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1. Introduction 

 
Recently, various kinds of GFRP-concrete decks 

(Honickman et al. 2009, Cheng 2011, Nelson and Fam 
2014) have been designed to increase the durability of 
bridge deck and some of these decks 
(Alagusundaramoorthy et al. 2006, Berg et al. 2006) have 
been applied in the bridge engineering. The GFRP-concrete 
decks include plate integrated with T-shape ribs (Nelson and 
Fam 2012), plate with tubular ribs (Dieter et al. 2002), 
corrugated FRP-concrete deck (He et al. 2012), dual cavity 
system (Cho et al. 2013), etc. A lot of research has been 
conducted to study the static mechanical performance of 
simply supported one-way decks, simply supported two-
way decks and continuous decks. However, there were few 
studies on the composite action between steel beams and 
GFRP-concrete decks. The composite beam with T-shaped 
GFRP-concrete decks is shown in Fig. 1. The GFRP-
concrete-steel composite beam consists of GFRP-concrete 
deck and steel beam. The cross sections of the composite 
beam are not uniform because of the effect of T-shaped ribs. 
The stress on the top surface of concrete in the T-shaped rib 
sections is higher than that of the cross-sections without T-
shaped rib. Moreover, the load in the beam direction is 
shared by three kinds of materials (steel, GFRP and 
concrete). Therefore, the deflection calculation method of 
GFRP-concrete-steel composite beam is different from that 
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of steel-concrete composite beam. The variable cross-
sections and the load shared by GFRP plate should be 
considered. The study on the calculation method is 
beneficial for application of GFRP-concrete decks in bridge 
engineering. 

According to the proportion of GFRP plate in the 
GFRP-concrete deck, the static mechanical performance of 
GFRP-concrete-steel composite beam was similar to that of 
GFRP-steel composite beam or steel-concrete composite 
beam. For the calculation method of steel-concrete 
composite beam, a large number of studies have been 
conducted to provide more accurate results. Slip (Nie and 
Cai 2003, Nie et al. 2005, Wang 1998), shear lag 
(Goncalves and Camotim 2010, Huang et al. 2016, Zhou et 
al. 2015), shear deformation (Ranzi and Zona 2007) were 
considered in the theoretical model. Moreover, with the 
development of finite element method (FEM), the 
deflection can also be calculated by using numerical models 
(Aref et al. 2007, Khorramian et al. 2017, Samaaneh et al. 
2016). For the GFRP-steel composite beam, the studies 
focused primarily on the calculation method of shear lag 
(Zou et al. 2011, Moses et al. 2006, Tenchev 1996). In 
general, the deflection could be predicted by using 
theoretical or numerical models. Complex finite element 
model could provide more accurate results. However, FEM 
is a time consuming process, especially for the nonlinear 
analysis. The theoretical method is rough, especially in the 
nonlinear analysis, but it is convenient and suitable for 
engineering design. 

In present, there were few studies on the deflection 
calculation method of GFRP-concrete-steel composite 
beams. The theoretical model of steel-concrete/GFRP-steel 
composite beam could not exhibit the characteristic of 
GFRP-concrete-steel composite beam. Moreover, the 
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Fig. 1 GFRP-concrete-steel composite beam 
 
 

existing theoretical model of steel-concrete/GFRP-steel 
composite beam was usually based on the assumption of 
linear material and constant shear connector stiffness. The 
nonlinear results could only be obtained by using amended 
modulus and shear connector stiffness in a certain section. 
In fact, the modulus of concrete and the shear connector 
stiffness varied from one section to another along the beam 
direction. The deflection result was not accurate without 
consideration of the variation in the beam direction. 

This paper presents a theoretical calculation method of 
GFRP-concrete-steel composite beam. This model could 
consider concrete nonlinearity, shear connector stiffness 
variation form one section to another, and variable cross-
sections caused by GFRP plate. First, the sectional analysis 
method (Zheng et al. 2016, Wang et al. 2013) was improved 
to consider the slip between GFRP-concrete deck and steel 
beam. The calculation method of steel-concrete composite 
beam based on the improved sectional analysis method was 
exhibited, which could consider slip and concrete 
nonlinearity. Then the equivalent slip was used to consider 
the variable cross-sections, and the calculation method of 
steel-concrete composite beam was extended for calculation 
of GFRP-concrete-steel composite beam. A computer 
program was written to implement the deflection 
calculation method. The deflection could be quickly 
obtained by using the computer program, and the computer 
program is beneficial for bridge design. The deflection 
calculation method was validated by finite element 
simulation and experiment. Moreover, parametric analysis 
was conducted by using the theoretical model. Based on the 
results of parametric analysis, a simplified deformation 
calculation formula of GFRP-concrete-steel composite 
beam was presented. 

 
 

2. Deflection calculation model 
 
The deflection of steel-concrete composite beam with 

consideration of slip can be calculated by using Chinese 
standard JTG/T D64-2015. However, the calculation 
method is based on the assumption of constant shear 
connector stiffness. For composite beams with full shear 
connectors, as the shear force shared by each shear 
connector is low, the deflection could be calculated with 
constant shear connector stiffness. For the composite beams 
with partial shear connector, as the shear force shared by 
each shear connector is high, there is a significant shear 
connector stiffness variation along the beam direction, and 
the deflection could not be obtained by using constant shear 

connector stiffness. Moreover, the cross-sections of GFRP-
concrete-steel composite beam are variable. The deflection 
calculation method should consider both slip and variable 
cross-sections. Therefore, the calculation method of GFRP-
concrete-steel composite beam is more complex than that of 
steel-concrete composite beam. In this section, the 
calculation method of steel-concrete composite beam is 
firstly exhibited, which considers concrete nonlinearity and 
shear connector stiffness variation. Then the calculation 
method of GFRP-concrete-steel composite beam is 
exhibited, which considers concrete nonlinearity, shear 
connector stiffness variation and variable cross-sections. 
This calculation method could predict the deflection before 
the composite beam achieves the elastic bending moment 
capacity. 

The Chinese standard JTG/T D64-2015 suggests the 
neutral axis of composite beams locates in the steel beam. 
The theoretical model is based on the situation that the 
neutral axis location is within the steel beam. When the 
neutral axis location is within the concrete, the theoretical 
derivation is similar. Moreover, as the stud shear connector 
is the most common type of shear connectors, the 
constitutive relationship of stud shear connector is used in 
the deflection calculation model. 

 
2.1 Deflection calculation model of 

steel-concrete composite beam 
 

The transformed section method is a common 
calculation method of steel-concrete composite beams. 
However, the transformed section method is based on 
constant modulus, and the nonlinear deflection could not be 
accurately simulated. The full load-deflection response 
could be predicted by using sectional analysis method, as 
the nonlinear concrete constitutive relationship is used. But 
the slip is ignored in the sectional analysis method. 
Consequently, the application of the sectional analysis 
method is seldom used in the deflection calculation of 
composite beams considering slip. In order to consider slip 
and concrete nonlinearity, the sectional analysis method is 
improved in this study. 

 
2.1.1 Constitutive relationships 
In order to predict the deflection before the composite 

beam achieves the elastic bending moment capacity, the 
constitutive relationships are as follows: 

The relationship of stress and strain of concrete can be 
written as 

 

2c c
c c 0

0 0

c c 0

[2 ( ) ] (0 )

( )

f

f

   
 

  

    

  
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where ε0 = 0.002; fc is the concrete strength; εc is the 
concrete strain; σc is the concrete stress. 

The load-slip relationship of stud shear connector can be 
written as 

u/ (1 )sa bV V e    (2)
 

where Vu is the shear capacity of stud shear connector; V is 
the shear force shared by shear connector; Δs is the slip; a 
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and b can be obtained with experiments. 

For the stud shear connector with stud failure, the shear 
capacity (Hanswille et al. 2007a, b) of stud shear connector 
can be written as 

 

u s uV A f (3)
 

where As is the area of stud shear connector; fu is the tensile 
strength of stud shear connector. 

For the stud shear connector with concrete failure, the 
shear capacity of stud shear connector in JTGT D64-01-
2015 can be written as 

 

u s0.43 c cV A E f
 

(4)
 

where Ec is the modulus of concrete. 
The relationship of stress and strain of steel beam or 

steel reinforcement can be written as 
 

s s sE  (5)
 

where Es is the modulus of steel beam or steel 
reinforcement. 

 
2.1.2 Assumption of steel-concrete composite 

beams 
In order to calculate the deflection, the steel-concrete 

composite beam is divided into n segments from mid-span 
to support point, as shown in Fig. 2(a). Cross-section 1-1 is 
at mid-span, and cross-section 0-0 is at the end of beam. 
The axial force analysis of segment 1 is shown in Fig. 2(c). 
For simplicity, the following assumptions are used: (1) In 
the segment, the shear force shared by each stud shear 
connector is equal, and the slip of each stud shear connector 
is equal to the slip at the end of the segment, as shown in 
Eq. (6); (2) the slip at the end of each segment could be 
obtained by the linear integration of slip strain, as shown in 
Eq. (7); (3) the steel beam and the concrete deck have the 
same curvatures. 

In fact, assumption 1 is based on the simplified 
distribution of stud shear connectors that the stud shear 
connectors all locate at the end of the segment. When the 

 
 
length of the segment is small or the slip does not change 
significantly, the simplification is true. For assumption 2, 
when the length of the segment is small or the variation rate 
of the slip strain does not change significantly, the slip 
could be obtained by the linear integration of slip strain. 

 

s-21
u

1

(1 )a bV
e V

n
  

 
(6)

 
s 2 s 1 s 1 s 2 1( ) / 2Z            (7)

 
where V1 is shear force of segment 1 on the interface 
between concrete and steel beam; n1 is the number of stud 
shear connectors in segment 1; Δs-2 is the slip at cross-
section 2-2; Δs-1 is the slip at cross-section 1-1; εΔs-2 is the 
slip strain at cross-section 2-2; εΔs-1 is the slip strain at 
cross-section 1-1; Z1 is the length of segment 1. 

 
2.1.3 Strain distribution 
The strain calculation model is shown in Fig. 2(b). From 

the strain-geometry relationships, the strain of each material 
can be written as 
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where εc-1 is the strain on the top surface of concrete in 
cross-section 1-1; εas2-1 is the top bar strain in cross-section 
1-1; εas1-1 is the bottom bar strain in cross-section 1-1; εc2-1 
is the strain on the bottom surface of concrete in cross-
section 1-1; ϕ1 is the curvature of cross-section 1-1; εs2-1 is 
the strain at the centerline of steel beam bottom plate in 
cross-section 1-1; εs1-1 is the strain at the centerline of steel 
beam top plate in cross-section 1-1; εΔs-1 is the slip strain in 
cross-section 1-1; x1 is the distance from the top surface of 
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Fig. 2 Deflection calculation model of steel-concrete composite beam 
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concrete to the neutral axis within the steel beam of cross-
section 1-1; h is the distance from the top surface of 
concrete to the centerline of steel beam bottom plate; hc is 
the depth of concrete; t3 is the thickness of steel beam top 
plate; s2 is the distance from the top surface of concrete to 
the centerline of top bar; s1 is the distance from the top 
surface of concrete to the centerline of bottom bar. 

 

2.1.4 Deflection calculation 
According to the equilibrium conditions in segment 1, 

the following equations are given 
 

c-1 as-1 s-1D D T   (9)
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c-1 as-1 c-2 as-2 1D D D D V     (13)

 

where Dc-1, Das-1, Ts-1 are the resultant forces of concrete, 
steel bar and steel beam in cross-section 1-1, respectively; 
Dc-1, Das-2, Ts-2 are the resultant forces of concrete, steel bar 
and steel beam in cross-section 2-2, respectively; Ms-1 is the 
bending moment in cross-section 1-1; Ms-2 is the bending 
moment in cross-section 2-2; σ(εc-1) is the stress of concrete 
when the strain is εc-1; As2 is the area of top bar; As1 is the 
area of bottom bar; b1 is the width of steel beam top plate; 
b2 is the width of steel beam bottom plate; t1 is the thickness 
of steel beam bottom plate; t2 is the thickness of steel beam 
web plate; x2 is the distance from the top surface of concrete 
to the neutral axis within the steel beam of cross-section 2-
2; εas2-2 is the top bar strain in cross-section 2-2; εas1-2 is the 
bottom bar strain in cross-section 2-2; εs2-2 is the strain at 
the centerline of steel beam bottom plate in cross-section 2-
2; εs1-2 is the strain at the centerline of steel beam top plate 
in cross-section 2-2. 

The resultant forces of each material in Eq. (9) can be 
calculated by using Eq. (14). 
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According to the calculation method of segment 1, the 
equilibrium equations in other segments could also be 
obtained. With reference to the deflection calculation 
method of steel-concrete composite beam11, the equations 
could be solved by combining the boundary conditions that 

εΔs-0 = 0, Δs-1 = 0, Dc-0 = 0, Das-0 = 0, Mu-0 = 0. The 
deformation compatibility equations and the equilibrium 
equations in segment n can be obtained. 
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The slip strain, slip and curvature can be obtained by 

solving these equations. A computer program was written to 
solve these equations. The larger the number of segments is, 
the more accurate the theoretical result is. However, the 
equations are not easy to solve when the number of 
segments is too large. After trial and error, when the 
composite beam is divided into 4 segments, the theoretical 
results could agree well with the numerical and 
experimental results. The flexural stiffness in each cross-
section could be obtained by using Eq. (19), and the flexural 
stiffness at load point is used to calculate the deformation. 
The deflection could be obtained by using traditional 
structural mechanics theory. 

 

M
B




 
(19)

 

where B is the flexural stiffness. 
 
2.2 Deflection calculation model of 

GFRP-concrete-steel composite beam 
 

The cross-section of GFRP-concrete-steel composite 
beam is variable. The GFRP-concrete-steel composite beam 
with GFRP T-rib is shown in Fig. 3(a), and the partial 
schematic diagram is shown in Fig. 3(b). Due to the effect 
of GFRP T-rib, the cross-sections in the beam direction 
could be divided into three types, which are the cross-
sections of rib (cross-section 1-a), the cross-sections of 
flange (cross-section 1-b) and the cross-sections without T-
rib (cross-section 1-c). For simplicity, the flange of T-rib is 
ignored, as shown in Fig. 3(e). In the deflection calculation 
model of steel-concrete composite beam, it is assumed that 
the slip strain distribution in each segment is linear. 
However, the slip strain changes significantly from the 
cross-section of GFRP T-rib to the cross-section without T-
rib because of the effect of GFRP T-rib. Therefore, the 
assumption of slip strain linear distribution could not be 
applied directly in the calculation method of GFRP-
concrete-steel composite beam. In order to consider the 
effect of GFRP T-rib, the GFRP-concrete-steel composite 
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beam is divided into n segments from mid-span to support 
point (Fig. 3(a)), and each segment is divided into several 
sub-segments (Fig. 3(e)).It can be seen from Fig. 3(e) that 
segment 1 is divided into three sub-segments, and sub-
segments l1 and l2 are the sub-segments at the boundary of 
segment 1. Each sub-segment includes one GFRP rib, and 
the dotted part in Fig. 3(e) is the GFRP-concrete deck in the 
sub-segment. In order to calculate the deflection of GFRP-
concrete-steel composite beam, the following assumptions 
are used: 

 

(1) The bending moment does not change in the sub-
segment and is equal to the bending moment in the 
middle of the sub-segment; 

(2) The shear connectors all locate at the end of the 
sub-segment, and do not play a role in the sub-
segment; 

(3) The equivalent slip strain distribution is linear in 
the segment, the calculation equation of the 
equivalent slip strain of sub-segmentl1 is shown in 
Eq. (20), and the slip at the end of segment 1 can 
be obtained by using Eq. (21); 

(4) In the segment, the shear force shared by each stud 
shear connector is equal, and the slip of each stud 
shear connector is equal to the slip at the end of the 
segment; 

(5) The steel beam and the GFRP-concrete deck have 
the same curvature; 

(6) The slip between GFRP plate and concrete is 
ignored. 
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where εΔs-1a is the slip strain in cross-section 1-a; εΔs-1c is the 
slip strain in cross-section 1-c; m1 is the thickness of GFRP 
rib; m2 is the length of the sub-segment without GFRP rib; 
εΔs-leq is the equivalent slip strain of sub-segment l1; εΔs-2eq is 
the equivalent slip strain of sub-segment l2. 

According to assumption 1, the equilibrium equations in 
sub-segment l1 can be obtained, as shown in Eqs. (22) to 
(25). The equilibrium equations in sub-segment l2 can be 
obtained by using the same method and are not listed. 
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where Dc-1a, Das-1a, Df-1a, Ts-1a are the resultant forces of 
concrete, steel bar, GFRP plate, steel beam in cross-section 
1-a, respectively; Dc-1c, Das-1c, Df-1c, Ts-1c are the resultant 
forces of concrete, steel bar, GFRP plate, steel beam in 
cross-section 1-c, respectively; Ms-1 is the bending moment 
insub-segment l1; x1a, x1c are the distances of cross-section 
1-a and cross section 1-c from the top surface of concrete to 
the neutral axis within the steel beam, respectively; εas1-1a, 
εas2-1a, εc-1a are the strains of bottom bar, top bar and the top 
surface of concrete in cross-section 1-a, respectively; εf3-1a is 
the strain of GFRP rib in cross-section 1-a; σ(εf3-1a) is the 
stress of GFRP rib when the strain is εf3-1a; εs1-1a, εs2-1a are 
the strains at the centerline of steel beam top plate and steel 
beam bottom plate in cross-section 1-a; εas1-1c, εas2-1c, εc-1c  
are the strains of bottom bar, top bar and the top surface of 
concrete in cross-section 1-c; εf-1c is the strain at the 
centerline of GFRP bottom plate in cross-section 1-c; εs1-1c, 
εs2-1c are the strains at the centerline of steel beam top plate 
and steel beam bottom plate in cross-section 1-c. 

The axial force equilibrium equation in segment 1 is as 
followed 

1 2 1D D V  (26)
 

where D1 is the resultant force of GFRP-concrete deck in 
sub-segment l1; D2 is the resultant force of GFRP-concrete 
deck in sub-segment l2. 

According to assumption 2, the stud shear connector 
locates at the end of the sub-segment, and there is no stud 
shear connector in the sub-segment. The axial force 
equilibrium equations in the sub-segment are as followed 

 
c-1a as-1a f-1a c-1c as-1c f-1c 1D D D D D D D       (27)

 
c-2a as-2a f-2a c-2c as-2c f-2c 2D D D D D D D       (28)

 
Substituting Eqs. (21) and (26) into Eq. (6) obtains 
 

s 1 s 1eq s 2eq 1( ( ) /2)1 2
u

1

(1 )a Z bD D
e V

n
        

 
 

(29)

 
where Dc-2a, Das-2a, Df-2a, Ts-2a are the resultant forces of 
concrete, steel bar, GFRP plate, steel beam in cross-section 
2-a, respectively; Dc-2c, Das-2c, Df-2c, Ts-2c are the resultant 
forces of concrete, steel bar, GFRP plate, steel beam in 
cross-section 2-c, respectively. 

Similarly, the equations in other segments of GFRP-
concrete-steel composite beam can be obtained. The force, 
strain and boundary condition can be obtained by referring 
to the calculation method of steel-concrete composite beam. 

Then the slip strain, slip and curvature can be obtained by 
solving these equations. The equivalent flexural stiffness at 
load point is used to calculate the deflection. The equivalent 
flexural stiffness of sub-segment l2 can be obtained by using 
Eq. (30), and the deflection could be obtained by using 
traditional structural mechanics theory. 

 

2-a 1 2-c 2
2eq

1 2

m m

m m

 





  
(30)

 
where ϕ2-a is the curvature in cross-section 2-a; ϕ2-c is the 
curvature in cross-section 2-c; ϕ2eq is the equivalent 
curvature of sub-segment l2. 

 
 

3. Experimental verification 
 
In order to verify the accuracy of proposed theoretical 

model, three composite beams (specimens S-1 to S-3) were 
fabricated and tested. Specimens S-1 and S-3 were GFRP-
concrete-steel composite beams, and specimen S-2 was 
steel-concrete composite beam. The sizes of three 
composite beams were the same. The calculation span was 
3000 mm, the diameter of the stud shear connector was 13 
mm, and the spacing of the stud shear connector was 100 
mm. The stud shear connectors were embedded in the 
concrete through the holes of GFRP bottom plate, as shown 
in Fig. 4(e). The wet adhesive bond interface between 
GFRP bottom plate and concrete was used in specimen S-1, 
as shown in Fig. 4(f). The unbonded interface was used in 
specimen S-3. The cross-sections of specimens S-1 and S-3 
were shown in Fig. 4(a), the loading test system was shown 
in Fig. 4(d), and the cross-section of specimen S-2 was 
shown in Fig. 4(b). 

The cubic concrete strengths of specimens S-1 to S-3 
were 36.2 MPa, 40.6 MPa and 39.1 MPa, respectively. The 
yield strengths of 8 mm and 12 mm Q345 steel plate were 
502 MPa and 428 MPa, and the ultimate strengths were 568 
MPa and 554 MPa. The yield and ultimate strengths of 6 
mm HRB 400 steel bar were 440 MPa and 610 MPa. The 
tensile strength and compressive strength of GFRP plate in 
the transverse direction were 80.9 MPa and 103.5 MPa, and 
the modulus was 1.08×104 MPa. The tensile strength of stud 
shear connector was 460 MPa. The shear capacity and the 
load-slip curve of the shear connector of GFRP-concrete-
steel composite were similar to that of steel-concrete 
composite beam, the load-slip curve could be obtained by 
using Eq. (31), and the shear capacity of stud shear 
connector could be calculated by using Eq. (3). (Gao 2017) 

 
1.13 0.49/ (1 )s

uV V e   (31)

 
The FE model was also checked by experiments. The 

ANSYS program was used to model the experimental 
beams. An eight node 3-D concrete element (SOLID65) 
was used to model the concrete, and the uniaxial stress–
strain relationship was obtained by using Eq. (1). An eight 
node 3-D orthotropic element (SOLID185) was used to 
model the GFRP plate, the steel bar was simulated by 3D 
spar element LINK8, and the steel beam was simulated by 
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shell element SHELL181. The elastic constitutive 
relationship was used for GFRP plate, steel bar and steel 
beam. The steel bar and the GFRP-concrete deck were 
connected by common nodes, and the GFRP plate and the 
concrete were also connected by common nodes. The spring 
element (COMBINE39) was used to simulate the stud shear 
connector in the beam direction, and the load-slip 
relationship expressed in Eq. (31) was used. In other 
directions, the GFRP-concrete deck and the steel beam were 
connected by coupled nodes. 

Fig. 5 shows the strain distribution at mid-span. The 
strain of top surface of concrete, steel bar, GFRP bottom 
plate, and steel beam were measured. It can be seen that the 
plane cross section of specimens S-1 and S-3 remained 
plane before 0.73Pu. The slip occurred at the interface 

 
 

 
 
between GFRP-concrete deck and steel beam at about 
0.73Pu, and a higher load resulted in a larger slip. Before 
the ultimate load, the strains of the GFRP bottom plate, top 
bar and bottom bar of specimens S-1 and S-3 were in a 
straight line. This phenomenon shows the slip between 
GFRP plate and concrete could be ignored. For specimen S-
3 with unbonded interface, although the surface between 
GFRP bottom plate and concrete was smooth, the GFRP 
plate was restrained by the GFRP ribs and the stud shear 
connectors. Therefore, there was no obvious slip between 
GFRP plate and concrete. 

Fig. 6 shows the comparison of theoretical, numerical 
and experimental results. The comparisons of deflection 
were shown in Figs. 6(a), (c) and (e). wt represents the 
experimental deflection, wAnsys represents the numerical 
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deflection results which consider concrete nonlinearity and 
slip, wAnsys-e represents the numerical deflection results 
which ignore slip and concrete nonlinearity, wAnsys-e-s 
represents the numerical deflection results which ignore 
concrete nonlinearity and consider slip, wp represents the 
theoretical results. wAnsys-e, wAnsys-e-s, wAnsys represent the 
results by using transformed section method, the calculation 
method considering slip, and the calculation method 
considering slip and concrete nonlinearity, respectively. It 
can be seen from Figs. 6(a), (c) and (e) that the concrete 
nonlinearity and the slip had an obvious effect on the 
deflection calculation results of experimental beams. The 
theoretical results (wp) agreed well with the numerical 
results (wAnsys). However, the experimental results were 
slightly lower than the numerical and theoretical results. 

 
 
The reason may be that there was deviation in the 
fabrication of composite beams. In general, the deflection of 
composite beams could be predicted by using the theoretical 
and numerical calculation method. 

Figs. 6(b), (d) and (f) show the comparison of slip. S160-a, 
S160-t, S160-p represent the numerical results, the experimental 
results and the theoretical results at 160 kN, S220-a, S220-t, 
S220-p represent the numerical results, the experimental 
results and the theoretical results at 220 kN, S260-a, S260-t, 
S260-p represent the numerical results, the experimental 
results and the theoretical results at 260 kN. It can be seen 
from Figs. 6(b), (d) and (f) that the numerical results agreed 
well with the experimental results. The slip increased from 
the mid-span to the end of the beam and decreased slightly 
near the end of the beam. In the range of 800 mm from the 
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mid-span, the theoretical results agreed well with the 
numerical and experimental results. However, there was a 
large deviation between the theoretical results and the 
experimental and numerical results near the end of the 
beam. The theoretical slip increased from the mid-span to 
the end of the beam, and the maximum slip was at the end 
of the beam. The theoretical slip distribution was the same 
as that in the literature (Nie and Cai 2003). The deviation of 
the slip distribution may be due to the boundary condition 
assumption. However, the deviation of the slip near the end 
of the beam was caused by the slip strain near the end of the 
beam, and the coincidence between the predicted slip and 
the experimental and numerical slip near the mid-span 
showed that the deviation of the theoretical model had small 
effect on the slip strain near the mid-span. Therefore, the 
deflection of the composite beams could be predicted by 
using the theoretical method. 

 
 

4. Comparison of theoretical and numerical results 
 
In order to further verify the accuracy of the 

deformation calculation method, the theoretical model was 
checked with more nonlinear finite element models, which 
included different GFRP plates and numbers of stud shear 
connectors. Table 1 shows the parameters of the finite 
element models. m1 / (m1 + m2) represents the proportion of 
GFRP plate in the GFRP-concrete deck, m1 represents the 
thickness of GFRP rib, m2 represents the length of the sub-
segment without GFRP rib. The size, material and load 
position of the composite beams in Table 1 were the same 
as that of specimen S-1. The stud shear connectors were 

 
 

 
 

arranged with equal intervals. Specimens A-1, A-2 and A-3 
were steel-concrete composite beams with different 
numbers of studs, and they were used to verify the accuracy 
of the steel-concrete composite beam calculation method. 
Specimens G-1, G-2, and G-3 were GFRP-concrete-steel 
composite beams with I type GFRP plate, and the thickness 
of GFRP rib was enlarged to increase the effect of GFRP rib 
on the deflection. Specimens H-1, H-2 were GFRP-
concrete-steel composite beams with II type GFRP plate, 
and the cavity was caused by the rectangular rib. The GFRP 
rectangular rib was ignored in the deflection calculation, 
and only the cavity was considered. The details of I type 
GFRP plate and II type GFRP plate are shown in Fig. 7. 

Fig. 8(a) shows the comparison of theoretical and 
numerical results of steel-concrete composite beams. wA-1-p, 
wA-2-p, wA-3-p represent the theoretical results of specimens 
A-1, A-2 and A-3, wA-1-a, wA-2-a, wA-3-a represent the 
numerical result of specimens A-1, A-2 and A-3. It can be 
seen from Fig. 8(a) that a lower number of stud shear 
connectors resulted in a larger deflection, and the growth 
rate of the deflection increased with the decrease of the 
number of studs. The load-deflection curves of specimens 
A-1, A-2 and A-3 were significantly different because of 
slip. The theoretical results agreed well with the numerical 
results, and the deflection of steel-concrete composite 
beams with full or partial shear connectors can be predicted 
by using the theoretical method. 

Fig. 8(b) shows the comparison of theoretical and 
numerical results of GFRP-concrete-steel composite beams 
with I type GFRP plate, and Fig. 8(c) shows the comparison 
of theoretical and numerical results of GFRP-concrete-steel 
composite beams with II type GFRP plate. wG-1-p, wG-2-p,  

Table 1 Details of finite element models 

Specimen 
Number of stud shear

connector n 
Studs spacing 

Number of studs
in each row 

Type of GFRP plate m1/(m1+m2) Height of rib (mm)

A-1 60 100 2 —— —— —— 

A-2 30 100 1 —— —— —— 

A-3 15 200 1 —— —— —— 

G-1 60 100 2 I 0.24 80 

G-2 30 100 1 I 0.24 80 

G-3 15 200 1 I 0.24 80 

H-1 30 100 1 II 0.24 55 

H-2 15 200 1 II 0.24 55 
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wG-3-p, wH-1-p, wH-2-p represent the theoretical results of 
specimens G-1, G-2, G-3, H-1, H-2, and wG-1-a, wG-2-a, wG-3-a, 
wH-1-a, wH-2-a represent the numerical results of specimens G-
1, G-2, G-3, H-1, H-2. It can be seen from Figs. 8(b) and 
8(c) that the theoretical results agreed well with the 
numerical results and the deflection of GFRP-concrete-steel 
composite beam could be predicted by using the theoretical 
method. 

 
 

5. Parametric analysis 
 
The accuracy of the theoretical method had been 

verified in the previous sections. The effect of GFRP rib on 
the deflection was discussed in this section. Specimens S-1 
was used to perform the parametric analysis. 

Fig. 9 shows the relationship of specimen S-1 between 
the thickness of GFRP rib and the equivalent curvature at 
200 kN. The relationship at other load is similar. Φ 
represents the equivalent curvature with different rib 
thickness at the load point, Φ0 represents the equivalent 
curvature at the load point when m1/(m1+m2) is zero, n 
represents the number of stud shear connector. It can be 
seen from Fig. 9 the relationship between the rib thickness 
and the equivalent curvature was linear. With the increase of 
the GFRP rib thickness, the equivalent curvature of 
composite beams increased because of the low modulus of 
GFRP. From the comparison of GFRP-concrete-steel 
composite beams with different numbers of studs, it can be 
seen that the effect of GFRP rib thickness on the equivalent 
curvature decreased with the reduction of the number of 
studs. The reason was that the slip of composite beams 

 
 
increased with the decrease of the number of studs, and the 
bending moment shared by GFRP-concrete decks 
decreased. Therefore, the effect of GFRP-concrete deck on 
the flexural stiffness was reduced, and the effect of GFRP 
rib thickness on the equivalent curvature decreased. 
Fig. 10 shows the relationship of specimen S-1 between the 
height of GFRP rib and the equivalent curvature at 200 kN 
when m1 / (m1 + m2) is 0.24. Φ represents the equivalent 
curvature with different rib heights at the load point, Φ0 

represents the equivalent curvature at the load point when 
there was no GFRP rib. It can be seen from Fig. 10 that a 
higher height of GFRP rib resulted in a larger equivalent 
curvature. Moreover, the effect of GFRP rib height on the 
equivalent curvature decreased with the reduction of the 
number of studs. The reason was the same as that of GFRP 
rib thickness. 
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From the relationship between GFRP rib and equivalent 

curvature, it can be seen the effect of GFRP rib on the 
deflection increased with the increase of the number of 
studs. The relationship is shown in Eq. (32). 

 

b a

b 0 a 0

 
  

 (32)

 
where ϕa is the equivalent curvature of GFRP-concrete-steel 
composite beams without consideration of slip; ϕa-0 is the 
equivalent curvature of GFRP-concrete-steel composite 
beams without consideration of slip and GFRP rib; ϕb is the 
equivalent curvature of GFRP-concrete-steel composite 
beams considering slip; ϕb-0 is the equivalent curvature of 
GFRP-concrete-steel composite beams, which considers 
slip and ignores GFRP rib. 

According to the Eq. (32), the equation can be obtained 
 

b b 0k   (33)
 

where k is the ratio coefficient, k = ϕa / ϕa-0. 
According to the curvature-deflection relationship, the 

equation can be obtained 
 

b b 0w kw  (34)
 

where wb is the deflection of GFRP-concrete-steel 
composite beams; wb-0 is the deflection of GFRP-concrete-
steel composite beams without consideration of GFRP rib. 

It can be seen from Eq. (34) that the deflection of 
GFRP-concrete-steel composite beam can be roughly 
predicted by using the ratio coefficient k of GFRP-concrete-
steel composite beam without consideration of slip. The 
ratio coefficient k can be obtained by using the sectional 
analysis method without consideration of slip. The 
deflection wb-0 of GFRP-concrete-steel composite beam 
without consideration of GFRP rib can be obtained by using 
the method of steel-concrete composite beams in the 
previous section. Then the deflection wb of GFRP-concrete-
steel composite beam can be estimated by the product of k 
and wb-0. 

As Eq. (34) is calculated by using the theoretical method 
of steel-concrete composite beam and the equilibrium 
equation of sub-segments need not to be established, the 

number of equations is greatly reduced. Therefore, the 
equations are easy to solve by using the simplified 
calculation formula. Moreover, in the design of GFRP-
concrete-steel composite beam, the predicted result by using 
Eq. (34) is conservative. 

 
 

6. Conclusions 
 

This paper investigated the deflection calculation 
method of GFRP-concrete-steel composite beam. The 
following conclusions can be drawn: 

 

 The deflection calculation method of composite 
beam was exhibited, which considered slip, concrete 
nonlinearity, and variable cross-sections. The 
accuracy of the theoretical model was verified by 
experiment and FE models. Although the composite 
beams with GFRP T-rib and the composite beams 
with GFRP rectangular rib are used to verify the 
accuracy of the theoretical method, it can be seen 
that the deflection of composite beams with other 
types of GFRP plate can be predicted by using the 
calculation method. In general, the deflection of 
steel-concrete/GFRP-concrete-steel composite beams 
with full or partial shear connectors could be 
predicted by using the theoretical method before the 
bending moment achieved the elastic bending 
moment capacity. 

 The deflection and slip of GFRP-concrete-steel 
composite beams could be predicted by using the 
nonlinear finite element simulation method in the 
paper. The comparison of the FE models established 
with different methods showed concrete nonlinearity 
and slip had an obvious effect on the deflection. 

 From the parametric analysis, it can be seen that the 
equivalent curvature increased with the increase of 
rib thickness and rib height, and the effect on the 
equivalent curvature decreased with the reduction of 
the number of studs. Based on the parametric 
analysis, a simplified deflection calculation formula 
of GFRP-concrete-steel composite beam was 
exhibited. This calculation formula reduced the 
number of equations and was easier to solve. 
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