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1. Introduction 
 

Pressure vessels are extensively employed in different 

industries as chemical reactors, reservoir tanks and 

numerous other applications. When the pressure loadings 

are compounded with thermal loads, the creep analysis is 

required in long times. Creep analysis is including 

derivation of relations between history of stress and 

deformation and finally finding the damage due to creep 

and life assessment. Axi-symmetric one dimensional 

analysis of cylindrical pressure vessels made of isotropic 

material is one of the traditional problems which have been 

previously studied. In one dimensional analysis, the effect 

of end boundaries of cylinder is ignored. To account this 

case, a two dimensional analysis is required. Considering 

two dimensional loading and boundary conditions may be 

considered as new subjects in the context of mechanical 

engineering. Combination of pressure vessels, creep 

analysis and first order shear deformation theory in this 

paper leads to important issue. A literature review is 

presented to reflect necessity of this paper. 

Elastic and Time-dependent creep stress analysis of FG 

cylindrical shell under axially constant loading has been 

investigated by various researchers. Sim and Penny (1971) 

incorporated the effects of initial elastic loading of thick-

walled tubes followed by stress redistribution due to creep 
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process to a stationary stress state. Loading conditions was 

included internal pressure, external surface loading and 

inertia loading. Loghman and Wahab (1996) studied the 

creep stress and damage histories of thick-walled tubes 

using the material constant creep and creep rupture 

properties defined by the theta projection concept. Yang 

(2000) presented a solution for time-dependent creep 

behavior of FG cylinders. It was assumed that creep 

behavior can be modeled as the Norton’s law. Using the 

Norton’s law, equations of equilibrium, strain-displacement 

and stress-strain relations in the rate form incorporate with 

Prandtle-Reuss relations; a governing differential equation 

for the displacement rate has been derived. There was no 

exact solution for the derived differential equation and 

consequently, a numerical method has been provided based 

on assumption of the stress and strain rates. Mechanical 

stresses of functionally graded cylindrical and spherical 

shells were derived by Tutuncu and Ozturk (2001). The 

effect of material in homogeneity and mechanical loads was 

investigated on the results. Plane elasticity theory was used 

by Jabbari et al. (2002) to investigate thermo-elastic 

analysis of a functionally graded cylinder under thermal and 

mechanical loads. The used method and solution was 

applicable for FG cylindrical pressure vessels with infinite 

length. The effect of gradation of material properties as well 

as mechanical and thermal loadings has been studied in this 

paper. For solution of cylindrical pressure vessels with 

finite length, the effect of boundaries is appeared in the 

solution procedure. The both ends of cylindrical shells can 

change uniform distribution of displacement components 

and leads to shear strains and stresses. The shear stress 

cannot be calculated by the one dimensional symmetric 

plane elasticity theory used in mentioned reference. 
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Rimrott et al. (1960) studied creep analysis of pressure 

vessels and time to rupture. Moosaie (2016) presented 

nonlinear thermo-elastic analysis of a FG thick-walled 

cylinder made of temperature dependent materials. Creep 

deformation and stresses in thick-walled FGM cylindrical 

vessels subjected to internal pressure was presented by You 

et al. (2007). They obtained a closed form solution for 

steady state creep stresses in FGM cylinders. Thermal 

stresses were not considered and stress redistributions were 

not presented. Jabbari et al. (2009) implemented a two-

dimensional axisymmetric analysis via solving two-

dimensional heat transfer differential equations analytically 

using the Bessel functions. They used a sinusoidal variation 

along the axial direction for description of radial and axial 

displacements. Due to type of chosen variation function, the 

proposed solution was only applicable for simply supported 

short cylinders. Loghman and Shokouhi (2009) investigated 

creep stress redistribution and damage histories of thick-

walled spheres using the theta projection concept and 

loading conditions. Although intensive investigation 

considering creep of thick-walled cylinders and spheres 

with constant material properties can be found in the 

existing references, however, little publication can be found 

dealing with time-dependent creep of FGM cylinders. 

Loghman et al. (2010) studied the time-dependent creep in 

a thick-walled FGM cylinder under magneto-thermo-

mechanical loading using initial elastic stresses at zero time 

and stress rates to obtain history of stresses. They found that 

radial stress redistribution is not significant but the 

circumferential and effective stresses experience major 

changes. Some literatures on the pressure vessels and shear 

deformation theory can be observed in references (Arefi and 

Rahimi 2010, 2014, Arefi et al. 2012, Kelesm and Conker 

2011, Arefi and Rahimi (2012a, b), Rahimi et al. 2012, 

Khoshgoftar et al. 2013, Meziane et al. 2014, Yahia et al. 

2015, Bounouara et al. 2016, Zemri et al. 2015, Bourada et 

al. 2015, Draiche et al. 2016). Bellifa et al. (2016) 

investigated on a new first-order shear deformation theory 

for bending and dynamic behaviors of functionally graded 

plates. Moreover, the number of unknowns of this theory 

was the least one comparing with the traditional first-order 

and the other higher order shear deformation theories 

Loghman et al. (2013) studied the effects of particle 

content; particle size, operating temperature and magnetic 

field on steady-state creep behavior of thick-walled rotating 

cylinders made of Al-SiC composites. It has been concluded 

that increasing particle size and operating temperature 

significantly increases the effective creep strain rates. It has 

also been illustrated that magnetic field decreases the 

stresses and the effective creep strain rates. Kheirkhah and 

Loghman (2015) studied the stresses and electric potential 

redistributions of a cylinder made from functionally graded 

piezoelectric material (FGPM). All the mechanical, thermal 

and piezoelectric properties were modeled based on power-

law distribution of volume fraction. A semi-analytical 

method in conjunction with the Mendelson method of 

successive approximation was therefore proposed for this 

analysis. The effect of Pasternak foundation was 

investigated on the two dimensional thermo-elastic analysis 

of a functionally graded cylinder subjected to constant 

mechanical and thermal loadings by Arefi et al. (2016a). 

Application of first order shear deformation theory for 

functionally graded piezoelectric cylinder was performed by 

Arefi and Rahimi (2012a, b, c). Brnic et al. (2016) studied 

some mechanical, creep and fatigue properties of low alloy 

42CrMo4 steel at different temperatures. Sahan (2015) 

presented an alternative analytical method for transient 

vibration analysis of doubly-curved laminated shells 

subjected to dynamic loads. Many studies on the analysis of 

the thermal behavior of FGM and using various degrees of 

shear deformation theory can be observed in references 

(Mouffoki et al. 2017, Bouderba et al. 2013, 2016, 

Bousahla et al. 2016, Hamidi et al. 2015, Beldjelili et al. 

2016, Abdelbaki et al. 2017, El-Haina et al. 2017). The 

influence of thermal loads was studied on the elastic 

behaviors of cylindrical shell and sandwich plates (Arefi et 

al. 2016b, Arefi and Zenkour 2017a, Zenkour and Arefi 

2017). Some linear and nonlinear analysis of functionally 

graded structures was studied in detail to capture influence 

of in-homogeneous index on the elastic results (Arefi and 

Rahimi 2011, 2012c, Arefi et al. 2011, Arefi and 

Khoshgoftar 2014, Arefi 2014, Mohammadimehr et al. 

2016). Loghman et al. (2017) studied nonsymmetric 

analysis of FG cylinder subjected to thermal and 

mechanical loads. Arefi and Bidgoli (2017) presented an 

analytical work about two dimensional thermo-elastic 

analysis of axially variable pressure cylindrical shell. Arefi 

et al. (2016c) presented free vibration analysis of laminated 

cylindrical shell. Sinusoidal shear deformation theory was 

used by Arefi and Zenkour (2016, 2017b) for transient and 

static analyses of sandwich nano plates. 

A comprehensive literature review was performed in 

Introduction. One can conclude that although some 

theoretical works on the creep analyses of cylindrical 

pressure vessels were presented however it is proved that 

there is no published work about two dimensional thermo-

elastic creep analysis of cylindrical pressure vessels based 

on first order shear deformation theory. Our goal in this 

paper is to present two dimensional time-dependent creep 

analysis of a functionally graded cylinder subjected to 

longitudinally variable thermal and mechanical loads. First 

order shear deformation theory is used for description of 

two dimensional displacement components. Yang method 

and Norton’s law are employed for time dependent creep 

analysis. The numerical results are presented to reflect the 

influences of important parameters such non-homogeneous 

index, time of creep, radial location of cylinder and thermal 

and mechanical loadings on the two dimensional time 

dependent responses of the cylinder. 

 

 

2. Thermal analysis 
 

‍Consider a clamped-clamped functionally graded hollow 

cylinder with finite length l, internal radius Ri and external 

radius Rb. Cylindrical coordinates (r, θ, x) are used in the 

analysis. Mechanical and thermal properties except 

Poisson’s ratio are assumed variable along the thickness 

direction based on the simple power law variation as E = 

E0r
β and α = αor

β (Keles and Tutuncu 2011). The following 

data for geometry and material properties (Loghman et al. 

2010, Xuan et al. 2009, You et al. 2007, Dai and Fu 2007) 
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are used in this paper as follows 
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The cylinder is subjected to axisymmetric steady-state 

temperature loads Ti(x) on the inner surface and To(x) on the 

outer surface. Temperatures on its two end surfaces are 

assumed zero. In addition, the internal pressure Pi(x) and 

external pressure Po(x) are applied on the cylinder. Details 

of the functionally graded circular hollow cylinder are 

shown in Fig. 1. 

In this stage and before performing the thermo-elastic 

analysis, temperature distribution should be determined. 

Heat conduction equation in cylindrical coordinate system 

is presented as follows (Jabbari et al. 2009) 
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In which, T is temperature distribution, k is thermal 

conductivity, 𝑞  is heat generation, ρ is density, c is specific 

heat and (r, θ, x) are used coordinate described in Fig. 1. 

For a cylinder without heat generation, symmetric 

steady state heat conduction and considering the power law 

distribution for material properties using relation K(r) = 

K0r
m3, the two dimensional heat conduction relation is 

reduced to (Jabbari et al. 2009) 
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By employing the method of separation of variable and 

employing the solution as T(r, x) = T(r) T(x), Eq. (3) is 

updated as 
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General thermal boundary conditions of the cylinder are 

assumed as 
 

     

     

11 12 , 1

21 22 , 2

, ,

, ,

r

r

C T a x C T a x f x

C T b x C T b x f x

 


   

(5) 

 

Regard to all states of constant λ for arriving to 

nontrivial solution present λ = k2 and consequently yields 

solution as 
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 (6) 

 

The other function of temperature distribution along the 

r direction yields following solution using Bessel functions 

as 
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In which 3,
2

n

mn
k

L


    . Finally the two dimen-

sional temperature distribution is derived as 
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By considering the homogeneous boundary condition at 

two ends of the cylinder and constant temperatures at inner 

and outer radii, we will have 
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Imposing the mentioned boundary conditions present 

integration constants as follows 
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Fig. 1 The schematic of a cylindrical shell under axially variable temperature and pressure 
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In which, ei, i = 1..6 are calculated as 
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3. Creep analysis based on FSDT formulation 
 

Based on the first order shear deformation theory, 

displacement components are considered as linear 

combination of displacement of mid-surface and rotation 

about mid-surface. For a symmetric two dimensional 

analysis, displacement field is provided as Arefi and Rahimi 

(2012b) 
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In which, Uz, Wx are radial and axial displacements, u,w 

are displacements of mid-surface of cylinder and ϕr, ϕx are 

rotation components. Using the linear strain-displacement 

relations, normal and shear strain components are derived 

as 
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The three-dimensional stress-strain relations in 

cylindrical coordinate may be written as (Penny and 

Marriott 1971, Kraus 1980) 
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Using stress and strain components, strain energy per 

unit volume of the FG cylindrical shell is obtained as 
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Substitution of strain components into strain energy per 

unit volume and integration over the volume of the 

structure, total strain energy of the cylinder is obtained as 
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(16) 

 

In more simple form, the total energy is presented as 

combination of mechanical, thermal and creep energies as 

follows 
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(17) 
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(17) 

 

In which, Ai(x), fi(x), Bi(x), gi(x), Ci(x), ji(x) are functions 

of u, w, ϕr, ϕx and material properties. External energy due 

to inner and outer pressures is derived as 
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(18) 

 

By considering the strain energy and external energy, 

functional of the system is defined as 
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(19) 

 

Euler equation for first order functional of four variables 

is presented as 
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(20) 

 

By substitution of functional in Euler relations, four 

differential equations of the system are derived as 
 

     

 
 

     

     

 
 

22

1 2 4 1 62 2

1

1

22

2 3 1 62 2

2 2 9 1

2

1

2 1 2 1 2 2

[ 1 ]

2 1 2 1 1 2 2

[ 1 2 2 ] 1 2

1 2

x z

cc c

xx rr

x

z
x

c

rx

w u
A A A A A

x x x x

B x
C

x x x x

w u
A A K A A

x x x

K A A A K A
x

B x
C K C

x



 
   

 
 


   


   

 

  
     

   

   
     

    

 
          


       




    

 

   

   

   

     

   

2

22

1 2 42 2

1 6 5

7 4 3 1

3 1

22

2 3 12 2

[ 1 ( )]

1 2 1 2 2

1 2 2 2 1

2 1 2

1 1 2

1 2 1 2 2

cc c

xx rr

z

x

z

c
c c c rx

rr xx

z

x x x

u w
K A K A A

x x x

K A A A u
x

A A B x d

C K C
x

u
K A K A A A

x x





 
 


  


  

  


     


  

 
  

  

 
   

  


       

       


      
  


    

 
 

     

       

   

     

6

2 2 9 7 4

1 8 6 1 4 2

1

4 2

1 2 2 2 1 2

2 1 4

1

1 1 2

x

z

c c c

rr xx

c
c c c rx

rr xx

w

x

K A A A A A u
x

A A A B x B x d

C

C K C
x






   

  

    


     



























 





             

          


      



         

 

(21) 

In matrix form, Eq. (21) are presented as 
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
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(22) 

 

In which, {Gi} (i = 1, 2, 3), {F} are presented in 

Appendix A. 
 

 

4. Solution procedure; Elastic and creep solutions 
 

4.1 General solution 
 

The governing differential equations of the system are 

analytically solved to derive four unknown functions of the 

system. The solution procedure is containing homogeneous 

and particular solutions as follows 
 

     
h p
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(23) 

 

By considering the homogeneous solution as {X}h 

={v}ie
mix, the homogeneous solution is obtained. In 

homogeneous solution, mi are roots of eight’s order 

characteristic equation and vi are eigenvectors that defined 

as 
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(24) 

 

In general state, the homogeneous solution is defined as 
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(25) 

 

The linear term arises from this fact that two zero roots 

are derived from characteristic equation. 
 

4.2 Elastic solution 
 

Particular solution of the differential equation for elastic 

is derived as 
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(26) 

 

In which, {X}p1
, {X}p2

 are particular terms 

corresponding to thermal and mechanical loads, 

respectively. In this paper, we assume that pressure varies 

along the axial direction. 
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(27) 

 

One can find that the first two terms arises from thermal 
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loads and temperature distribution and second three terms 

arises from axial variable pressure distribution. Substitution 

of obtained particular solution in differential equations of 

the system (Eq. (22)) yields 
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Arranging the similar terms yields two distinct relations 

as 
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Second particular solutions {X}p2
 are corresponding to 

inner and outer axially variable pressures which are 

assumed in general case, second order along the 

longitudinal direction as 
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Based on the mentioned descriptions, particular 

solutions are expressed as 
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Substitution of above particular solution in differential 

equations of the system yields three unknown matrices {C}, 

{D}, {E} in Eq. (30) as follows 
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At the end general and particular solutions for elastic 

case are presented as 
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4.2 Creep solution 
 

Creep strain rates in radial, tangential and axial 

directions are related to the current stresses and the material 

creep constitutive model by the Prandtl-Reuss equations 

(Penny and Marriott 1971, Kraus 1980) as 
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(34) 

 

The uniaxial creep constitutive model is the Norton’s 

law that is defined as 
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(35) 

 

where r is the radial coordinate and B(r) and n(r) are the 

radial-dependent material creep parameters. In this study 

B(r) = b0r
b1 and n(r) is considered to be a constant n(r) = n0 

Substituting Eq. (35) into Eqs. (34), the relationships 

between radial and tangential strain rates and radial and 

tangential stresses become 
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(36) 

 

Here, the Von-mises effective stress σe is written as 
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 
 

(37) 

 

Considering the pressure and temperature fields to be 
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steady, the four differential equation of the system (Eq. 

(21)) containing creep strains may be rewritten in terms of 

creep strain rates of follows 
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(38) 

 

Substituting Eqs. (36) into Eqs. (38), and Consider μ1 = 
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 the final form of four differential equation of 

the system (Eq. (38)) become 
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(39) 

in matrix form, Eq. (39) are expressed as 
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(40) 

 

In which, {Fc} are presented in Appendix A. The 

procedure of general solution is same as procedure in part 

5.1 as 
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(41) 

 

Given that {Fc} is comprised of constant parameters, for 

the particular part of solution of Eqs. (38), the particular 

solution can be expressed as follows 
 

1

3 3[ ]{ } { } { } [ ] { }p c p cG X F X G F  
 

(42) 

 

Finally, the total solution of creep is a summation of the 

general and the particular solution. 
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(43) 

 

After derivation of homogeneous and particular 

solutions for elastic or creep state, the boundary conditions 

may be applied on the total solution. In this paper, we 

consider a clamped-clamped short cylindrical shell. For this 

type of boundary conditions, it is defined as 
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(44) 

 

 

5. Numerical result 
 

In this section, numerical results of present formulation 

are shown. The numerical results are including elastic and 

creep solutions. The longitudinally variable pressure is 

assumed as Fig. 2. And Inner and outer temperature loading 
 

 

 

Fig. 2 Longitudinally variable pressure in terms of 

length of the cylinder 
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Fig. 3 The axial distribution of temperature for 

different values of non-homogeneous index 

 

 

 

 

along the axial direction is considered as Ti = 200 sin 
𝑛𝜋𝑥

𝐿
  

and To = 0, respectively. The obtained results are classified 

as elastic and creep results. 

 

5.1 Elastic 
 

In this section, both thermal and mechanical loadings 

are applied on the cylinder. Shown in Fig. 3 is the axial 

distribution of temperature for different values of non-

homogeneous index. The obtained results indicate that with 

increasing the non-homogeneous index, the temperature is 

decreased significantly. 

Shown in Figs. 4(a), (b), (c) and (d) is the axial distribu- 

 

 

 

 

  

(a) Radial displacement (b) Axial displacement 

 

 

 

 

(c) Circumferential stress (d) Effective stress 

Fig. 4 The radial distribution of radial and axial displacements, circumferential and effective stresses 

  

(a) Radial displacement (d) Effective stress 

Fig. 5 The History of radial distribution of radial and axial displacements for 10, 20, 30, 40 and 50 years 
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(a) Radial creep strain (b) Axial creep strain 

 

 

 

 

(c) Shear creep strain (d) Circumferential creep strain 

Fig. 6 The History of radial distribution of radial, axial, shear and circumferential creep strains for 10, 20, 30, 40 

and 50 years 

  

(a) Radial stress (b) Axial stress 

 

 

 

 

(c) Circumferential stress (d) Effective stress 

Fig. 7 The History of radial distribution of radial, axial, circumferential and effective stresses for 10, 20, 30, 40 and 50 years 
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tion of radial and axial displacements, circumferential and 

effective stresses in terms of different values of non-

homogeneous index of used material. 

 

5.2 Creep 
 

In this section, the histories of thermo-elastic results for 

50 years are presented. Shown in Fig. 5 is longitudinal 

distribution of axial and radial displacements for different 

interval of creep time. It can be concluded with increasing 

the creep time, the different curves leads to a uniform 

condition. 

Fig. 6 shows history of creep strains (longitudinal, 

circumferential, radial and shear strains) along the 

longitudinal direction for different creep times.  The 
 

 

 

 

obtained results show that with increasing the creep time, 

all strain curves tend to a uniform variation. Furthermore, it 

can be concluded that the boundaries of cylinder have 

significant effects on the creep strains. 

Shown in Fig. 7 are histories of creep stress (longitu-

dinal, circumferential, radial and shear strains) along the 

longitudinal direction for different creep times. The 

obtained results show that with increasing the creep time, 

all stress curves tend to a uniform variation. Furthermore, it 

can be concluded that the boundaries of cylinder have 

significant effects on the creep strains. The main conclusion 

of this figure is significant reduction of circumferential 

stress for greater times of creep. This reduction leads to 

important decreasing the effective stress. 

In this section, the influence of non-homogeneous index 
 

 

  

(a) Radial displacement (b) Axial displacement 

Fig. 8 The history of radial distribution of radial and axial displacements after 30 years for β = 2 

  

(a) Radial creep strain (b) Axial creep strain 
 

 

 

 

(c) Shear creep strain (d) Circumferential creep strain 

Fig. 9 The History of radial distribution of radial, axial, shear and circumferential creep strains after 30 years for β = 2 
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on the different responses of cylinder is investigated. The 

distribution of axial and radial displacements after 30 years 

along the axial direction is presented for different values of 

non-homogeneous index in Fig. 8. 

The influence of non homogeneous index on the 

distribution of different strains (longitudinal, circumfe-

rential, radial and shear strains) along the longitudinal 

direction after 30 years is presented in Fig. 9. 

The influence of non homogeneous index on the 

distribution of different stress components (longitudinal, 

circumferential, radial and shear stresses) along the 

longitudinal direction after 30 years is presented in Fig. 10. 

As final results, the numerical values of displacements 

and stress for different layers of cylinder are presented. Fig. 

11 shows the longitudinal variation of radial and 

 

 

 

 

 

Fig. 12 The History of radial distribution of radial stress 

after 30 years for β = 2 and  z = ‒h / 2, ‒h / 4, 0, 

h / 4, h / 4 

  

(a) Radial stress (b) Axial stress 
 

 

 

 

(c) Shear stress (d) Circumferential stress 

Fig. 10 The History of radial distribution of radial, axial, circumferential and effective stress after 30 years for β = 2 

  

(a) Radial displacement (b) Axial displacement 

Fig. 11 The longitudinal distribution of radial and axial displacements after 30 years for β = 2 and z = ‒h / 2, ‒h / 4, 

0, h / 4, h / 4 
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longitudinal displacements of cylinder for different radial 

locations (z = ‒h / 2, ‒h / 4, 0, h / 4, h / 4) after 30 years. 

Shown in Fig. 12 is longitudinal distribution of radial 

for different radial locations (z = ‒h / 2, ‒h / 4, 0, h / 4, h / 

4) after 30 years. The influence of boundaries on the results 

of cylinder can be observed in this figure. 
 

 

6. Conclusions 
 

Two dimensional time dependent creep analysis of a 

functionally graded hollow cylinder subjected to 

longitudinally variable thermal and mechanical loads was 

studied in this paper using first order shear deformation 

theory and Yang method. The history of stress, strains and 

deformations was derived for different values of non 

homogeneous index and after various time intervals. The 

numerical results indicate that the boundaries of cylinder 

and non homogeneous index can significantly change the 

creep behavior of functionally graded cylindrical shell. 

Furthermore, the effect of creep time on the behavior of 

cylinder for various values of non homogeneous index leads 

to interesting results and conclusions for engineers and 

designers. Some important results of this paper is presented 

as: 
 

(1) The numerical results indicate that with increasing 

the non homogeneous index, the radial and 

longitudinal deformations are increased while the 

stress components are decreased. 

(2) Investigation on the creep time indicates that with 

increasing the creep time, the different curves leads 

to a uniform condition. 
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Nomenclature 
 
r Radius of an arbitrary layer of cylinder 

z Coordinate of arbitrary layer of cylinder 

respect to middle surface 

R Radius of mid-surface of cylinder 

Wx Axial component of deformation 

Ur Radial component of deformation 

u Displacement component of axial deformation 

w Displacement component of radial deformation 

ϕx Rotational component of axial deformation 

ϕr Rotational component of radial deformation 

εx Axial strain 

εz Radial strain 

εθ Circumferential strain 

εxz Shear strain in xz plane 

xx Axial stress 

zz Radial stress 

θθ Circumferential stress 

τxz Shear stress 

α Heat expansion coefficient 

Ei Modulus of elasticity at the inner radius 

𝜀 𝑒  The effective creep strain rate 

e The effective stress 

𝜀 𝑟  Creep strain rate in radial direction 

𝜀 𝑥  Creep strain rate in axial direction 

𝜀 𝜃  Creep strain rate in tangential direction 

𝜀 𝛾𝑥  Creep strain rate in shear direction 

h Thickness of cylinder 

U Total energy 

n, m3 Non homogeneous index 

Us(x) Mechanical strain energy 

fi(x) A function of component of displacement 

and rotation 

Ai(x) General property of material 

E Modulus of elasticity 

Pi(x) Variable internal pressure 

Po(x) Variable external pressure 

Gi, i = 1, 2, 3 Matrix of coefficient 

W External work(due to pressure) 

F general potential function 

F(u, w, ϕx, ϕr, x) Functional of the system 

{X} Vector of general deformation 

{F} Vector of general force 

(thermal and mechanical) 

Ri Inner radius 

Ro Outer radius 

mi Eigen values 

T Temperature distribution 

𝑢  Energy per unit volume 
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dV Element of volume 

B(r) & n(r) Radial dependent creep parameter 

𝜀 𝑟  Total radial creep 

𝜀 𝑥  Total axial creep 

𝜀 𝜃  Total tangential creep 

𝜀 𝑟𝑥  Total shear creep 
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