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1. Introduction 

 

Functionally graded material (FGM) is one of latest 

concept in the composite material design field. The material 

properties of functionally graded material continuously vary 

from point to another point. In other words, material 

properties are functions of location. The use of FG materials 

reduces the weight and increases the strength of structures. 

A number of papers considering various aspects of FGM 

have been published in recent years (Nejad and Rahimi 

2009, Nejad et al. 2009, 2014a, b, 2015a, b, 2016a, b, 

2017a, b, c, Nejad and Rahimi 2010, Ghannad et al. 2012, 

2013, Nejad et al. 2013, Fatehi and Nejad 2014, Nejad and 

Fatehi 2015, Jabbari et al. 2015, Mazarei et al. 2016a, 

Nejad and Hadi 2016b, Jabbari et al. 2016, Afshin et al. 

2017, Sadrabadi et al. 2017, Burlayenko et al. 2017, 

Civalek 2017, Gharibi et al. 2017, Kashkoli et al. 2017, 

Najibi and Talebitooti 2017, Şimşek and Al-shujairi 2017, 

Taczała et al. 2017, Wang and Zu 2017). It should be noted 

that most of the above-mentioned analyses are related to 

FGMs with material properties varying in one direction 

only. However, there are practical occasions which require 

tailored grading of properties in two or even three 

directions. As reported by Steinberg (Steinberg 1986), the 

fuselage of an aerospace craft undergoes an extremely high 

temperature field with excessive temperature gradient on 
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the surface and through the thickness, when the plane 

sustains flight at a speed of Mach 8 and at an altitude of 29 

km. In this circumstance, the conventional unidirectional 

FGMs may not be so appropriate to resist multi-directional 

severe variations of temperature. Therefore, it is of great 

significance to develop novel FGMs with properties varying 

in two or three directions (2D or 3D FGMs) to withstand a 

more general temperature field (Lü et al. 2008). Thanks to 

the advances in technology, FGMs have started to find their 

ways into micro-nano-electro-mechanical systems (MEMS/ 

NEMS) (Apuzzo et al. 2017, Belkorissat et al. 2015, 

Bounouara et al. 2016, Ebrahimi and Barati 2016a, c, 2017, 

Ebrahimi et al. 2017, Goodarzi et al. 2017, Hosseini et al. 

2016, Li and Hu 2016, 2017a, Li et al. 2016, 2017, Nguyen 

et al. 2014, Rahmani et al. 2017, Sahmani and Aghdam 

2017, Shishesaz et al. 2017). 

At nano and micro meter scales, size effects often 

become important. Both experimental and Molecular 

dynamics simulation results have shown that the small-scale 

effects in the analysis of mechanical properties of nano and 

micro structures cannot be neglected and classical 

continuum theories is not usable. Molecular dynamics 

simulation is convenient method to simulate the mechanical 

behavior of small size structures but it is computationally 

expensive for structures with large number of atoms 

(Gopalakrishnan and Narendar 2013, Keivani et al. 2016). 

Thus researchers stimulated to develop several higher-order 

continuum theories (Eringen 1972a, b, 1983, 2002, Lam et 

al. 2003, Mindlin and Tiersten 1962, Toupin 1962, Yang et 

al. 2002). Recently, by considering true continuum 
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kinematical displacement and rotation, Hajesfandiari and 

Dargush (2011) demonstrate that the couple-stress tensor is 

skew-symmetric and is energy conjugate to the skew-

symmetric part of the rotation gradients as the curvature 

tensor. 

Shafiei et al. (2017) investigate the buckling behavior of 

axially functionally grade nanobeams. Nonlocal elasticity 

and Euler-Bernoulli theories are used. Different boundary 

conditions are considered for micro/nanobeam. Nonlinear 

equations of nanobeam are solved by using of generalized 

differential quadrature method. The effect of some 

parameters such as temperature and nonlocal parameter on 

the nonlinear buckling of FG nanobeam are investigated. 

Ebrahimi and Barati (Ebrahimi and Barati 2017) suggested 

a model for buckling behavior of curved functionally 

graded nanobeams. Their model is based on the nonlocal 

strain gradient theory. Material properties of nanomeans 

vary according to power-law distribution. In other work 

(Ebrahimi and Barati 2016b), on the basis of Third-Order 

shear deformable beam, they investigated buckling 

behaviors of size-dependent through the thickness 

functionally graded nanobeams under thermal loading. 

Hamilton’s principle is used to drive the governing equation 

of nanomeams. Post-buckling behavior of through the 

thickness functionally graded nanobeams based on the 

nonlocal strain gradient theory is studied by Li and Hu 

(2017a). They considered the von Karman geometry 

nonlinearity. It is found that the scaling parameters have a 

significant effect on the stiffness-hardening or stiffness-

softening behavior. Ansari et al. (2016) investigate size-

dependent free vibration of post buckled functionally 

graded micro/nanobeams based on the strain gradient and 

shear deformation beam theories. Hamilton’s principle was 

used to obtain the nonlinear governing equation and 

associated boundary conditions. These equations were 

solved using generalized differential quadrature method. 

Results show the effect of small-scale parameters, material 

gradient parameter and boundary conditions on the 

frequency response and post-buckling behavior of 

functionally graded nanobeams. Adeli et al. (2017) studied 

torsional vibration of nano-cone. They used nonlocal strain 

gradient theory to capture size-dependent behavior of this 

nano-structure. Hosseini et al. (2017) investigated stress 

distribution of nanotubes under internal pressure using 

strain gradient theory. Yu et al. (2016) obtained the critical 

buckling loads of Euler-Bernoulli nanobeams under thermal 

load with different boundary condition based on the 

nonlocal elasticity theory. They discussed about the effects 

of nonlocal parameter on the buckling behavior. Nejad et al. 

(Nejad and Hadi 2016a, b, Nejad et al. 2016a) analyzed the 

buckling, vibration and bending behavior of two directional 

functionally graded nanobeams, respectively. Minimum 

potential energy principle, Euler-Bernoulli beam and 

nonlocal elasticity theories are adopted to drive the 

fundamental equations. It is considered that the material 

properties of functionally graded nanobeams vary in the 

length and thickness direction. Differential equations were 

solved using generalized differential quadrature method. 

Also, the effects of length scale parameter and gradient 

index were shown. Ebrahimi and Salari (2015) presented a 

new solution path in order to explain the effect of 

temperature on the free vibration and buckling behavior of 

through the thickness functionally graded Timoshenko 

nanobeams based on the nonlocal elasticity theory. Material 

changes in accordance power-law distribution. Moreover, 

Temperature-dependent were considered for nanobeams. 

Bahrami and Teimourian (2015) were employed nonlocal 

elasticity theory to investigate the buckling and free 

vibration behaviors of Euler-Bernoulli nanobeams with 

different boundary conditions. The influence of nonlocal 

parameter and preload on the natural frequency and 

buckling load are explained. Eltaher et al. (2014) used 

Eringen nonlocal elasticity theory to study buckling 

behavior of nanobeams. Material properties of nanobeams 

vary in the thickness direction. Minimum energy principle 

was employed to obtain the equilibrium equations. Chen et 

al. (2014) consider the effect of van der Waals forces on the 

stability and buckling behavior of a piezoelectric 

viscoelastic nanobeam. Results indicate the effects of van 

der Waals force, inner damping and electrostatic load. 

Sismek and Yurtcu (2013) employed nonlocal elasticity, 

Timoshenko and Euler-Bernoulli beam theories to analyze 

static bending and buckling behaviors of through-thickness 

functionally graded nanobeams. Emam (2013) offered a 

general model based on the nonlocal elasticity theory to 

investigate the buckling and post-buckling behavior of 

Euler-Bernoulli and Timoshenko nanobeams. Results show 

the reverse relation between critical buckling load and 

nonlocal parameter. Thai and Vo (2012) introduce a new 

model on the basis of Eringen nonlocal elasticity theory for 

bending, buckling and vibration of nanobeams that is able 

to examine both small scale and shear deformation effects. 

Results indicate that the effects of small scale parameter on 

the bending, buckling and vibration behavior of nanobeams 

are significant. Thai (2012) analyzed the bending, buckling 

and vibration of nanobeams by introducing a new beam 

theory based on the nonlocal elasticity theory. His model is 

capable to consider the shear deformations, while it does 

not require shear correction factor. Ansari and Sahmani 

(2011) consider the surface stress effects to analyze bending 

and buckling behaviors of nanobeams. Aydogdu (2009) 

studied the buckling, bending and vibration of nanobeams 

based on the a generalized nonlocal beam theory. Nejad et 

al. (2017a) employed consistent couple-stress theory for 

free vibration analysis of Euler-Bernoulli nano-beams made 

of arbitrary bi-directional functionally graded materials. 

Nonlinear bending of a two-dimensionally functionally 

graded beam are presented by Li et al. (2018). Li and Yu 

(2017b) presented torsional vibration of bi-directional 

functionally graded nanotubes based on nonlocal elasticity 

theory. 

To the best of the researchers’ knowledge, in this article 

the buckling analysis of TDFGMs Euler-Bernoulli nano-

beams has been presented based on the consistent couple-

stress theory for the first time. The effects of changes of 

some important parameters such as material length scale, 

FG index on the values of buckling load in different modes 

are studied. The results of this study can be a reference for 

designing the elastic types three-directional FGM Euler-

Bernoulli nano-beams. 
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2. Analysis 
 

Consider a nano-beam of length L, width b, and 

thickness h made of three-directional functionally graded 

materials (Fig. 1). Cartesian coordinates (x, y, z) are 

considered. 

The modulus of elasticity E and density ρ are assumed 

to vary as arbitrary functions in axial, thickness and width 

directions, as indicated below 
 

       , ,E x y z f x g y k z
 

(1) 

 

where f(x), g(y) and k(z) are arbitrary functions. 

In the consistent couple-stress theory, the equations of 

equilibrium of the linear isotropic materials are formulated 

as Hadjesfandiari and Dargush (2011). 
 

, 0ji j if  
 

(2) 

 

, 0ji j ijk jkm   
 

(3) 

 

where ij and mji represent the non-symmetric force-stress 

and couple-stress tensors, respectively. In addition, fi and εijk 

denote the body force per unit volume and permutation or 

Levi-Civita symbol, respectively. As mentioned before, 

Hadjesfandiari and Dargush (2011) proved that in the 

couple-stress theory, the body force and body couple are not 

distinguishable from each other and the body couple 

transform to the equivalent body force (Hadjesfandiari and 

Dargush 2011). Moreover, in the couple-stress theory, 

unlike the classical elasticity, the stress tensor is generally 

non-symmetric. Thus, it can be decomposed to the 

symmetric and skew-symmetric components as following 
 

   ji ji ji
   

 
(4) 

 

where (ji) is the symmetric part and [ji] is the skew-

symmetric part of the force-stress tensor. In order to define 

the elements of Eqs. (2)-(4) required in the couple-stress 

theory, the kinematic parameters should be utilized. The 

displacement gradient can be decomposed into two distinct 

parts 

ij ij iju e  
 

(5) 
 

where 
 

   , ,,

1

2
ij i j j ii j

e u u u  
 

(6) 

 

   , ,,

1

2
ij i j j ii j

u u u   
 

(7) 

 

In the above relations, eij and ωij are strain and rotations 

tensors, respectively. Similar to the couple-stress tensor, the 

rotation tensor is skew-symmetrical and a vector can be 

defined dual to it as 

 

1

2
i ijk kj  

 
(8) 

 

 

Fig. 1 Geometry of the TDFG Euler-Bernoulli nano-beam 

 

 

The gradient of rotation tensor can be decomposed into 

two sub-tensors as 
 

,i j ij ij   
 

(9) 
 

where 
 

   , ,,

1

2
ij i j j ii j

     
 

(10) 

 

   , ,,

1

2
ij i j j ii j

     
 

(11) 

 

The diagonal arrays of the former known as the torsion 

tensor show the pure torsion of the element about the 

coordinate axis and the off-diagonal terms are deviations 

from sphericity. It does not contribute as a fundamental 

measure of deformation and will not be included in the 

strain energy. On the other hand, in the couple-stress theory, 

the curvature tensor (κij) plays a crucial role in the strain 

energy. The corresponding dual vector of the skew -

symmetric curvature tensor can be formulated as 
 

1

2
i ijk kj  

 
(12) 

 

It is now the time of formulating the force and couple-

stresses corresponding to the above kinematic parameters. 

The symmetrical part of the force-stress tensor in Eq. (4) is 

same as the force-stress tensor in classical elasticity and can 

be obtained from Eq. (13) 
 

 
2kk ij ijji

e e    
 

(13) 

 

where λ and μ are the Lame’s constants. The couple-stress 

tensor is skew-symmetrical (mij = ‒mji) and a vector mi can 

be introduced dual to the tensor. 
 

1

2
i ijk kjm m

 
(14) 

 

For the isotropic linear materials, Hadjesfandiari and 

Dargush (2011) proved that the couple-stress can be 

computed from Eq. (15). 
 

8i im  
 (15) 

 

The above relation shows that the couple-stress theory 

for the isotropic linear materials has only one extra size-

dependent parameter. The ratio η = μl2 is the constant makes 

difference between the classical and consistent couple-stress 

theories. The size-dependent parameter, l, varies from one 
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material to another or from one scale to another scale. For 

the zero value of this parameter, the latter reduces to the 

former. 

In addition, Hadjesfandiari and Dargush (2011) showed 

that the skew-symmetric component of the stress tensor can 

be obtained from Eq. (16). 
 

   ,ji i j
m  

 
(16) 

 

According to the consistent couple-stress developed by 

Hadjesfandiari and Dargush (2011), the strain energy 

density of an isotropic linear elastic material with volume Ω 

experiencing an infinitesimal displacement is defined as 
 

  1

2
ij ji ijji

U e m dv 


 
 

(17) 

 

Components of displacement vector (u1, u2, u3) for 

Nano-beams based on Euler-Bernoulli beam theories can be 

expressed as 
 

 

 

1

2

3

0               

        

u z dw dx

u

u w x

 



   

(18) 

 

The underlying assumption in our theory will be that 

plane sections initially perpendicular to the midsurface will 

remain plane and perpendicular. Moreover the cross-section 

is infinitely rigid in its own plane. 

Substitution of Eq. (18) into the Eq. (11), the skew-

symmetric curvature tensor is expressed as 
 

2

2

0 1 0
1

1 0 0
2

0 0 0

w

x


 
  

 
 
    

(19) 

 

From Eq. (15), the couple-stress tensor is defined as 

follows 

2
2

2

0 1 0

4 1 0 0

0 0 0

w
m l

x


 
  


 
    

(20) 

 

From the displacement field, the strain components can 

be calculated by substituting Eq. (18) into Eq. (6). 
 

2

2

1 0 0

0 0 0

0 0 0

w
e z

x

 
  

 
 
    

(21) 

 

For a slender beam with a large aspect ratio, the Poisson 

effect is secondary and can be disregarded to simplify the 

formulation of the beam theory. Hence, the stress 

component is presented as 
 

2

2

1 0 0

0 0 0

0 0 0

w
Ez

x


 
  

 
 
    

(22) 

Substituting Eq. (1) and Eqs. (19)-(22) into Eq. (18), the 

variation of strain energy is simplified to 
 

 
2 3

2

2 0 2 3

0

2

L
w w

U I SI l f f
x x


  

    
 


 

4 2

4 2

0

L

d w d w d w
f wdx f

dxdx dx





 
  

2 3

2 3

0

L

d w d w
f f w

dx dx


 
  

 
 

(23) 

 

where 
 

   0

2

2

1

A

I
g y k z dA

I z

   
   

  


 
(24) 

 

2

1
S




  
(25) 

 

The first variation of the work due to, P, the axial 

compressive force is given by 
 

2

2

0 0

L L
dw d w d w

V P dx P wdx
dx dx dx


    

 

(26) 

 

The governing equations of the FGM Euler-Bernoulli 

beam can be obtained, using the concept of minimum total 

potential energy principle. According to the minimum total 

potential energy principle, the first variation of the total 

potential energy must be zero. That is 
 

0U V       (27) 
 

Substituting Eqs. (23), (26) and  𝑥 = 𝑒
𝑛1
𝐿

𝑥
 (n1: 

material constant) into Eq. (28), the Navier equation is 

expressed as 
 

 
1

2 2 3 4
2 1 1

2 0 2 3 4
2

n
x

L
n nw w w

I SI l e
L Lx x x

    
            

2

2

d w
P

dx


 

(28) 

 

For convenience, the following nondimensionalizations 

are used 
 

22

0

2 2

,       ,       ,       
I lw x PL

w x P
L L I I

   

 

(29) 

 

The non-dimensional governing equation expression can 

be obtained as 
 

  1

4 3 2 2
2

1 14 3 2 2
1 2

n x d w d w d w d w
S e n n P

dx dx dx dx


 
    

   

(30) 

 
 

3. Generalized differential quadrature method 
 

In the case of the general boundary conditions, the 
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analytical solution of Eq. (30) is difficult to obtain, so a 

generalized differential quadrature approach has been 

adopted for the solution of Eq. (30). The GDQ approach 

may be an easy and useful tool for the purpose of analyzing 

more complex problems.  The generalized differential 

quadrature method is an efficient numerical method for the 

solution of differential equations. It is assumed that the grid 

points are located on the zeros of the Chebyshev 

polynomials (Shu and Chew 1998) and to discretize the 

solution domain, one can assume a set of N grid points in 

the x-direction 
 

i

i 1
1 cos π ,    1, ,

2 N 1

L
X i N

   
     

    

(31) 

 

In this method, the derivatives of a function h(x), at a 

point xi are expressed as 
 

       
1

,           1, , 1
N

n n

x i ij j

j

h x C h x n N


   
 

(32) 

 

where N is the number of the grid points over the x 

direction. 𝐶𝑖𝑗
(𝑛)

is the respective weighting coefficients 

through the x direction obtained through the following 

equations: 

If n = 1, i.e., for the first order derivative, then 
 

   

   
1

,   , 1, , 젨젨i

ij

i j j

M X
C i j N j i

X X M X



  

 

ij   (33) 

 

where 
 

   
1

xN

i i j
j

j i

M X X X




 

 

(34) 

 

To obtain the weighting coefficients for the second-

order or higher-order derivatives, the matrix multiplication 

procedure is implemented 
 

     
 1

1 1
,        , 1, , 젨젨

n

ijn n

ij ii ij

i j

C
C n C C i j N j i

X X




 
     
 
   

(35) 

 

   

1

,         
1, , 젨젨젨젨젨젨

1,2, , 1   

xN
n n

ii ij
j

j i

i N
C C

n N



 
  

  


 








1,...,2 1,

,...,1

Nn

Ni
 (36) 

 

Substituting Eq. (32) into the first governing equations 

(Eq. (30)), the following equation is obtained 
 

         1
3

1 1

1

4
1 2i

N N

ij j

n

ij j

j j

x
C W x Ce n WS x

 




 

 

 

       2 2

1

2

1

1

N N

ij j ij j

j j

C W W xPxn C
 


  

   
  

 
 

(37) 

 

Then arranging the displacement variable and 

corresponding coefficient, the governing equations can be 

obtained in the following form 

 

0 0bb bd b b

db dd d db dd d

P
A A X X

A A X B B X

       
         

         

(38) 

 

in which subscripts b and d denote boundary and domain 

sample points, respectively. In addition, coefficients A and 

B are matrices and their dimensions depend on the number 

of domain and boundary sample points. After eliminating 

boundary nodes Xb in Eq. (3) by using the boundary 

conditions, the dimension of the coefficient matrices 

reduces. Finally, Eq. (38) can be rewritten to give an 

eigenvalue problem as 
 

      d dK X P I X     
(39) 

 

Solving the obtained eigenvalue problem gives the 

critical buckling load (𝑃 ) of the TDFGM Euler-Bernoulli 

nano-beams based on consistent couple-stress theory. 

 

 

4. Results and discussion 
 
In this section based on consistent couple-stress theory, 

buckling analysis of TDFG Euler-Bernoulli nano-beams are 

presented for different parameters. In order to illustrate the 

size effect on behavior of TDFG Euler-Bernoulli nano-

beams, several numerical examples have been performed. 

To validate the validity and reliability of present work, 

when n1 and l are neglected, results of this paper with 

various boundary conditions (S-S: simply supported-simply 

supported, C-C: clamped-clamped and C-S: clamped-

simply supported) at two ends are compared with 

(Ghannadpour et al. 2013, Nejad et al. 2016a, Pradhan and 

Phadikar 2009, Wang et al. 2006), as shown in Table 1. It 

can be seen from this table that, results of this paper can 

well agree with those obtained using other methods. The 

material properties of TDFG Euler-Bernoulli nano-beam are 

shown in Table 2. 

It is proposed that the modulus of elasticity of the nano-

beam material vary in the x, y and z directions, as follows 
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(40) 

 

where, k, n1, n2, and n3 are constant material parameters. 

Fig. 2 illustrate the variation of the modulus of elasticity at 

(a) plane 𝑥 = 0; (b) plane 𝑦 = 0.5 for k = 0.5, n1 = n2 = n3 

= 0.5, Ec = 69 GPa, Em = 339 GPa. 

Fig. 3 illustrates the convergence of the GDQM in 

obtaining the non-dimensional buckling load. It is observed 

that considering more than 14 sample points does not affect 

the accuracy of the results significantly. In this figure, the 

non-dimensional critical buckling load error is defined as 
 

1 100N N
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P P
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P
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(41) 
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Table 1 Comparison of non-dimensional critical buckling load for 

a clamped-clamped nano-beam with (Ghannadpour et al. 

2013, Nejad et al. 2016a, Pradhan and Phadikar 2009, 

Wang et al. 2006) 

 
Boundary conditions 

S-S C-S C-C 

Present work 9.8696 20.1907 39.4784 

Nejad et al. 2016a 9.8696 20.1907 39.4784 

Ghannadpour et al. 2013 9.8696 20.1907 39.4784 

Wang et al. 2006 9.8695 20.1907 39.4786 

Pradhan and Phadikar 2009 9.8696 20.1907 39.4784 
 

 

 

Table 2 Material properties used in the numerical study 

Materials 
Properties 

E (GPa) ρ (kg/m3) υ 

Ceramic: C 69 2700 0.292 

Metal: M 339 3800 0.292 
 

 

 

where e is a small value number and in this analysis, it is 

taken to be 10-2. 

Critical buckling ratio is defined as follows 
 

 

 

(a) 
 

 

(b) 

Fig. 2 Distribution of modulus of elasticity for k = 0.5, n1 = 

n2 = n3 = 0.5, Ec = 69 GPa, Em = 339 GPa at (a) plane 

𝑥 = 0; (b) plane 𝑦 = 0.5 
 

 

(a) 

 

 

(b) 

Fig. 3 Convergence of dimensionless buckling load and 

error in mode 1 S-S TDFG (n1 = 2, v = 0.292, α = 

0.01): (a) Convergence of dimensionless buckling 

load; (b) error 
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(42) 

 

In the above relation, Po is the buckling load when the 

size scale parameter is taken to be zero. Also it should be 

noted that when the buckling load ratio approaches 1, size 

effects are negligible. 

Fig. 4 shows the ratio of buckling load in the case of 

considering couple-stress effect to the classic case in terms 

of dimensionless thickness, h/l. It can be seen, with 

increasing the dimensionless thickness, the buckling load 

ratio tend to 1 which shows that with increasing the 

thickness against size scale parameter, couple-stress effect 

decreases. For the dimensionless thickness equal to 1, 

relative buckling load ratio is equal to 21.0233 which shows 

the difference between classic and couple-stress theory in 

small sizes. 

Fig. 5 illustrates the dimensionless buckling load against 

α for the first five modes. This figure shows that as α 

increases, the dimensionless buckling load increases too. In 

other words, this figure shows that for higher values of α, 

size effect increases. Fig. 6 shows the changes of dimension 

less buckling load versus n1 with various boundary 

conditions. Dimension less buckling load increases in all 

boundary conditions by increasing n1. 

Figs. 7 and 8 illustrate the buckling load of the nano- 

beam against the n2 and n3, respectively. This figure shows 

that with increases in n2 and n3, the buckling load increases 

for all boundary conditions. Also, it can be conclude that 

graded in material properties in y and z-directions are a 

significant effect on buckling analysis of nano structure. 
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Fig. 4 The buckling load ratio of S-S TDFG nano beam 

versus to dimensionless thickness (L = 100 nm, b = h, 

n1 = 0, n2 = n3 = 2, k = 0.5, and l = 1 nm) 

 

 

 

Fig. 5 Dimensionless buckling load of S-S TDFG nano-

beam versus α in different modes (n1 = 0) 

 

 

 

Fig. 6 Dimensionless buckling load TDFG nano-beam 

versus n1 with various boundary conditions (α = 0.1) 

 

 

 

5. Conclusions 
 

In this article we have investigated the size dependent 

buckling behavior of three dimensional functionally graded 

Euler-Bernoulli nanobeams by using consistent couple- 

 

Fig. 7 Buckling load TDFG nano-beam versus n2 with 

various boundary conditions (n1 = n3 = 2, b = h = 

5 nm, L = 50 nm, k = 0.5, α = 0.1) 
 

 

 

Fig. 8 Buckling load TDFG nano-beam versus n3 with 

various boundary conditions (n1 = n3 = 2, b = h = 

5 nm, L = 50 nm, k = 0.5, α = 0.1) 

 

 

 

stress theory. The TDFG Euler-Bernoulli nano-beam is 

assumed to be graded through thickness, width and length 

directions, following the arbitrary material distribution. 

Minimum total potential energy principle was used to drive 

the governing differential equation and associated boundary 

conditions. After wards, GDQM is applied to solve the 

equations to obtain the critical buckling loads of FG nano-

beam. Results show that small scale effects significantly 

contribute to the mechanical behavior of TDFG nano-beam 

under compressive loads, a significant fact which cannot be 

neglected. It is observed that by increasing α, buckling 

loads increase. Also, the effects of inhomogeneity materials 

parameters in the thickness, width and length directions was 

investigated. To show the effect of inhomogeneity on the 

buckling properties of FG nano-beam, different values were 

considered for material inhomogeneity parameters n1, n2 

and n3. Results show that by increasing n1, n2 and n3 the 

buckling loads increased. Finally, the comparison between 

the results obtained from the classical and consistent 

couple-stress theory reveals that application of the latter 

leads to a model of the nano-beam with higher stiffness and 

larger buckling loads. 
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