling analysis of an
embedded curved microbeam reinforced by functionally
graded carbon nanotubes. Atcti and Bagdathh (2017a)
presented the effects of non-ideal boundary conditions
(BCs) on fundamental parametric resonance behavior of
fluid conveying clamped microbeams. In another work by
Atct and Bagdathh (2017b), vibration analysis of fluid
conveying microbeams under non-ideal boundary
conditions (BCs) was performed.

For the first time, the in-plane and out-of-plane forced
vibration of a curved nanocomposite microbeam is studied
in the present research. Therefore, the results of this work
are of great importance in MEMS and NEMS. The FG-
CNTs reinforced curved microbeam is modeled by FSDT
and the material properties of the structure are estimated
using the extended rule of mixture. Also, the small scale
effect is considered using strain gradient theory. The
structure is rested on a nonlinear orthotropic viscoelastic
foundation and is subjected to concentrated transverse
harmonic external force, thermal and magnetic loads.
Differential quadrature (DQ) method along with integral
quadrature (1Q) and Newmark methods are used to solve
the problem and study the effect of various parameters on
the frequency responses and force responses of the
structure.

2. Theoretical model of problem

Fig. 1(a) represents a schematic view of a FG-CNTs
reinforced curved microbeam with the length of L, radius of
R and thickness of h. The structure is rested on an
orthotropic viscoelastic foundation which is modeled with
linear and nonlinear spring, damper and orthotropic shear
elements. Furthermore, four various CNTs distribution
types are shown in Fig. 1(b) which are including UD, FGA,
FGO and FGX.

2.1 Displacement field

The displacement field components of an arbitrary point
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Fig. 1 (a) A schematic of FG-CNTs reinforced curved
microbeam; (b) different distribution of CNTs
(1) UD; (2) FGA; (3) FGO; (4) FGX

within the curved microbeam are expressed based on FSDT
as follows

u (X, ¥,z 1) =u(x,yt) +z g (x,y,t),
u, (X,y,z,t)=v(x,y,t) +z ¢, (X,y,t) +x ¢, (X,y,t), (1)
u, (x,y,z,t)=w(x,yt)—xe, (x,yt),

in which u(x, y, t), v(x, y, t) and w(x, y, t) denote the
displacement components of the middle surface (i.e., at z =
0) in direction of the x, y- and z-axis, respectively.
Moreover, g.(X, ¥, 1), oy(X, y, ) and ¢,(x, y, t) indicate the
rotation of the cross section of the curved microbeam
around the x, y- and z-direction, respectively.

2.2 Kinematic relations

Considering Eqg. (1) and nonlinear term of axial strain,
we have

0
g UL L0 &_8&)
ox R OoX R ox

2a
1[6\/)2 1(8\”)2 (29)
+=| — | +=| —
2\ OXx 2\ oX
1(ov op
— ___Z__L_
Sy 2(ax ox (PZ) (2b)

lfow u ¢, OO z
Sl AL S SRV L 'O B P
Ea 2(6x R y(R 8xj ( Rj(pyj (2¢)



Nonlinear forced vibration of FG-CNTs-reinforced curved microbeam based on strain gradient theory considering... 675

2.3 Extended rule of mixture

The effective material properties of the CNTs reinforced
composite curved microbeam are estimated using extended
rule of mixture. So, the CNTs are considered as short fibers
which are aligned and straight. Thus, the effective Young’s
modulus and shear modulus of the CNTs reinforced
composite curved beam can be obtained as (Shen 2009)

By =mVenr By +(@—Vour )ED, @)
M _ Ve (l A-Venr) ) @)

Ex Er22 E
s _ Vonr (1 (A-Venr) ) (5)

GlZ GrlZ Gln;

where Eyy, Erp and Gy, represent Young’s and shear
moduli of CNTSs, respectively. Also, E, and G, are the
mechanical properties of the matrix material, and Vcnr
indicates the volume fraction of CNTs. Furthermore, #; (i =
1, 2, 3) indicates the CNTs efficiency parameters. In present
research, four various CNTs distribution types through the
thickness direction of composite curved beam are
considered, comprising the uniform (UD) and functionally
graded (FG) distributions which can be expresses as

UD: Ve =Veur, (6)

22\ .
FGV : VCNT (Z) = [1_ F}/CNT ) (7

2 .

FGO: Ve (2) =2 1_T CNT 1 (8)

2 .
FGX : Ve (2) =2 T [t ©)

where
* W,

Vi = et (10)

Wenr + (pCNT (o )_ (pCNT (o )WCNT '

In which weyt denotes the mass fraction of CNTs. Also,
pm and penr represent the mass densities of matrix and
CNTs, respectively. In a similar manner, the effective
thermal expansion coefficients and mass density of the
CNTs reinforced composite microbeam can be obtained by
the following relations

a(C) =Venr Oy + (1_VCNT )am_,
yy (1+ Vita Vont Grp T (1+ Vi ) (11)

(1-Veur )

A — V0,

© =Vonr ¢ +(1_VCNT )pm' (12)

where o7 and ay» denote the thermal expansion
coefficients of CNTs in the longitudinal and transverse
directions, respectively. Furthermore, p, and p, indicate the
mass densities of matrix and CNTs, respectively. It should
be noted that the Poisson’s ratio is assumed to be constant
along the thickness direction.

3. Derivation of motion equations

The governing equations of the structure are derived
using Hamilton’s principle which can be expressed as

j;(éu — (8K +3N )it =0, (13)

in which U, K and W indicate the total potential strain
energy, total kinetic energy and work done by external
forces, respectively.

The total potential energy of the structure is considered
based on SGT as follows

U =3J(ore

\

+ p Y| +T|Jkn|]k + ijXISJ )jv ' (14)

in which &, 7, nfjlk) and y; denote the strain tensor, the
dilatation gradient vector, the deviatoric stretch gradient and
the symmetric rotation gradient tensors, respectively. Based
on Eq. (14), SGT is capable to consider three independent
material length scale parameters and expresses the potential
energy as a function of the symmetric strain tensor, the
dilatation gradient vector, the deviatoric stretch gradient
tensor and the symmetric rotation gradient tensor which can
be considered as follows (Zhang et al. 2013)

Yi = 8mm,i ’ (15&)

1 1
Niji =§(8jk,i +& +8ij,k)_E6ij(8mm,k + 280 )

(15b)

1
E[Sjk (8mm,i Emi m)+8kl (Smm Jd Smj,m )]’

s 1
X ZE(GU +6;,), (15¢)
in which u; and ¢;; denote the displacement vector and the

knocker delta, respectively. Also, the rotation vector (¢;) can
be expressed as

0 (%curl (u)l | (16)

The classical stress tensor, oj;, the higher-order stresses,
pi, T l? and m; which mentioned in Eq. (14) can be
expressed as

oy = Mred; +2ue;, (17a)



676 Farshid Allahkarami, Mansour Nikkhah-bahrami and Maryam Ghassabzadeh Saryazdi

P =245y, (17b)
Tlijk =24l 12’7;k v (17c)
m; =2ul; 7., (17d)

in which 1 and x denote the Lamé Constants. Also, (lo, Iy, I5)
represent independent material length scale parameters.
Using Egs. (1) and (2a)-(2c) we have
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Furthermore, the classical stresses tensor and the higher-

order stresses terms can be simplified as
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in which oy and AT are thermal expansion and temperature
difference, respectively and

E
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Eventually, the total potential energy of the structure can
be expressed as
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The kinetic energy of the curved microbeam can be
written as

1L 6uX28U28u22
B0 o] o] (2 o,

in which p denotes the mass density of the nanocomposite
structure. Also, the work done by the external forces is
subjected by surrounding viscoelastic foundation and axial
magnetic field which can be calculated as below (Shen and
Zhang 2011, Kolahchi et al. 2015)
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where k,, and kj, indicate the linear and nonlinear spring
constant of the Winkler type, respectively. Also, c4, G and

G. represent the damper constant of foundation and the
shear constants in ¢ and (¢ directions, respectively.
Moreover, # is the magnetic field permeability and Hy
denotes the axial magnetic field; F, and Q represent
amplitude and excitation frequency of the concentrated
transverse harmonic external force, respectively. § and xo
denote Dirac delta function and location of harmonic load.
The foundation stiffness k, for soft medium can be
considered as below
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where E;, Vs, Hs denote Young’s modulus, Poisson’s ratio
and depth of the foundation, respectively. Here, Eg is
considered to be temperature-dependent despite v is
assumed to be a constant.

Substituting Egs. (25)-(27) into Eg. (13), the motion
equations can be derived as follows
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where the moment of inertias and the thermal force can be
defined as
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The stress resultants which mentioned in above
equations are defined in Appendix A.

Moreover, the size-dependent various boundary
conditions at both ends of the composite curved microbeam
can be expressed based on Hamilton’s principle as follows
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4. Solving the problem
4.1 DQ method

In this part, DQ method is applied to solve the
governing equations of the curved nanocomposite beam.
For this goal, the governing differential equations are turned
into a set of first order algebraic equations employing the
weighting coefficients. DQ method approximates a
derivative of a function at a given discrete point as a
weighted linear sum of the function values at all discrete
points selected in the solution domain. Therefore, the one-
dimensional derivative of the function may be expressed as
below (Kolahchi and Moniribidgoli 2016, Kolahchi et al.
2015, 20164, b, 20173, b)

d f (X ) ZC(n)f (x,) n=1.,N -1 (39

where f(x) denotes the mentioned function, N represents the
number of the grid points, X; denotes a sample point of the
function domain, f; is the value of the function at ith sample
point and C;; represent the weighting coefficients. So, it can
be concluded that choosing the grid points and weighting
coefficients are significant factors for obtaining the accurate
results. The grid points are defined based on the Chebyshev
polynomials which are considered as below

L i-1 .
X; _E{l—cos(N _1)7Z':| i=1..,N (40)

On the basis of Chebyshev polynomials, the grid points
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are closer together near the borders and in distant parts of
the borders, they are considered away from each other.

Also, the weighting coefficients can be considered as the
following simple algebraic relations

_ M) for i=j, i,j=12..N,
M(Xj)(xi_xj)
AP =1, (41)
> AP for i=j, i,j=12.,N
15
where
N
M(Xi)zg(xi_xj) (42)

J#

Moreover, the higher-order derivatives are defined as
below

Agn) _ n(A(inl)Agl) _ ﬂCtg[Xi ;XJ ]ﬂj (43)

4.2 1Q method

IQ method is also on the basis of the analysis of a high-
order polynomial approximation in a linear vector space. As
a general case, the integral of f(x) over a part of the whole
domain can be approximated using a linear combination of
all the functional values in the whole domain as the
following form (Shu et al. 1995)

X N .. n
L’f (x)dx =>CIf (x,),  with CJ =w -w},, (44)
! k=1

in which x; and x; represents the numbers which can be
altered; w' = a™ that we have

X, —C .
a, =————AY whenizj (45)
R
_A® 1 i
a, =AY+ when i # j (46)
X —

where AIQ) denotes the weighting coefficient of the first-
order derivative in DQ method. Also, ¢ indicates a constant
which are considered as 0.01 (Shu et al. 1995). Finally,
employing DQ-IQ methods, the motion equations can be
rewritten in a compact matrix form as below

d, t) d, t) d, )] [ro]
[KL+KNL]Ld(t)}[C][d.d(t)}[M]L..d(t)HQ(t)} (@7)

in which [d] = [u v w ¢y ¢y #.]"; the indexes of b and d are
related to boundary and domain points, respectively.
Furthermore, [K.], [Kn.] and [C] represent the linear and
nonlinear stiffness matrices and damping matrix,
respectively. Also, [M] denotes the mass matrix.

4.3 Newmark time integration scheme

In this section, the average acceleration method of
Newmark-£ (Simsek and Kocaturk 2009) in conjunction
with an iteration method is employed. This method reduces
the time domain Eq. (47) as the following set of nonlinear
algebraic equations

K*(di+1) = Qi+1’ (48)
in which subscript i + 1 indicates the number of steps for
the concerned time t = t;;. Also, K™ (di.,) represents the

effective stiffness matrix and Q;.; denotes the effective load
vector, which may be defined as below

K'(di) =K +Ky (di)+aM+aC. (49)

Qi*+l =Q,+M (aodi +Olzd'i +a3d“i )

. . (50)
+C (Otldi +ad, +a5di),
where
1 14 1
0T T2 1T T Oy =—7,
At At At
aazi—l, a4:1—1'a5:£(1_2J, (51)
2y X 2\ x
as =At (1-y), a, =Aty,

in which y = 0.5 and y = 0.25 (Simsek and Kocaturk 2009).
According to the mentioned iteration method, Eq. (48) can
be solved for any fixed time and then, the new acceleration
and velocity vectors can be achieved as below

d‘i+l =a,(d _di)_a2di —a,d;, (52)

i+1

d . —d +ad +ad (53)

i+1?
Similarly, the mentioned procedure can be repeated for
each time step.

5. Results and discussion

To investigate the in-plane and out-of-plane forced
vibration of FG-CNTs reinforced curved microbeam, a
curved microbeam with matrix material made of Poly
methyl methacrylate (PMMA) is chosen with Poisson’s
ratios of v, = 0.34, temperature-dependent thermal
coefficient of ay = (1+0.0005AT) x10°/K and temperature-
dependent Young moduli of E,, = (3.52 — 0.0034T) GPa in
which T =Ty + AT and T, = 300 K (room temperature). The
structure is reinforced by (10, 10) SWCNTs with the
mechanical properties listed in Table 1. Moreover, the
temperature-dependent elastic foundation is composed of
Poly dimethylsiloxane (PDMS) with Poisson’s ratios of v =
0.48 and Young moduli of Es = (3.22 — 0.0034T) GPa (Shen
and Zhang 2011).
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Table 1 Temperature-dependent material properties of (10, 10)
SWCNT (L =9.26 nm, R = 0.68 nm, h = 0.067 nm,
v = 0.175)

Temperature ~ ESNT ESNT G CNT CNT

ar A
(K) (TPa)  (TPa)  (TPa) (10°%K) (10°/K)
300 5.6466 7.0800 1.9445 3.4584 5.1682
500 55308 6.9348 1.9643 4.5361 5.0189
700 54744 6.8641 1.9644 4.6677 4.8943

5.1 Convergence of DQ method

In this section, the convergence of DQ method is
appraised by Fig. 2. It can be seen that fast rate of
convergence in DQ can be found in this figure, Based on
this figure, the sufficient number of grid points to achieve
the accurate result is N = 17.

5.2 Verification of results

In Table 2§ a comparison study is performed to validate
the obtained results. For this purpose, a simply supported
curved beam with radius of R = 48.34 m, width of b =5 m,
thickness of h = 1.8 m, central angle of § = = / 6, Poisson’s
ratio of v = 0.2 is assumed. The first three dimensionless
frequency of the structure is reported in Table 2. As can
be seen from Table 2, the present results are in good
agreement with the results reported by references
(Malekzadeh et al. 2010) and Wu and Chiang (2003).

5.3 The effect of different parameters

In this section, the effects of different parameters on the
frequency and force responses of the curved micro beam
under the harmonic transverse centralized force (xo = L/2)
are studied. For parametric study, a CC curved microbeam
reinforced by Viyr = 0.28 CNTSs distributed as FGX pattern
and subjected to magnetic field with H, = le8 A/m is
considered with the central angle of § = = / 6, width to
thickness ratio of b/h = 4, thickness to size parameter ratio
of h /1 =2 and temperature of T = 500 K.

0.5

\
x 0.45 X 17
< _ Y:0.4066

m

W
o
~

0.35

0.3

0.25

0.2

0.15

Table 2 Comparison of the first three frequency parameters of the
hard simply supported isotropic circular curved beam

Method Q Q, Qs
DQM
(Malekzadeh et al. 2010) 34.4745 137.783  299.541
FEM
(Wu and Chiang 2003) 34.543 138.019  300.285
DQM (Present) 34.4742  137.7815 299.5315

In Fig. 3 the effect of in-plane and out-of-plane motions
on the frequency response and force response of the
structure is shown. In this figures, dimensionless maximum
deflection and dimensionless forcing amplitude are defined
as Wnax =W/ hand P=Fy/ A at T =500 K. As can be
seen, due to consider the geometric nonlinearity, a
hardening-type behavior is observed in the frequency
response and force response curves. From Fig. 3(a) it can be

0.56 T T
————— In-plane & Out-of-plane motions, @ =1.3474
c>é 0.54F sesnnean In-plane motion, @ =1.3511 ,'i N
£
2 P
_ 0521 s B
@ S
3 <3
2 o05f ,,}',r |
g_ l{.{_:,’t
& 048 a; 8
2] /¢ ,I
g A
= 0.46 A : K
[:
o 4 E]
] P |
C 044+ " Hl b
5] %l H
E z"". \\
Q o42f annt e ]
pmmennc :-“..‘.,~~-
04 , ; , ; ..r...-.““--'r‘ nnnnnnn
0.6 0.8 1 1.2 1.4 1.6 18
Frequency ratio, @/ e
(@)
0.5 T T T T T T T
0.45F
g
; 0.4
& o35+
S
=
= 0.3
o
% 0.251-
[72]
[ 72}
D 02
s
‘5 0.15¢
S
£ ol
[a) D S — In-pl d Out-of-pl [
0.05F L n-plane and Out-of-plane motions
/,' """"" In-plane motion
0 - r r r r r r r
0 0.5 1 15 2 25 3 35 4

Forcing Amplitude, P

Dimensionless amplitude,

0.1

r

0.05
5

10 15 20
Number of grid points, N

Fig. 2 Convergence and accuracy of DQM

(b)
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motions on the (a) frequency response; (b) force
response
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seen that considering the in-plane and out-of-plane motions
together vyields the highest dimensionless vibration
amplitude with respect to the in-plane motion lonely.
Furthermore, the frequency of the structure with only in-
plane motion is larger than the structure with in-plane and
out-of-plane motions. Also, it can be deduced that the
hardening-type response of the structure with in-plane
motion is more noticeable with respect to the structure with
in-plane and out-of-plane motions. Furthermore, from Fig.
3(b), it can be observed that for lower values of forcing
amplitudes, with increasing the forcing amplitude, two limit
point bifurcations and a jump phenomenon is happened.
Moreover, for properly large values of forcing amplitude,
with increasing the forcing amplitude, the maximum
vibration amplitude of structure increases.

Fig. 4 illustrates the effect of CNTSs distribution types on
the frequency and force responses of the nonlinear
hardening-type behavior of the structure. It is apparent that
the highest frequency and lowest vibration amplitude
belongs to FGX distribution type while the inverse
condition can be observed for FGO distribution type.
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Fig. 4 The effect of SWCNTs distribution on the (a)
frequency response; (b) force response

Therefore, it can be stated that the hardening-type response
of the structure with FGX distribution type is more intense
with respect to the other distribution types. Also, the greater
amplitude and jump height belongs to the FGO distribution
type because the structure with FGO has the lowest stiffness
(see Fig. 4 (b)).

The effect of volume fraction of CNTSs on the frequency
and force responses of the structure is depicted in Fig. 5. It
can be found that with increasing the volume fraction of
CNTs, the frequency increases while the amplitude peak of
the structure decreases (see Fig. 5(a)). Also, from Fig. 5(b)
it can be concluded that increasing the CNTs volume
fraction decreases the amplitude and jump height and it is
due to an increase in the stiffness of the system.

The effect of the central angle of the curved microbeam
on the frequency response and force response of the
structure is examined by Fig. 6. It is apparent that as the
central angle decreases, the frequency increases and as
results the vibration amplitude of the curved microbeam
decreases and the hardening-type response of the system
intensify. Hence, it can be stated that by increasing the
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central angle of the curved microbeam, the stiffness of the
structure decreases and so the jump height increases.

Fig. 7 shows the effect of various boundary conditions
on the frequency and force responses of the system. As can
be seen, the maximum frequency and the minimum
vibration amplitude belong to the structure with CC
boundary condition. It was expectable because the CC
boundary condition provides more constraint on the
structure and so the stiffness of the system increases.
Furthermore, it can be observed that the greater jump height
is occurred for SS boundary condition type.

Fig. 8 illustrates the effect of magnetic field of the
frequency and force responses of the structure. From this
figure, it can be found that applying the magnetic field
increases the frequency of the system which is indicative of
an increase in the stiffness of the curved microbeam. As a
result, by applying the magnetic field the vibration
amplitude decreases.

The effect of thickness to material length scale
parameter ratio on the behavior of the structure is shown in

0.65—— . . : : -
— — 4
WI=15, o =1.3561 A
3 S h1=2.0, w =1.3474 7
£
2 06 e h1=2.5, o =1.3391 Lo .
V2 4
- - _ s
g | - hI=3.0, o =1.3126 /’{2“‘
2 X
= 055
o
IS
3
A
K] 0.5
c
o
'
c
g 045
z
04 r L L L [ i
0.6 0.8 1 12 1.4 16 18
Frequency ratio, Q / o
(@)
06 T T T T T T T
3
;E 0.5+ _____-;
[}
T o04f
=
=1
% 0.3F
[%))
w
<
S o2
'
C
[<5]
£ o1
[a)]
ge="" ‘ ‘ . ‘

0 05 1 15 2 25 3 35 4
Forcing Amplitude, P

(b)
Fig. 9 The effect of thickness to material length scale

parameter ratio on the (a) frequency response; (b)
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Fig. 9. It can be deduced that as thickness to material length
scale parameter ratio decreases, the frequency of the system
increases and the vibration amplitude decreases and
consequently the jump height of the structure decreases. On
the other word, with increasing the thickness to material
length scale parameter ratio, the effect of size-scale
becomes less significant and lessens.

From Fig. 10, it can be found that considering the elastic
foundation leads to an increase in the stiffness of the system
and so the frequency increases. Moreover, the structure with
the visco-Pasternak foundation has the lowest vibration
amplitude with respect to Winkler foundation. From this
figure, it can be stated that the most intense hardening-type
response belongs to the structure with visco-Pasternak
foundation.

Fig. 11 depicts the effect of temperature change on the
frequency response and force response of the curved
microbeam. As expected, with increasing temperature the
frequency of the structure decreases while the vibration
amplitude increases. The reason is that increasing
temperature decreases the mechanical properties of the
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Fig. 10 The effect of viscoelastic medium type on the
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structure and so the stiffness of the system gets smaller.
Furthermore, as temperature increases, the jump height of
the structure increases.

Fig. 12 illustrates the effect of width to thickness ratio
on the frequency and force responses of the structure. As
can be seen, with increasing the width to thickness ration,
the frequency of the system decreases whilst the amplitude
peak increases. The reason is that with increasing the width
to thickness ratio, the curved microbeam becomes thinner
and so the stiffness of the structure decreases. Therefore, the
hardening effects become more noticeable for the structure
with lower values of width to thickness ratio.

6. Conclusions

In this research, the in-plane and out-of-plane forced
vibration of a curved nanocomposite microbeam was
analyzed. The in-plane and out-of-plane displacements of
the structure were considered based on FSDT. The curved
microbeam was reinforced by FG-CNTs and so the
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Fig. 12 The effect of width to thickness ratio on the
(a) frequency response; (b) force response

extended rule of mixture was employed to estimate the
effective material properties of the structure. Also, the small
scale effect was taken into account using SGT. The structure
was rested by a nonlinear orthotropic viscoelastic
foundation and was subjected to concentrated harmonic
force, thermal and magnetic loads. The derivation of the
governing equations was performed using energy method
and Hamilton’s principle. DQ method along with IQ and
Newmark methods were employed to solve the problem.
The most important results may be listed as follows

e The highest frequency and lowest vibration
amplitude belongs to FGX distribution type while
the inverse condition is observed for FGO
distribution type. Thus, it can be stated that the
hardening-type response of the structure with FGX
distribution type is more intense with respect to the
other distribution types.

e With increasing the volume fraction of CNTs, the
frequency increases while the amplitude peak of the
structure decreases. Furthermore, it is concluded that
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increasing the CNTs volume fraction decreases the
amplitude and jump height and it is due to an
increase in the stiffness of the system.

e As the central angle decreases, the frequency
increases and as a results the vibration amplitude of
the curved microbeam decreases.

e Comparing the effect of boundary condition, the
higher frequency and the lower vibration amplitude
belong to the structure with CC boundary condition.
Furthermore, it is seen that the greater jump height is
occurred for SS boundary condition type.

¢ Applying the magnetic field increases the frequency
of the system which is indicative of an increase in
the stiffness of the curved microbeam. As a result, by
applying the magnetic field the vibration amplitude
decreases.

e |t is deduced that as thickness to material length
scale parameter ratio decreases, the frequency of the
system increases and the vibration amplitude
decreases and consequently the jump height of the
structure decreases.

e With increasing the width to thickness ratio, the
frequency of the system decreases whilst the
amplitude peak increases.
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